

13650DE 13 Gbps Differential Encoder Data Sheet

Applications

- High-speed (up to 13 Gbps) optical duobinary systems
- High-speed (up to 13 Gbps) optical differential phase shift keying systems (DPSK)
- High-speed (up to 13 GHz) digital logic
- Broadband test and measurement equipment

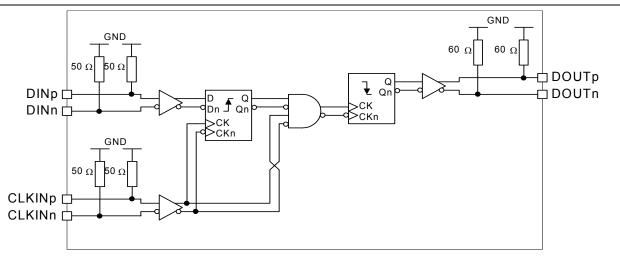
Features

- Supports data rates up to 13 Gbps
- Fast rise and fall times typically 15 ps
- Low power consumption: 380 mW
- 290° input phase margin (at 12.5 Gbps)
- Supports single-ended and differential operation
- Output signal swing 1200 mVpp differential
- Single –3.3 V power supply
- Available in plastic QFN package
- Evaluation board available

Description

The 13650DE differential encoder performs modulo two addition of the input data bit with the previous output bit. The part operates up to 13 Gbps and retimes the input data before performing the encoding operation, thereby providing a large input phase margin.

The encoder is nominally positive-edge triggered; however, by reversing the positive and negative clock connections, a negative-edge triggered application can be accommodated.


All differential data and differential clock inputs are on-chip DC coupled and terminated with 50 Ω

resistors to ground (GND). For direct- coupled applications, the differential data outputs should be terminated off chip with 50 Ω resistors to GND. For applications requiring termination to DC levels other than GND, external AC coupling to a good RF ground is required. See the application note for various termination examples.

The 13650DE operates from a single -3.3 V power supply and dissipates only 380 mW. It is available in a 3 x 3 mm² quad flat no-lead (QFN) plastic package and is also available on an evaluation board with SMA connectors.

Block Diagram

Absolute Maximum Ratings

- Stresses beyond those listed here may cause permanent damage to the device.
- These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the "Operating Conditions" and "Electrical Specifications" of this datasheet is not implied.
- Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Conditions	Min	Max	Unit
Power Supply Voltage	V_{EE}		-3.6	+0.5	V
Input Signals (Data & Clock)			-2	+1	V
Output Signals			-2	+1	V
Junction Temperature– Die	TJ		-5	+175	°C
Case Temperature– Packaged	T _C		-15	+125	°C
Shipping/Storage Temperature	T _{STORE}		-40	+125	°C
Humidity	RH		0	100	%
		Clock and Data inputs	500		V
ESD Protection (Human Body Model)	ESD	Data outputs	250		V
		Power Supply	500		V

Operating Conditions

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Power Supply Level	V _{EE}	\pm 5% Tolerance	-3.465	-3.300	-3.135	V
On-Chip Power Dissipation	PD			380	500	mW
Power Supply Current	I _{CC}			110	144	mA
Operating Temperature (Junction) – Die	TJ		+15		+125	°C
Operating Temperature (Case) – Package	Tc	Bottom of paddle	-5		+85	°C
Thermal Resistance – junction to paddle	$R_{JC}(\theta_{JC})$	Bottom of paddle		51		°C/W

Electrical Specifications

WARNING - To prevent damage to the part:

