General Description

The DS8187 is a vacuum fluorescent display tube driver. This device is implemented in CMOS technology, to provide high voltage output drivers and low power. Dimming may be accomplished by either analog or digital input. Autoload capability is accomplished by connecting the DATA OUT pin to the LOAD ENABLE input pin, with the addition of a start bit to the input data stream.

Features
■ 33 Segment Direct Drive $25-0.8 \mathrm{~mA}$ and $8-2 \mathrm{~mA}$ output drivers

- 49 steps of dimming, mask programmable
- Analog or digital input dimming contro
- DATA OUT pin for cascading
- Mask options allow reconfiguring of outputs with respect to shift register bit position
- Autoload or external load capability
Block Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.
Supply Volltage (V_{CC})
-0.3 to +20 V
DC Input Voltage (VIN)
-0.3 to $\mathrm{VCC}+0.3 \mathrm{~V}$
DC Output Voltage (VOUT)
Storage Temperature Range $\quad-65$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec .)
$260^{\circ} \mathrm{C}$
Power Dissipation (PD) at $25^{\circ} \mathrm{C}$ DIP Board Mount TBD DIP Socket Mount TBD
Typical Values $\theta J A$ DIP Board Mount \quad TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$ θ JA DIP Socket Mount $\mathrm{TBD}^{\circ} \mathrm{C} / \mathrm{W}$

Operating Conditions

	Min	Max	Unit
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	8	18	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
Temperature Range	-40	+85	${ }^{\circ} \mathrm{C}$
Electro-Static Discharge (ESD)		2 K	V

DC Electrical Characteristics

$\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$ to 18 V , All voltages referenced to GND, unless otherwise specified

Symbol	Parameter	Conditions	Min	Max	Units
V_{IH}	High Level Input Voltage		3.8	6	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage		0	0.8	V
$\mathrm{IIH1}$	High Level Input Current (Clock, Data In, Load, VK)	$\mathrm{V}_{\mathrm{H} 1}=5.0 \mathrm{~V}$	-5	5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 2}$	High Level Input Current (Blank)	$\mathrm{V}_{\mathrm{IH} 2}=5.0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-20	10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{H} 3}$	High Level Input Current (TEST2)	$\mathrm{V}_{1 \mathrm{H3}}=\% .0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-100	20	$\mu \mathrm{A}$
IIL1	Low Level Input Current (Clock, Data In, Load, VK)	$\mathrm{V}_{\mathrm{IL} 1}=0 \mathrm{~V}$	-5	5	$\mu \mathrm{A}$
IIL2	Low Level Input Current (BLANK IN)	$\mathrm{V}_{\mathrm{IL} 2}=0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-125	-5	$\mu \mathrm{A}$
IIL3	Low Level Input Current (TEST2)	$\mathrm{V}_{\mathrm{IL} 3}=0 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$	-700	-100	$\mu \mathrm{A}$
I_{LI}	Input Leak Current (VD)	$\mathrm{V}_{\text {IN }} 0 \mathrm{~V}$ to 6 V	-5	5	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{OH} 1}$	High Level Output Voltage (Low Current Driver)	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH} 1}=-0.8 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.8$		V
$\mathrm{V}_{\mathrm{OH} 2}$	High Level Output Voltage (High Current Drive)	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OH} 2}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-0.8$		V
$\mathrm{V}_{\mathrm{OH} 3}$	High Level Output Voltage (DATA OUT, PWM OUT)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{I}_{\mathrm{OH} 3}=-200 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{OH} 3}=-20 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 4 \\ 4.5 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL1 }}$	Low Level Output Voltage (All Drivers)	$\begin{array}{ll} \mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, & \mathrm{l}_{\mathrm{OL} 1}=500 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL} 1}=200 \mu \mathrm{~A} \\ & \mathrm{l}_{\mathrm{OL} 1}=2 \mu \mathrm{~A} \end{array}$		$\begin{gathered} 2 \\ 1 \\ 0.3 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {OL2 }}$	Low Level Output Voltage (DATA OUT,PWM OUT)	$\mathrm{V}_{\mathrm{CC}}=9.5 \mathrm{~V}, \mathrm{l}_{\mathrm{OL} 2}=200 \mu \mathrm{~A}$		0.8	V
ICC	Supply Current	No Load		20	mA

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur.

