

13611XR 13 Gbps XOR/XNOR Data Sheet

Applications

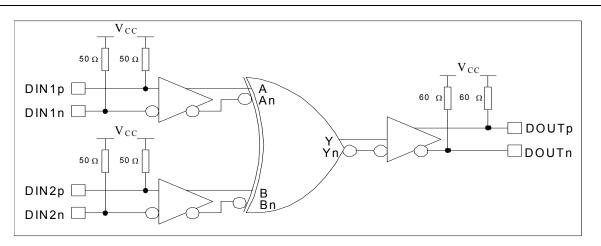
- High-speed (up to 13 GHz) digital logic
- High-speed (up to 13 Gbps) serial data transmission systems
- Broadband test and measurement equipment

Features

- Supports data rates up to 13 Gbps
- Rise and fall times typically 17/12 ps, respectively
- Power dissipation typically 265 mW
- Supports single-ended and differential operation
- Output signal swing 1200 mVpp differential

INPHI 13611XR

- Single, +3.3 V power supply
- Available in QFN package
 - Evaluation board available


•

Description

The 13611XR XOR/XNOR is designed to support data rates up to 13 Gbps. All differential data inputs are DC coupled and terminated on chip with 50 Ω resistors to V_{CC}. The differential data outputs are back-terminated on chip with 60 Ω resistors to V_{CC} (50 ohm impedance). For direct-coupled applications, the outputs should be terminated off chip with 50 ohms to V_{CC}. For applications requiring termination to DC levels other than V_{CC}, externally AC couple the output and terminate with 50 Ω to a good RF ground. The 13611XR operates from a single +3.3 V power supply and dissipates only 265 mW. It is available in a 3 x 3 mm² quad flat no-lead (QFN) package and is also available on an evaluation board with SMA connectors.

Block Diagram

Absolute Maximum Ratings

- Stresses beyond those listed here may cause permanent damage to the device.
- These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the "Operating Conditions" and "Electrical Specifications" of this datasheet is not implied.
- Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Conditions	Min	Max	Unit
Power Supply	V _{CC}		-0.5	+3.6	V
Input Signals			$V_{CC}-2$	$V_{CC} + 1$	V
Output Signals			$V_{CC}-2$	$V_{CC} + 1$	V
Junction Temperature – Die	TJ		-5	+175	°C
Case Temperature – Package paddle	T _C	Bottom of paddle	-15	+125	°C
Shipping/Storage Temperature	T _{STORE}		-40	+125	°C
Humidity	RH		0	100	%
		Inputs	500		V
ESD Protection (Human Body Model)	ESD	Outputs	250		V
		V _{CC}	500		V

Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power Supply Level	Vcc	± 5% Tolerance	+3.135	+3.300	+3.465	V
Power Supply Current	$I_{\rm EE}$			80	110	mA
On-Chip Power Dissipation	P _D			265	380	mW
Operating Temperature (Junction) – Die	TJ		+15		+125	°C
Operating Temperature (Case) – Package	T _C	Bottom of paddle	-5		+85	°C
Thermal Resistance – junction to paddle	$R_{JC}(\theta_{JC})$	Bottom of paddle		51		°C/W

Electrical Specifications

<u>!</u>

WARNING – To prevent damage to the part:

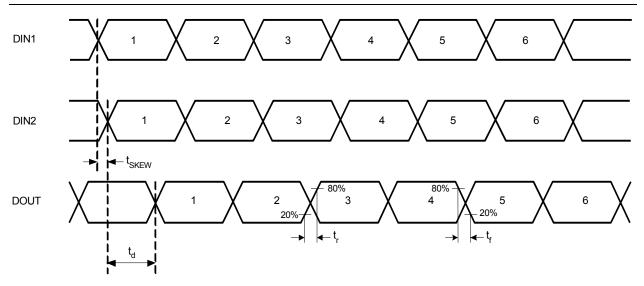
• DC power must be turned off prior to connecting or disconnecting any cables.

