The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary multiplying digital-to-analog converters A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (0 0002% C linearity error temperature coef
Features
Y Y Y Y Y Y Y Y Y Y
Linearity specified with zero and full-scale adjust only Non-linearity guaranteed over temperature Integrated thin film on CMOS structure 10-bit or 12-bit resolution Low power dissipation 10 mW 15V typ Accepts variable or fixed reference b25VsVREFs25V 4-quadrant multiplying capability Interfaces directly with DTL TTL and CMOS Fast settling time 500 ns typ Low feedthrough error LSB 100 kHz typ
Equivalent Circuit
Note Switches shown in digital high state
TL H 5689.
DAC1210- 12-Bit/ uP Compatible/ Double-Buffered D to A Converters
Full PDF Text Transcription
Click to expand full text
DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter
May 1996
DAC1020 DAC1021 DAC1022 10-Bit Binary Multiplying D A Converter DAC1220 DAC1222 12-Bit Binary Multiplying D A Converter
General Description
The DAC1020 and the DAC1220 are respectively 10 and 12-bit binary multiplying digital-to-analog converters A deposited thin film R-2R resistor ladder divides the reference current and provides the circuit with excellent temperature tracking characteristics (0 0002% C linearity error temperature coefficient maximum) The circuit uses CMOS current switches and drive circuitry to achieve low power consumption (30 mW max) and low output leakages (200 nA max) The digital inputs are compatible with DTL TTL logic levels as well as