AC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
f_{C}	Clock Frequency			250	kHz
PW_{C}	Clock Pulse Width		1.3		$\mu \mathrm{s}$
ts	Data Set-Up Time		1		$\mu \mathrm{s}$
t_{H}	Data Hold Time		200		ns
PW	Load Pulse Width		1.3		$\mu \mathrm{s}$
to ${ }_{\text {DB }}$	Output Delay from Blank	$C_{L}=100 \mathrm{pF}$		7	$\mu \mathrm{s}$
to DL	Output Delay from Load	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		8	$\mu \mathrm{S}$
t_{r}	Rise Time (All Driver Outputs)	$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{t}=20 \%$ to 80% of V_{CC}		5	$\mu \mathrm{s}$
t_{f}	Fall Time (All Driver Outputs)	$C L=100 \mathrm{pF}, \mathrm{t}=80 \%$ to 20% of $\mathrm{V}_{C C}$		5	$\mu \mathrm{S}$

Dimming Characteristics

DC Characteristics

Parameter	Conditions	Min	Typ	Max	Units
V_{D} Offset Voltage (Note 2$)$	$\pm \mathrm{V}_{\mathrm{D}}(3 \%+6 \%)$			± 10	mV

AC Characteristics

Parameter	Conditions	Min	Typ	Max	Units
Pulse Width Error	No Load (Note 3)			± 100	ns
PWM OUT Frequency		150	250	400	Hz
OSC Frequency		307.2	512	819.2	kHz

Note 2: Reference voltage is 6.1 V typical.
Note 3: Under the ideal condition of DC parameters.

AC Test Conditions

Input Pulse Levels	0.5 V to 3.5 V
Input Rise and Fall Times	$6 \mathrm{~ns}(10 \%$ to $90 \%)$
Propagation Delays Measured at of respective waveforms	

Functional Description

SHIFT REGISTER OPERATION

Refer to block diagram Figure 1 while LOAD ENABLE is low, data is entered into the shift register on the rising edge of the clock. The first data bit entered is stored in position \#0, the last data bit entered is stored in position \#33. A high voltage level applied to the LOAD ENABLE input transfers the data from the shift register to the data latch. The data is presented to the output drivers through a 33×33 matrix. This matrix determines shift register output designation. The DS8187 has 34 shift register positions, 33 data latches, and 33 output drivers.

AUTO LOAD MODE

In this mode, the DATA OUT pin is connected to the LOAD ENABLE pin. The data word consists of 34 bits including a leading start bit(logic 1). On the positive-going-edge of the 34th clock (LOAD ENABLE goes High), data is transferred to the data latches and the shift register is cleared.

DIRECT LOAD MODE

In this mode the DATA OUT pin is not connected to the LOAD ENABLE pin. The LOAD ENABLE pin is controlled directly by the user. When LOAD ENABLE goes High, the contents of the shift register are latched, presented to the output drivers through the 33×33 PLA matrix, and the shift register is cleared.

DIMMING FUNCTION

When VK is Low, the BLANK IN/PWM OUT pin functions as an input blanking signal. When BLANK IN/PWM is High, the output duty cycle is 100%. The duty cycle of a user supplied signal to this pin will determine the brightness of the output. When VK is High, the duty cycle of the output drivers is controlled by an analog voltage applied to the VD pin. Table I indicates the duty cycle of the output drivers with respect to the analog voltage applied to VD pin.

Connection Diagram

Analog Dimming and $\mathbf{V}_{\mathbf{D}}$ Offset Description

When using analog dimming, the brightness attainable is 10.2% of maximum brightness. The voltage ($V_{\text {REF }}$) is the external voltage from which V_{D} is developed (usually from a variable resistor). This voltage should be in the range of 5.7 V to V_{CC} so that the maximum 10.2% PWM duty cycle is achieved easily.
The V_{D} offset error represents the difference between the actual analog input voltage when using analog dimming and the internal analog voltage created by the D/A converter. Table III indicates the PWM duty cycle with respect to voltage at the V_{D} pin over 49 steps of dimming. To determine the Min/Max PWM, V_{D} offset must be subtracted from/added to the threshold voltage of Table III. The Dimming Curves (Figure 6) are a graphical representation of Table III showing the V_{D} offset.

