

UNISONIC TECHNOLOGIES CO., LTD

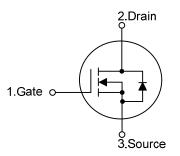
15N15-HC

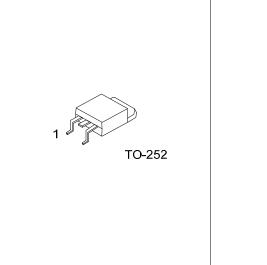
Preliminary

Power MOSFET

15A, 150V N-CHANNEL POWER MOSFET

DESCRIPTION

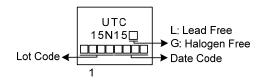

The UTC **15N15-HC** is a N-channel enhancement MOSFET using UTC's advanced technology to provide the customers with perfect $R_{DS(ON)}$, high switching speed, high current capacity and low gate charge.


The UTC **15N15-HC** is universally applied in low voltage such as automotive, high efficiency switching for AC/DC converters and DC motor control, etc.

FEATURES

* $R_{DS(ON)} \le 0.2 \Omega @ V_{GS} = 10V, I_D = 7.5A$

- * High Switching Speed
- SYMBOL



ORDERING INFORMATION

Ordering Number			Dookogo	Pin Assignment			Deaking	
Lead Free	Halogen Free		Package	1	2	3	Packing	
15N15L-TN3-R	15N15G-TN3-R		TO-252	G	D	S	Tape Reel	
Note: Pin Assignment: G: Gate D: Drain S: Source								
Note: Pin Assignment: G: Gate D: Drain S: Source 15N15G-TN3-R (1)Packing Type (2)Package Type (3)Green Package		 (1) R: Tape Reel (2) TN3: TO-252 (3) G: Halogen Free and Lead Free, L: Lead Free 						

MARKING

ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Drain-Source Voltage		V _{DSS}	150	V
Gate-Source Voltage		V _{GSS}	±20	V
Continuous Drain Current	Continuous	Ι _D	15	А
	Pulsed	I _{DM}	30	А
Single Pulsed Avalanche Current		I _{AS}	19.2	А
Single Pulsed Avalanche Energy		E _{AS}	18.6	mJ
Peak Diode Recovery dv/dt (Note 4)		dv/dt	2.3	V/ns
Power Dissipation		PD	43	W
Junction Temperature		TJ	+150	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating : Pulse width limited by maximum junction temperature.

3. L=0.1mH, I_{AS} =19.2A, V_{DD} =50V, R_{G} =25 Ω , Starting T_{J} = 25 $^{\circ}$ C

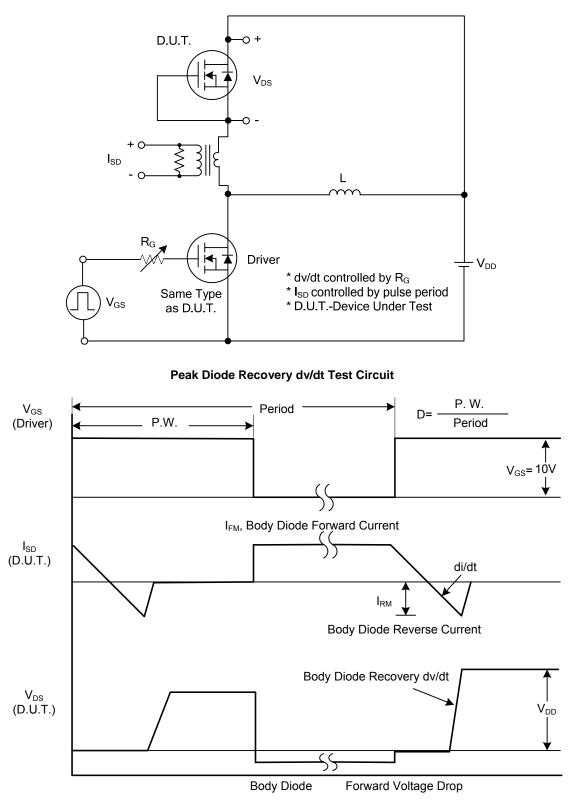
4. $I_{SD} \le 15A$, di/dt $\le 200A/\mu s$, $V_{DD} \le BV_{DSS}$, Starting $T_J = 25^{\circ}C$

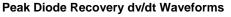
THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ _{JA}	110	°C/W
Junction to Case	θις	2.31 (Note)	°C/W

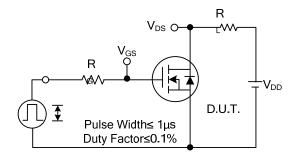
Note: Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper plate.