• DC power must be turned off prior to connecting or disconnecting any cables.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Maximum Data Rate		10 ⁻¹² BER (NRZ format)	13			Gbps
Maximum Clock Frequency	f_{MAX}		13			GHz
Minimum Clock Slew Rate	S _{MIN}	At CLKINp/CLKINn crossing			1	V/ns
Input High Level (Data & Clock)	V _{IH}		-0.5		0.5	V
Input Low Level (Data & Clock)	VIL		-1.0		0	V
Unput Amplitude (Data & Clock)	VIN _{pp} ,	Differential peak-to-peak	300		2000	mVpp
	VCLK _{pp}	Single ended peak-to-peak	300		1000	mVpp
	DT	< 13 GHz; Input common mode < 0.0 V	10			dB
Input Return Loss (Data) ¹	RL _{IN}	< 13 GHz; Input common mode < + 0.5 V	6			dB
Input Return Loss (Clock) ¹	RL _{IN}	< 13 GHz	10			dB
Clock Phase Margin	СРМ	At 12.5 Gbps	255	290		deg
Data Output Amplitude ²	VOUT _{pp}	Differential peak-to-peak	900	1200	1400	mVpp
Output High Voltage	V _{OH}	DC coupled, GND referenced	-50	_4	0	mV
Output Low Level	Vol	DC coupled, GND referenced	-700	- 600	- 450	mV
Output Common Mode	V _{OCM}	DC coupled, GND referenced		-300		mV
Output Rise/Fall Time	t_r/t_f	20-80%		15	25	ps
Output Return Loss ³	RL _{OUT}	< 13 GHz	10			dB
Deterministic Jitter ^{4,5}	Jd	Peak-to-peak		2	4	ps
Random Jitter ^{4,5}	Jr	RMS		0.2	0.4	ps
Clock-to-Data Output Delay ^{4,6}	tq	QFN Package	50	65	80	ps
Set-up Time ^{6,7}	t _{set}	Measured at package pins	12	8		ps
Hold Time ^{6,7}	t _{hold}	Measured at package pins	12	8		ps

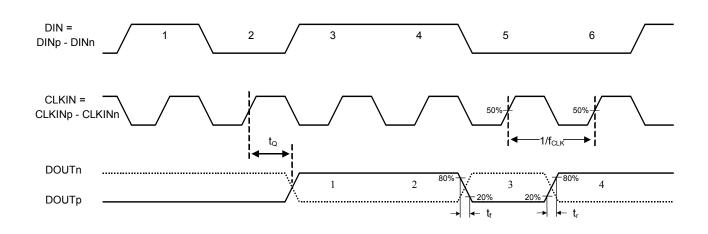
Notes:

¹ Inputs are designed to be a broadband match to 50 Ω impedance and are terminated with a 50 Ω resistor to GND.

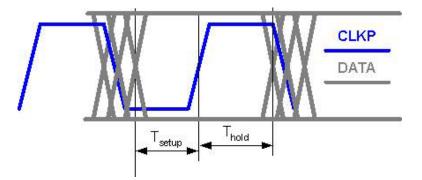
² Outputs are CML. Values given are based on DC measurements.

³ Outputs are designed to be a broadband match to 50 Ω impedance and are terminated with a 60 Ω resistor to GND.

⁴ Valid when clock -to -data phase is near center of CPM window.


⁵ It should be noted that because the random and deterministic jitter of Inphi's high-speed logic parts are "in the noise" of the measurement techniques used, these specifications are conservative. The deterministic jitter (J_D) specified is the peak-to-peak total jitter measured using a 2^{31} -1 PRBS data pattern. The random jitter (J_R) is the RMS jitter measured on a 1010... pattern. The jitter of the source and measurement equipment was not removed from the measured data.

⁶ Values based on design simulations.


⁷ The setup and hold time specifications were determined from phase margin measurements and the assumption, supported by simulation, that Set-up and Hold times are equal to within a picosecond. See timing diagram on page 4.

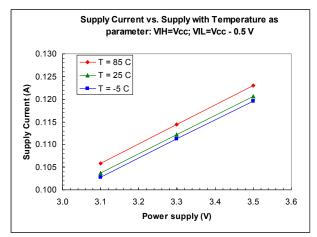
Timing Diagram

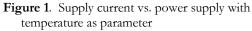
Set-up and Hold Time Definition

Truth Table

DIN _{k-1}	DOUT _{k-1}	DOUT _k
0	0	0
0	1	1
1	0	1
1	1	0

 $DOUT_k = DOUT_{k\text{-}1} \oplus DIN_{k\text{-}1}$


This equation corresponds to the well-known differential encoder equation $DOUT_k = DOUT_{k-1} \oplus DIN_k$, modified to include a one bit period delay in input data for retiming.