Electrical specifications guaranteed when the part is operated within the specified operating conditions.						
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Maximum Data Rate		10-12 BER (NRZ format)	13			Gbps
Input High Level	V_{IH}		$V_{CC} - 0.5$		$V_{CC} + 0.5$	V
Input Low Level	VIL		$V_{CC} - 1.0$		Vcc	V
Input Amplitude VII		Differential peak-to-peak	300		2000	mVpp
	VIN _{pp}	Single-ended peak-to-peak	300		1000	mVpp
Input Return Loss ¹	RL _{IN}	< 13 GHz, with input common mode \leq V _{CC} .	10			dB
Output Amplitude ²	D _{OUT}	Differential peak-to-peak	900	1200	1400	mVpp
Output High Level	V _{OH}	DC coupled, V _{CC} referenced	$V_{CC}-50$	$V_{CC} - 10$	V _{CC}	mV
Output Low Level	Vol	DC coupled, V _{CC} referenced	V _{CC} -700	$V_{CC} - 600$	$V_{CC}-450$	mV
Output Common Mode	V _{OCM}	DC coupled, V_{CC} referenced		$V_{CC} - 300$		mV
Output Rise/Fall Time	$t_{\rm r}/t_{\rm f}$	20-80%		17/12	30/30	ps
Output Return Loss ³	RL _{OUT}	< 13 GHz	10			dB
Deterministic Jitter ⁴ (Peak- to-Peak)		$V_{\rm IH} = V_{\rm CC} V, V_{\rm IL} = V_{\rm CC} - 0.6 V.$		3	11	ps
	Jd	$V_{IH} \le V_{CC} + 0.3V, V_{IL} \ge V_{CC} - 1.0V$		2	14	ps
		$V_{IH} > V_{CC} + 0.3 V.$		3	19	ps
Random Jitter ⁴	Jr	RMS		< 0.6	1.4	ps
Data In to Data Out Delay ⁵	t _d	QFN Package	50	65	80	ps
DIN1 to DIN2 Data Skew ⁵	t _{SKEW}	Minimize for optimal performance	-5	0	+5	ps

Notes:

 1 Inputs are designed to be a broadband match to 50 ohm impedance and are terminated with a 50 ohm resistor to V_{CC}.

² Outputs are CML. Values are based on DC measurements.


 3 Outputs are designed to be a broadband match to 50 ohm impedance and are terminated with a 60 ohm resistor to V_{CC}.

⁴ Two-channel jitter with $|t_{SKEW}| < 0.5$ ps.

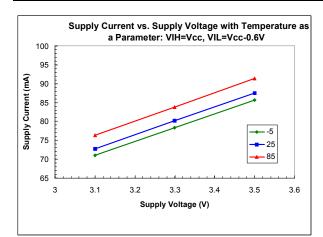
⁵ Specifications based on simulations.

Timing Diagram

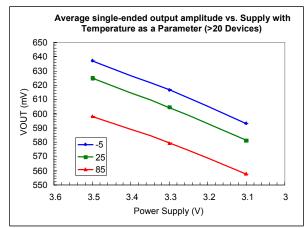
Truth Table

Inputs		Outputs		
DIN1	DIN2	DOUTp	DOUTn	
L	L	L	Н	
L	Н	Н	L	
Н	L	Н	L	
Н	Н	L	Н	

Notes:


DIN1 = DIN1p - DIN1n DIN2 = DIN2p - DIN2nDOUT = DOUTp - DOUTn

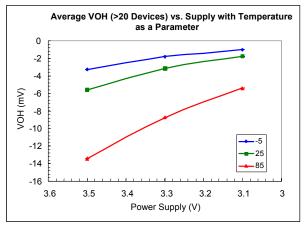
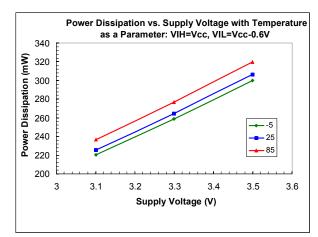
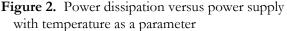
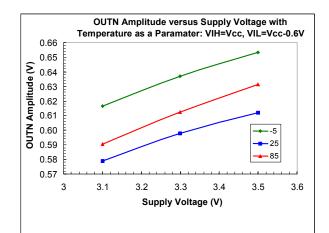
H Denotes a HIGH voltage level