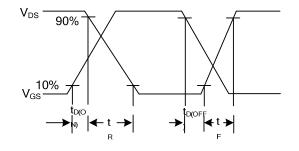
ELECTRICAL CHARACTERISTICS

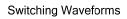

SVMROI		MIN	TVD	MAY			
STINDUL	TEST CONDITIONS	IVIIIN	ITF	IVIAA	UNIT		
D)/		150			V		
		150		10			
IDSS					μA		
I _{GSS}					nA		
	V_{GS} =-20V, V_{DS} =0V			-100	nA		
ON CHARACTERISTICS							
V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	2.0		4.0	V		
R _{DS(ON)}	V _{GS} =10V, I _D =7.5A			0.2	Ω		
CISS			419.3		pF		
Coss	V _{GS} =0V, V _{DS} =25V, f=1.0MHz		96.5		рF		
C _{RSS}			7.1		рF		
Q_{G}			14.8		nC		
Q_{GS}			5.4		nC		
Q_{GD}	$I_G = IIIA (INOLE I, Z)$		2.8		nC		
t _{D(ON)}			5.6		ns		
t _R	V _{DD} =100V, V _{GS} =10V,, I _D =15A,		16.7		ns		
t _{D(OFF)}	R _G =25Ω (Note 1, 2)		22.6		ns		
t _F	<u>]</u>		19.1		ns		
CHARACTER	ISTICS			_			
ls				15	Α		
I _{SM}				30	Α		
V _{SD}	I _S =15A, V _{GS} =0V			1.4	V		
t _{rr}	I _S =15A, V _{GS} =0V, dI _F /dt=100A/µs		105.6		ns		
Q _{rr}	(Note 1)		0.6		μC		
	$\begin{array}{c} C_{ISS} \\ C_{OSS} \\ C_{RSS} \\ \end{array}$ $\begin{array}{c} Q_G \\ Q_{GS} \\ Q_{GD} \\ t_{D(ON)} \\ t_R \\ t_{D(OFF)} \\ t_F \\ \end{array}$ $\begin{array}{c} CHARACTER \\ I_S \\ I_{SM} \\ V_{SD} \\ t_{rr} \\ \end{array}$	$\begin{array}{ c c c c c c } BV_{DSS} & I_{D} = 250 \mu A, V_{GS} = 0V \\ I_{DSS} & V_{DS} = 150V, V_{GS} = 0V \\ \hline & V_{GS} = + 20V, V_{DS} = 0V \\ \hline & V_{GS} = - 20V, V_{DS} = 0V \\ \hline & V_{GS} = - 20V, V_{DS} = 0V \\ \hline & V_{GS} = 10V, I_{D} = 7.5A \\ \hline & C_{ISS} \\ \hline & C_{OSS} \\ \hline & C_{RSS} \\ \hline & V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz \\ \hline & C_{RSS} \\ \hline & V_{GS} = 0V, V_{DS} = 25V, f = 1.0MHz \\ \hline & C_{RSS} \\ \hline & V_{DS} = 120V, V_{GS} = 10V, I_{D} = 15A \\ I_{G} = 1mA (Note 1, 2) \\ \hline & I_{D(ON)} \\ \hline & I_{R} \\ \hline & V_{DD} = 100V, V_{GS} = 10V,, I_{D} = 15A, \\ \hline & I_{D(OFF)} \\ \hline & I_{F} \\ \hline \\ \hline \hline \\ \hline $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		

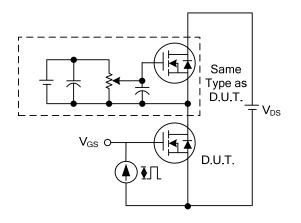

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

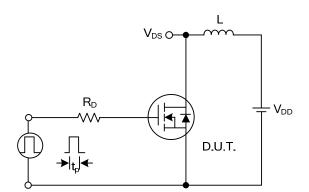
2. Essentially independent of operating temperature.

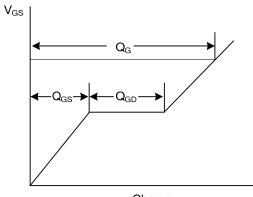

TEST CIRCUITS AND WAVEFORMS



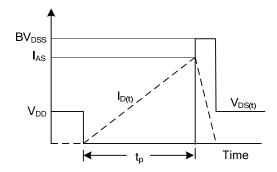



TEST CIRCUITS AND WAVEFORMS


Switching Test Circuit



Gate Charge Test Circuit



Unclamped Inductive Switching Test Circuit

Charge

Gate Charge Waveform

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

