900,000+ datasheet pdf search and download

Datasheet4U offers most rated semiconductors data sheet pdf






Adesto

AT25SF081 Datasheet Preview

AT25SF081 Datasheet

2.5V Minimum SPI Serial Flash Memory

No Preview Available !

AT25SF081
8-Mbit, 2.3V Minimum
SPI Serial Flash Memory with Dual-I/O and Quad-IO Support
Features
Single 2.3V - 3.6V Supply
Serial Peripheral Interface (SPI) Compatible
Supports SPI Modes 0 and 3
Supports Dual and Quad Output Read
104MHz Maximum Operating Frequency
Clock-to-Output (tV) of 6 ns
Flexible, Optimized Erase Architecture for Code + Data Storage Applications
Uniform 4-Kbyte Block Erase
Uniform 32-Kbyte Block Erase
Uniform 64-Kbyte Block Erase
Full Chip Erase
Hardware Controlled Locking of Protected Blocks via WP Pin
3 Protected Programmable Security Register Pages
Flexible Programming
Byte/Page Program (1 to 256 Bytes)
Fast Program and Erase Times
0.7ms Typical Page Program (256 Bytes) Time
70ms Typical 4-Kbyte Block Erase Time
300ms Typical 32-Kbyte Block Erase Time
600ms Typical 64-Kbyte Block Erase Time
JEDEC Standard Manufacturer and Device ID Read Methodology
Low Power Dissipation
2µA Deep Power-Down Current (Typical)
10µA Standby current (Typical)
4mA Active Read Current (Typical)
Endurance: 100,000 Program/Erase Cycles
Data Retention: 20 Years
Complies with Full Industrial Temperature Range
Industry Standard Green (Pb/Halide-free/RoHS Compliant) Package Options
8-lead SOIC (150-mil and 208-mil)
8-pad Ultra Thin DFN (5 x 6 x 0.6 mm and 2 x 3 x 0.6 mm)
8-lead TSSOP (4 x 4 mm)
Die in Wafer Form
DS-25SF081–045I–8/2017




Adesto

AT25SF081 Datasheet Preview

AT25SF081 Datasheet

2.5V Minimum SPI Serial Flash Memory

No Preview Available !

Description
The Adesto® AT25SF081 is a serial interface Flash memory device designed for use in a wide variety of high-volume
consumer based applications in which program code is shadowed from Flash memory into embedded or external RAM
for execution. The flexible erase architecture of the AT25SF081 is ideal for data storage as well, eliminating the need for
additional data storage devices.
The erase block sizes of the AT25SF081 have been optimized to meet the needs of today's code and data storage
applications. By optimizing the size of the erase blocks, the memory space can be used much more efficiently. Because
certain code modules and data storage segments must reside by themselves in their own erase regions, the wasted and
unused memory space that occurs with large block erase Flash memory devices can be greatly reduced. This increased
memory space efficiency allows additional code routines and data storage segments to be added while still maintaining
the same overall device density.
The device also contains three pages of Security Register that can be used for purposes such as unique device
serialization, system-level Electronic Serial Number (ESN) storage, locked key storage, etc. These Security Register
pages can be individually locked.
1. Pin Descriptions and Pinouts
Table 1-1. Pin Descriptions
Symbol
CS
SCK
SI (I/O0)
Name and Function
CHIP SELECT: Asserting the CS pin selects the device. When the CS pin is deasserted, the
device will be deselected and normally be placed in standby mode (not Deep Power-Down
mode), and the SO pin will be in a high-impedance state. When the device is deselected,
data will not be accepted on the SI pin.
A high-to-low transition on the CS pin is required to start an operation, and a low-to-high
transition is required to end an operation. When ending an internally self-timed operation
such as a program or erase cycle, the device will not enter the standby mode until the
completion of the operation.
SERIAL CLOCK: This pin is used to provide a clock to the device and is used to control the
flow of data to and from the device. Command, address, and input data present on the SI pin
is always latched in on the rising edge of SCK, while output data on the SO pin is always
clocked out on the falling edge of SCK.
SERIAL INPUT: The SI pin is used to shift data into the device. The SI pin is used for all data
input including command and address sequences. Data on the SI pin is always latched in on
the rising edge of SCK.
With the Dual-Output and Quad-Output Read commands, the SI Pin becomes an output pin
(I/O0) in conjunction with other pins to allow two or four bits of data on (I/O3-0) to be clocked
in on every falling edge of SCK
To maintain consistency with the SPI nomenclature, the SI (I/O0) pin will be referenced as
the SI pin unless specifically addressing the Dual-I/O and Quad-I/O modes in which case it
will be referenced as I/O0
Data present on the SI pin will be ignored whenever the device is deselected (CS is
deasserted).
Asserted
State
Low
-
-
Type
Input
Input
Input/Output
AT25SF081
DS-25SF081–045I–8/2017
2


Part Number AT25SF081
Description 2.5V Minimum SPI Serial Flash Memory
Maker Adesto
Total Page 30 Pages
PDF Download

AT25SF081 Datasheet PDF

View PDF for Mobile






Similar Datasheet

1 AT25SF081 2.5V Minimum SPI Serial Flash Memory
Adesto





Part Number Start With

0    1    2    3    4    5    6    7    8    9    A    B    C    D    E    F    G    H    I    J    K    L    M    N    O    P    Q    R    S    T    U    V    W    X    Y    Z

Site map

Webmaste! click here

Contact us

Buy Components

Privacy Policy