Notes:

DIN = DINp – DINn DOUT = DOUTp – DOUTn

DC Operating Characteristics

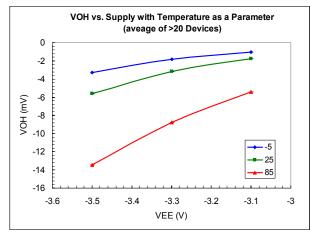
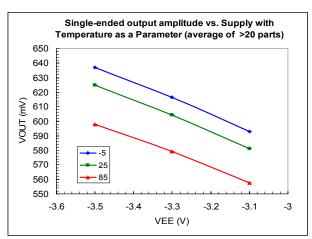
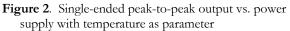




Figure 3. V_{OH} vs. power supply with temperature as parameter

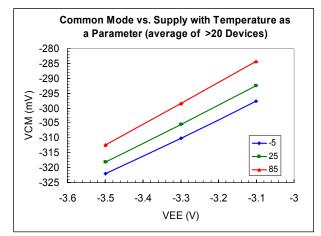
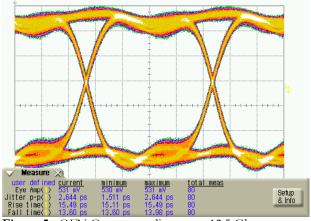
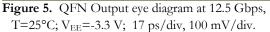
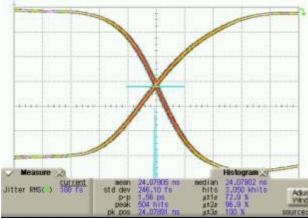
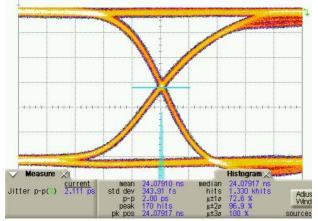
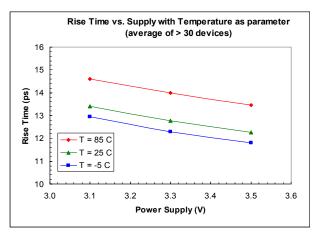
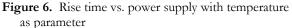
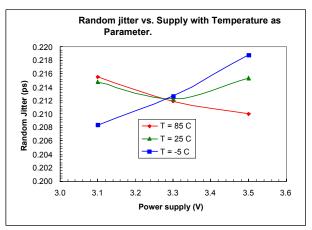




Figure 4. Output common mode vs. power supply with temperature as parameter

Time Domain Operating Characteristics


Figure 7. Histogram of output zero-crossing for 1010 output; T=25° C and V_{EE} =-3.3 V

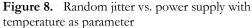


Figure 9. Die output crossing at 12.5 Gbps, T=25°C; V_{EE}=-3.3 V 5 ps/div.; Histogram used to measure peak-to-peak jitter.