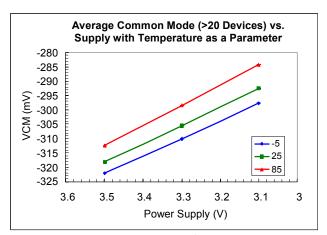

L Denotes a LOW voltage level

Typical DC Operating Characteristics

Figure 1. Supply current vs. power supply potential with temperature as a parameter

Figure 3. Single-ended output amplitude versus supply and temperature measured statically with a DC voltmeter


Figure 5. Output high level (V_{OH}) versus power supply with temperature as a parameter

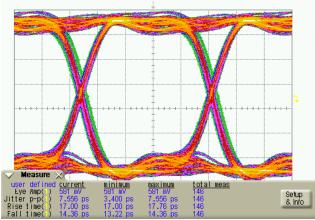


Figure 4. Single-ended output amplitude versus supply and temperature measured with an oscilloscope on 12.5 Gbps PRBS data

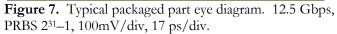


Figure 6. Output common mode versus power supply with temperature as a parameter

Typical Time Domain Operating Characteristics

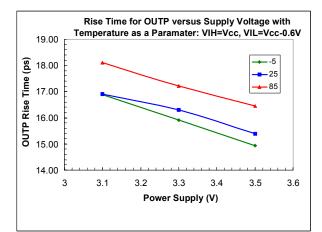


Figure 8. Typical rise time versus power supply with temperature as a parameter

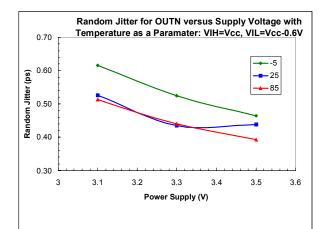
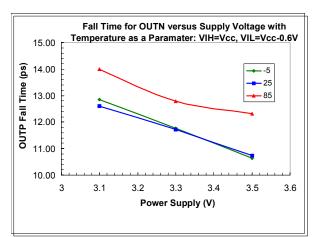
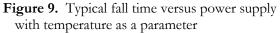
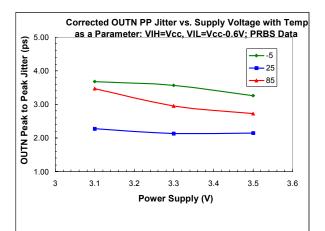





Figure 10. RMS jitter of 12.5 GHz 1010 pattern vs. supply and temperature; RMS jitter of scope and input not removed from the measurement.

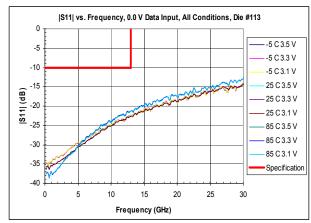


Figure 11. Peak-to-peak jitter of 12.5 Gbps 2³¹-1 PRBS versus supply and temperature; Jitter of input removed from the measurement.

Input and Output S-parameters

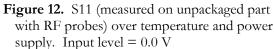
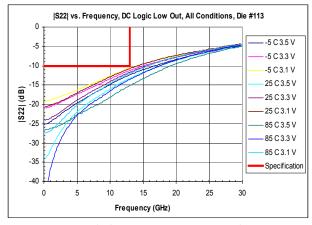
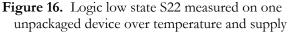
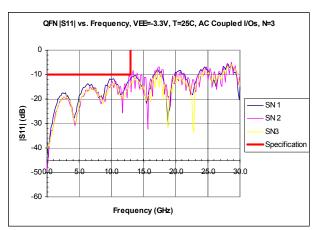





Figure 14. Logic low state S22 (measured on 33 die at wafer level)

Figure 13. S11 of 3 packaged devices on evaluation boards with input DC level of 0.0 V. Typical operating conditions

