

PIC16(L)F1826/27 Data Sheet

18/20/28-Pin Flash Microcontrollers with nanoWatt XLP Technology

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information c ontained in t his p ublication regarding d evice applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES N O R EPRESENTATIONS OR WARRANTIES OF AN Y KIN D W HETHER EXPRESS OR IMPLIED, WR ITTEN O R O RAL, ST ATUTORY OR OTHERWISE, RE LATED T O T HE I NFORMATION, INCLUDING B UT NOT L IMITED T O IT S C ONDITION. QUALITY, PE RFORMANCE, M ERCHANTABILITY OR FITNESS FOR PU RPOSE. Microchip dis claims al I lia bility arising from t his i nformation and its use. U se of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, im plicitly or ot herwise, under an y M icrochip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is aservice mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-124-7

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

18/20/28-Pin Flash Microcontrollers with nanoWatt XLP Technology

High-Performance RISC CPU:

- · C Compiler Optimized Architecture
- · 256 bytes Data EEPROM
- Up to 8 Kbytes Linear Program Memory Addressing
- Up to 384 bytes Linear Data Memory Addressing
- Interrupt Capability with Automatic Context Saving
- 16-Level Deep Hardware Stack with Optional Overflow/Underflow Reset
- Direct, Indirect and Relative Addressing modes:
- Two full 16-bit File Select Registers (FSRs)
- FSRs can read program and data memory

Flexible Oscillator Structure:

- Precision 32 MHz Internal Oscillator Block:
- Factory calibrated to ± 1%, typical
 - Software selectable frequencies range of 31 kHz to 32 MHz
- · 31 kHz Low-Power Internal Oscillator
- · Four Crystal modes up to 32 MHz
- Three External Clock modes up to 32 MHz
- 4X Phase-Lock Loop (PLL)
- Fail-Safe Clock Monitor:
- Allows for safe shutdown if peripheral clock stops
- Two-Speed Oscillator Start-up
- Reference Clock Module:
- Programmable clock output frequency and duty-cycle

Special Microcontroller Features:

- 1.8V-5.5V Operation PIC16F1826/27
- 1.8V-3.6V Operation PIC16LF1826/27
- Self-Programmable under Software Control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Programmable Brown-out Reset (BOR)
- Extended Watchdog Timer (WDT):
- Programmable period from 1ms to 268s
- Programmable Code Protection
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- · In-Circuit Debug (ICD) via two pins
- Enhance Low-Voltage Programming
- · Power-Saving Sleep mode

Extreme Low-Power Management PIC16LF1826/27 with nanoWatt XLP:

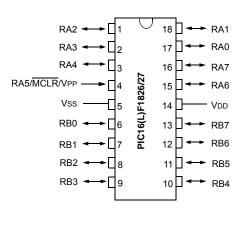
- Operating Current: 75 μA @ 1 MHz, 1.8V, typical
- Sleep mode: 30 nA
- Watchdog Timer: 500 nA
- Timer1 Oscillator: 600 nA @ 32 kHz

Analog Features:

- Analog-to-Digital Converter (ADC) Module:
 - 10-bit resolution, 12 channels
 - Auto acquisition capability
 - Conversion available during Sleep
- Analog Comparator Module:
 - Two rail-to-rail analog comparators
 - Power mode control
 - Software controllable hysteresis
- Voltage Reference Module:
 - Fixed Voltage Reference (FVR) with 1.024V, 2.048V and 4.096V output levels
 - 5-bit rail-to-rail resistive DAC with positive and negative reference selection

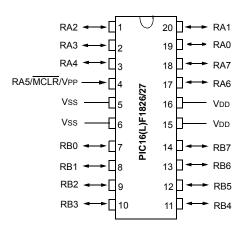
Peripheral Highlights:

- 15 I/O Pins and 1 Input Only Pin:
 - High current sink/source 25 mA/25 mA
 - Programmable weak pull-ups
 - Programmable interrupt-on- change pins
- Timer0: 8-Bit Timer/Counter with 8-Bit Prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Dedicated, low-power 32 kHz oscillator driver
- Up to three Timer2-types: 8-Bit Timer/Counter with 8-Bit Period Register, Prescaler and Postscaler
- Up to two Capture, Compare, PWM (CCP) Modules
- Up to two Enhanced CCP (ECCP) Modules:
- Software selectable time bases
- Auto-shutdown and auto-restart
- PWM steering
- Up to two Master Synchronous Serial Port (MSSP) with SPI and I²C[™] with:
 - 7-bit address masking
 - SMBus/PMBus™ compatibility
- Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) Module
- mTouch[™] Sensing Oscillator Module:
- Up to 12 input channels
- Data Signal Modulator Module:
 Selectable modulator and carrier sources
- •S R Latch:
 - Multiple Set/Reset input options
 - Emulates 555 Timer applications

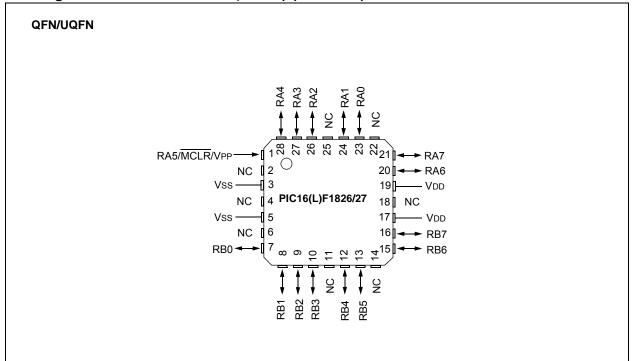

PIC16(L)F1826/27 Family Types

	Program Memory	-	ata nory		(ch)	(ch)	ſS	-bit)			ridge)	Bridge)		
Device	Words	SRAM (bytes)	Data EEPROM (bytes)	۱/O's ⁽¹⁾	10-bit ADC (CapSense (Comparato	Timers (8/16	EUSART	dSSM	ECCP (Full-Br	ECCP (Half-Br	GCP	SR Latch
PIC16LF1826	2K	256	256	16	12	12	2	2/1	1	1	1	_	_	Yes
PIC16F1826	2K	256	256	16	12	12	2	2/1	1	1	1	_	_	Yes
PIC16LF1827	4K	384	256	16	12	12	2	4/1	1	2	1	1	2	Yes
PIC16F1827	4K	384	256	16	12	12	2	4/1	1	2	1	1	2	Yes

Note 1: One pin is input only.


Pin Diagram – 18-Pin PDIP, SOIC (PIC16(L)F1826/27)

PDIP, SOIC



Pin Diagram – 20-Pin SSOP (PIC16(L)F1826/27)

SSOP

Pin Diagram – 28-Pin QFN/UQFN (PIC16(L)F1826/27)

TABLE 1: 18/20/28-PIN SUMMARY (PIC16(L)F1826/27)