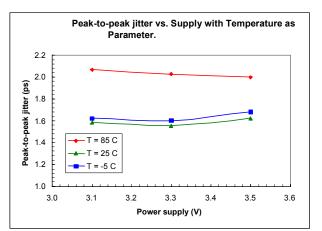


Figure 10. Peak-to-peak jitter vs. power supply with temperature as parameter

Typical Return Losses

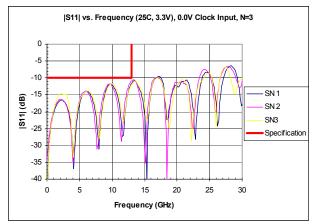


Figure 11. |S11| versus frequency of 3 QFN parts

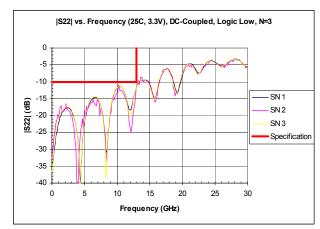
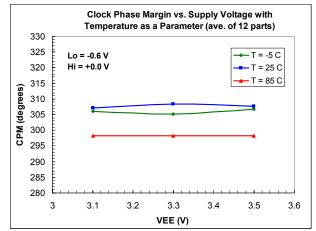
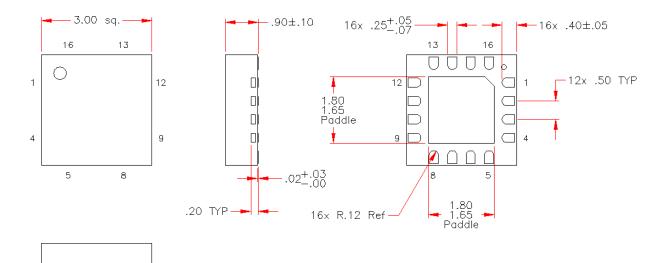


Figure 12. |S22| versus frequency with output in low state (worst case) of 33 parts; Die level data.

Clock to Data Phase Margin

The clock to data phase margin is defined in degrees with 360° being a full period of the clock at 12.5 Gbps. It is measured by gradually adjusting the phase of the clock input relative to the data input and looking at the error rate of the differential encoder with a bit error rate tester. As indicated in figure 13, the 13650DE's phase margin is large: typically 290°.




Figure 13. Clock phase margin vs. operating conditions at 12.5 Gbps

Set-up and Hold Times

Direct measurement of the set-up and hold times is difficult because it involves accurately measuring the electrical delay of the clock and input from signal generators to the package pins and knowledge of the phase between the two signals at their respective generators. Since simulations indicate that the set-up and hold times are equal to within a picosecond, they can be determined from the phase margin. Since the phase margin is typically 290°, the typical set-up and hold times are one half of 70°/360° times 80 ps, or 8 ps.

Dimension Unit: mm

QFN Package Outline Drawing and Pin Assignment

Name Pin Description Function DINp 2 Non-inverting Data Input Input DINn 3 Inverting Data Input Input CLKINp 6 Non-inverting Clock Input Input CLKINn 7 Inverting Clock Input Input DOUTp 11 Non-inverting Data Output Output DOUTn 10 Inverting Data Output Output 1, 4, 5, 8, 9, 12, 14, GND Ground Supply Paddle V_{EE} 13, 15, 16 Power Supply: Connect to - 3.3 V Supply

Note:

The paddle must be electrically tied to ground.

Order Information

Part No.	Description		
13650DE-S02QFN	13 Gbps Differential Encoder (–3.3 V Supply) in QFN Package		
13650DE-S02QFN-EVB	13 Gbps Differential Encoder (–3.3 V Supply) in QFN Package on an Evaluation Board with SMA Connectors		

Contact Information

Inphi Corporation 2393 Townsgate Road, Suite 101 Westlake Village, CA 91361

- Phone: (805) 446-5100
- Fax: (805) 446-5189
- E-mail: products@inphi-corp.com

Visit us on the Internet at: <u>http://www.inphi-corp.com</u>

For each customer application, customer's technical experts must validate all parameters. Inphi Corporation reserves the right to change product specifications contained herein without prior notice. No liability is assumed as a result of the use or application of this product. No circuit patent licenses are implied. Contact Inphi Corporation's marketing department for the latest information regarding this product.

Qualification Notification

The 13650DE-S02 is fully qualified. Please contact Inphi for the qualification report.

Inphi Corporation will honor the full warranty as outlined in Section 5 of Inphi's Standard Customer Purchase Order Terms and Conditions.

Version Updates

From Version 1.0 to 1.1 (dated 5/21/06):

- 1. Added Thermal Resistance to Operating Conditions table (page 2).
- 2. Electrical Specifications table (page 3):
 - a. Added notes 1 & 3.
 - b. Changed note numbers on parameter descriptions.
- 3. Qualification Notification section:
 - a. Added statement on radiation tolerance.

From Version 1.1 to 1.2 (dated 2007-06-12):

1. Removed radiation tolerance statement in Qualification Notification section (page 9).