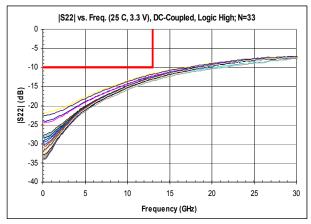
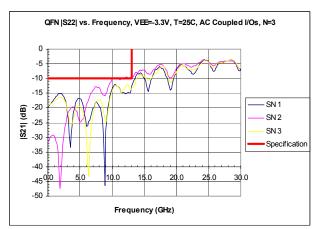
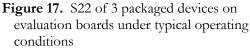
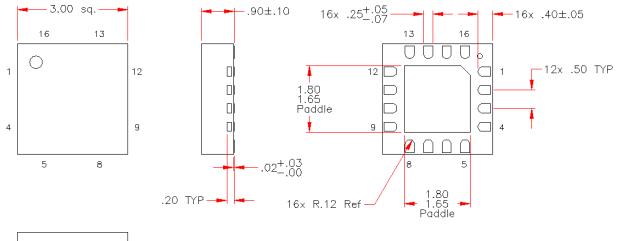





Figure 15. Logic high state S22 (measured on 33 die at wafer level)

QFN Package Outline Drawing and Pin Assignment

Dimension Unit: mm

Name	Pin	Description	Function
DIN1p	3	Non-inverting Data Input, # 1	Input
DIN1n	2	Inverting Data Input, # 1	Input
DIN2p	6	Non-inverting Data Input, # 2	Input
DIN2n	7	Inverting Data Input, # 2	Input
DOUTp	11	Non-inverting Data Output	Output
DOUTn	10	Inverting Data Output	Output
GND	1, 4, 5, 8, 9, 12, 14, Paddle	Ground	Supply
V _{CC}	13, 15, 16	Power Supply: Connect to +3.3 V	Supply

Note:

The paddle must be electrically tied to ground.

Order Information

Part No.	Description
13611XR-S02QFN	13 Gbps XOR/XNOR (+3.3 V Supply) in QFN Package
13611XR-S02QFN-EVB	13 Gbps XOR/XNOR (+3.3 V Supply) in QFN Package on an Evaluation Board with SMA Connectors

Contact Information

Inphi Corporation 2393 Townsgate Road, Suite 101 Westlake Village, CA 91361

- Phone: (805) 446-5100
- Fax: (805) 446-5189
- E-mail: products@inphi-corp.com

Visit us on the Internet at: <u>http://www.inphi-corp.com</u>

For each customer application, customer's technical experts must validate all parameters. Inphi Corporation reserves the right to change product specifications contained herein without prior notice. No liability is assumed as a result of the use or application of this product. No circuit patent licenses are implied. Contact Inphi Corporation's marketing department for the latest information regarding this product.

Qualification Notification

The 13611XR-S02 is fully qualified. Please contact Inphi for the qualification report.

Inphi Corporation will honor the full warranty as outlined in Section 5 of Inphi's Standard Customer Purchase Order Terms and Conditions.

Version Updates

From Version 2.0 to 2.1 (dated 5/9/06):

- 1. Absolute Maximum table (page 2):
 - a. Changed Output Signal's minimum level from $V_{CC} 1.5$ to $V_{CC} 2$ V.
 - b. Added ESD specs.
- 2. Added Thermal Resistance to Operating Conditions table (page 2).
- 3. Electrical Specifications table (page 3):
 - a. Added notes 1 & 3.
 - b. Added "Values are based on DC measurements" to note 2.
 - c. Changed note numbers on parameter descriptions.
- 4. Qualification Notification section:
 - a. Changed qualification notice to read "fully qualified".
 - b. Added statement on radiation tolerance.

Version Updates (cont'd.)

From Version 2.1 to 2.2 (dated 2007-06-11):

- 1. Corrected Data In to Data Out Delay parameter in Electrical Specifications (page 3):
 - a. Removed Die data (conditions and specs.)
 - b. Changed specs for QFN package conditions:
 - i. Changed Min spec from 90 ps to 50 ps
 - ii. Changed Typ spec from 110 ps to 65 ps
 - iii. Changed Max spec from 130 ps to 80 ps
- 2. Removed radiation tolerance statement from Qualification Notification section (page 9).