IADLI	- ••																
б	18-Pin PDIP/SOIC	20-Pin SSOP	28-Pin QFN/UQFN	ANSEL	A/D	Reference	Cap Sense	Comparator	SR Latch	Timers	ССР	EUSART	MSSP	Interrupt	Modulator	Pull-up	Basic
RA0	17	19	23	Y	AN0	_	CPS0	C12IN0-	—	_	—	—	SDO2 ⁽²⁾	_	_	Ν	—
RA1	18	20	24	Y	AN1	_	CPS1	C12IN1-	_	_	_	_	SS2 ⁽²⁾	_	_	N	—
RA2	1	1	26	Y	AN2	VREF- DACOUT	CPS2	C12IN2- C12IN+	—	_	_	—	—	_	-	Ν	_
RA3	2	2	27	Y	AN3	VREF+	CPS3	C12IN3- C1IN+ C1OUT	SRQ	_	CCP3 ⁽²⁾	—	_	_	-	Ν	_
RA4	3	3	28	Y	AN4	_	CPS4	C2OUT	SRNQ	T0CKI	CCP4 ⁽²⁾	—	_	—	_	Ν	_
RA5	4	4	1	N	-	—	_	_	—	_	_	—	SS1 ⁽¹⁾	_	_	Y ⁽³⁾	MCLR, VPP
RA6	15	17	20	N	-	_	_	_	_		P1D ⁽¹⁾ P2B ^(1,2)	—	SDO1 ⁽¹⁾		-	Ν	OSC2 CLKOUT CLKR
RA7	16	18	21	N	-	_		_	_		P1C ⁽¹⁾ CCP2 ^(1,2) P2A ^(1,2)	_	_		—	Ν	OSC1 CLKIN
RB0	6	7	7	N	-		_	—	SRI	T1G	CCP1 ⁽¹⁾ P1A ⁽¹⁾ FLT0	_		INT IOC	-	Y	_
RB1	7	8	8	Y	AN11	-	CPS11	—	—	—	—	RX ^(1,4) DT ^(1,4)	SDA1 SDI1	IOC	—	Y	—
RB2	8	9	9	Y	AN10		CPS10	—	_	_	—	RX ⁽¹⁾ ,DT ⁽¹⁾ TX ^(1,4) CK ^(1,4)	SDA2 ⁽²⁾ SDI2 ⁽²⁾ SDO1 ^(1,4)	IOC	MDMIN	Y	—
RB3	9	10	10	Y	AN9	-	CPS9	—	—	—	CCP1 ^(1,4) P1A ^(1,4)	—	—	IOC	MDOUT	Y	-
RB4	10	11	12	Y	AN8	—	CPS8	_	—		_	—	SCL1 SCK1	IOC	MDCIN2	Y	-
RB5	11	12	13	Y	AN7	_	CPS7	_	_		P1B	TX ⁽¹⁾ CK ⁽¹⁾	SCL2 ⁽²⁾ SCK2 ⁽²⁾ SS1 ^(1,4)	IOC	_	Y	_
RB6	12	13	15	Y	AN5	_	CPS5	_	_	T1CKI T1OSI	P1C ^(1,4) CCP2 ^(1,2,4) P2A ^(1,2,4)	—	_	IOC	—	Y	ICSPCLK/ ICDCLK
RB7	13	14	16	Y	AN6	—	CPS6	—	—	T1OSO	P1D ^(1,4) P2B ^(1,2,4)	—	_	IOC	MDCIN1	Y	ICSPDAT/ ICDDAT
Vdd	14	15,16	17,19		-	—		_	—			—	—	-	—	—	Vdd
Vss	5	5,6	3,5		—	—	-	—	—	_	-	—	—	-	—	—	Vss

 Note
 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

 2: Functions are only available on the PIC16(L)F1827.

 3: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.

 4: Default function location.

Table of Contents

1.0	Device Overview	
2.0	Enhanced Mid-Range CPU	
3.0	Memory Organization	17
4.0	Device Configuration	
5.0	Oscillator Module (With Fail-Safe Clock Monitor)	51
6.0	Reference Clock Module	
7.0	Resets	
8.0	Interrupts	
9.0	Power-Down Mode (Sleep)	
10.0		
11.0	······································	
12.0	I/O Ports	117
13.0	Interrupt-on-Change	131
14.0	Fixed Voltage Reference (FVR)	
15.0		
16.0	Analog-to-Digital Converter (ADC) Module	
17.0		
	SR Latch	
	Comparator Module	
	Timer0 Module	
	Timer1 Module	
22.0	Timer2/4/6 Modules	
23.0		
	Capture/Compare/PWM (ECCP1, ECCP2, ECCP3, CCP4) Modules	
	Master Synchronous Serial Port (MSSP) Module	
26.0	, , , , , , , , , , , , , , , , , , ,	
27.0		
28.0		
29.0		
	Electrical Specifications	
31.0		
	Development Support	
	Packaging Information	
	endix A: Revision History	
	endix B: Device Differences	
	(
	Microchip Web Site	
	omer Change Notification Service	
	omer Support	
	der Response	
Prod	uct Identification System	405

