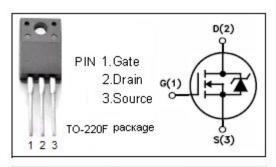


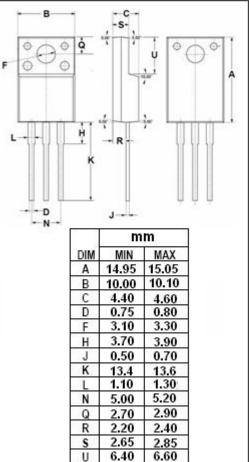
INCHANGE SEMICONDUCTOR

isc N-Channel Mosfet Transistor

12N60

FEATURES


- Drain Current –I_D= 12A@ T_C=25 $^\circ\!\!\!\mathrm{C}$
- Drain Source Voltage-
- : V_{DSS}= 600V (Min)
- Static Drain-Source On-Resistance
- : R_{DS(on)} = 0.7 Ω (Max)
- Avalanche Energy Specified
- Fast Switching
- Simple Drive Requirements
- Minimum Lot-to-Lot variations for robust device performance and reliable operation


DESCRITION

• Designed for high efficiency switch mode power supply.

• ABSOLUTE MAXIMUM RATINGS(Ta=25°C)

SYMBOL	PARAMETER VALUE		UNIT
V _{DSS}	Drain-Source Voltage	600	V
V _{GS}	Gate-Source Voltage-Continuous	uous ±30	
I _D	Drain Current-Continuous	12	
I _{DM}	Drain Current-Single Plused	48	А
Tj	Max. Operating Junction Temperature	150	°C
T _{stg}	Storage Temperature	-55~150	°C

• THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	МАХ	UNIT
R _{th j-c}	Thermal Resistance, Junction to Case	0.8	°C/W
R _{th j-a}	Thermal Resistance, Junction to Ambient	62.5	°C/W

1

isc N-Channel Mosfet Transistor

12N60

ELECTRICAL CHARACTERISTICS

$T_{\text{C}}\text{=}25^{\circ}\!\!\!\mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN	МАХ	UNIT
V _{(BR)DSS}	Drain-Source Breakdown Voltage	V _{GS} = 0; I _D = 0.25mA	600		V
V _{GS(th)}	Gate Threshold Voltage	V_{DS} = V_{GS} ; I_D = 0.25mA	2	4	V
R _{DS(on)}	Drain-Source On-Resistance	V _{GS} = 10V; I _D = 6.0A		0.7	Ω
I _{GSS}	Gate-Body Leakage Current	V _{GS} = ±30V; V _{DS} = 0		±100	nA
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 600V; V _{GS} = 0		10	μA
V _{SD}	Forward On-Voltage	I _S = 12A; V _{GS} = 0		1.4	V

ISC reserves the rights to make changes of the content herein the datasheet at any time without notification. The information contained herein is presented only as a guide for the applications of our products.

ISC products are intended for usage in general electronic equipment. The products are not designed for use in equipment which require specialized quality and/or reliability, or in equipment which could have applications in hazardous environments, aerospace industry, or medical field. Please contact us if you intend our products to be used in these special applications.

ISC makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does ISC assume any liability arising from the application or use of any products, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

2