Load Enable Description

The positive going edge of the Load Enable input signal latches data from the shifter and resets the shifter. While Load Enable is "high", the shifter will not accept data. The Load Enable should be driven high during the low level of the clock.

Output Circuit Description

The segment output drivers are push-pull active high. There are 25 low current drivers (0.8 mA) and 8 high current drivers (2 mA). These outputs nominally swing from 0.3 V to ($\mathrm{V}_{\mathrm{CC}}-0.8 \mathrm{~V}$) and are designed to drive the anodes of low voltage (about 13V) vacuum fluorescent displays. The digital outputs (DATA OUT and PWM OUT) typically swing form 0.5 V to 5 V and are designed to drive other logic devices. For example, referring to (Figure 3), if DS8187 devices are cascaded, then DATA OUT and PWM OUT of the first are connected respectively to DATA IN and BLANK IN of the second.
Figures 3, 4 and 5 are typical applications of the DS8187.

	TABLE III. VD Threshold Dimming Voltage V.S. PWM Duty Cycle (Typical Value at $\mathrm{V}_{\mathrm{CC}}=12.8 \mathrm{~V}$) 10.2\% PWM Maximum							
	Pulse Step Number	PWM Duty Cycle		Threshold Voltage	Pulse Step Number	PWM Duty Cycle		Threshold Voltage
		Pulse Count	\%			Pulse Count	\%	
				$\mathrm{V}_{\text {REF }}$	26	56/2048	2.73	3.385
				$\mathrm{V}_{\text {REF }}$	25	52/2048	2.54	3.323
www.datasheet/	प.			$\mathrm{V}_{\text {REF }}$	24	48/2048	2.34	3.263
	49	208/2048	10.2	$\mathrm{V}_{\text {REF }}$	23	46/2048	2.25	3.204
	48	192/2048	9.38	4.621	22	44/2048	2.15	3.155
	47	184/2048	8.98	4.541	21	42/2048	2.05	3.118
	46	176/2048	8.59	4.488	20	40/2048	1.95	3.076
	45	168/2048	8.20	4.434	19	38/2048	1.86	3.027
	44	160/2048	7.81	4.381	18	36/2048	1.76	2.983
	43	152/2048	7.42	4.333	17	34/2048	1.66	2.941
	42	144/2048	7.03	4.286	16	32/2048	1.56	2.898
	41	136/2048	6.64	4.231	15	30/2048	1.46	2.860
	40	128/2048	6.25	4.170	14	28/2048	1.37	2.822
	39	120/2048	5.86	4.106	13	26/2048	1.27	2.785
	38	112/2048	5.47	4.043	12	24/2048	1.17	2.744
	37	104/2048	5.08	3.980	11	23/2048	1.12	2.692
	36	96/2048	4.69	3.914	10	22/2048	1.07	2.650
	35	92/2048	4.49	3.831	9	21/2048	1.03	2.622
	34	88/2048	4.30	3.766	8	20/2048	0.98	2.597
	33	84/2048	4.10	3.719	7	19/2048	0.93	2.569
	32	80/2048	3.91	3.673	6	18/2048	0.88	2.539
	31	76/2048	3.71	3.631	5	17/2048	0.83	2.511
	30	72/2048	3.52	3.594	4	16/2048	0.78	2.478
	29	68/2048	3.32	3.551	3	15/2048	0.73	2.455
	28	64/2048	3.13	3.501	2	14/2048	0.68	2.425
	27	60/2048	2.93	3.444	1	13/2048	0.63	2.392
								0.000
			$\stackrel{4}{9}$ 2.	se Count (with FIGURE 6. hical Repre	ect to 2048 co ming Curve ation of Tabl	pical) $\mathrm{TL} / \mathrm{F} / 1$		

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