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

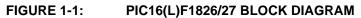
To determine if an errata sheet exists for a particular device, please check with one of the following:

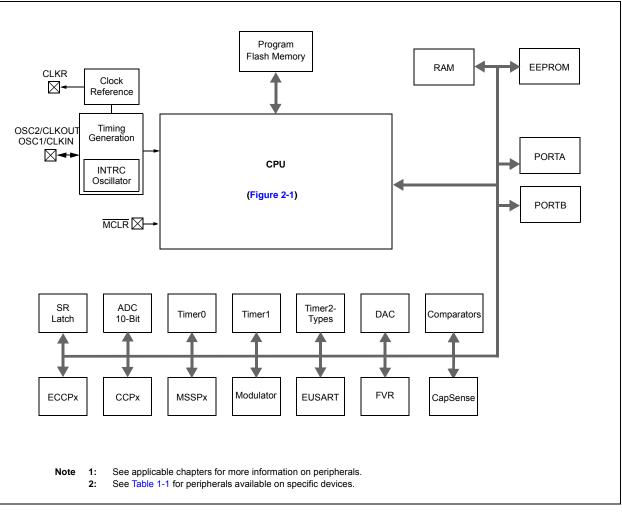
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW


The PIC16(L)F1826/27 are d escribed within this data sheet. They are available in 18/20/28-pin packages. Figure 1-1 s hows a block di agram of th e PIC16(L)F1826/27 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 f or pe ripherals a vailable pe r device.

TABLE 1-1:DEVICE PERIPHERALSUMMARY

Peripheral		PIC16F/LF1826	PIC16(L)F1827
ADC		••	
Capacitive Sensing Modu		••	
Digital-to-Analog Convert	ter (DAC)	••	
Digital Signal Modulator ((DSM)	••	
EUSART		••	
Fixed Voltage Reference	(FVR)	••	
Reference Clock Module	••		
SR Latch	••		
Capture/Compare/PWM I	Modules		
	ECCP1	•	•
	ECCP2		•
	CCP3		•
	CCP4		•
Comparators			
	C1	•	•
	C2	•	•
Master Synchronous Ser	ial Ports		
	MSSP1	•	•
	MSSP2		•
Timers			
	Timer0	•	•
	Timer1	•	•
	Time	•	•
	Timer2	•	-
	Timer2	•	•

	1	Input	Output	
Name	Function	Туре	Туре	Description
RA0/AN0/CPS0/C12IN0-/	RA0	TTL	CMOS	General purpose I/O.
SDO2 ⁽²⁾	AN0	AN	—	A/D Channel 0 input.
	CPS0	AN	—	Capacitive sensing input 0.
	C12IN0-	AN	_	Comparator C1 or C2 negative input.
	SDO2	_	CMOS	SPI data output.
RA1/AN1/CPS1/C12IN1-/SS2 ⁽²⁾	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN	_	A/D Channel 1 input.
	CPS1	AN	—	Capacitive sensing input 1.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SS2	ST	_	Slave Select input 2.
RA2/AN2/CPS2/C12IN2-/	RA2	TTL	CMOS	General purpose I/O.
C12IN+/VREF-/DACOUT	AN2	AN	_	A/D Channel 2 input.
	CPS2	AN	_	Capacitive sensing input 2.
	C12IN2-	AN	_	Comparator C1 or C2 negative input.
	C12IN+	AN	_	Comparator C1 or C2 positive input.
	VREF-	AN	_	A/D Negative Voltage Reference input.
	DACOUT		AN	Voltage Reference output.
RA3/AN3/CPS3/C12IN3-/C1IN+/	RA3	TTL	CMOS	General purpose I/O.
VREF+/C1OUT/CCP3 ⁽²⁾ /SRQ	AN3	AN	_	A/D Channel 3 input.
	CPS3	AN	_	Capacitive sensing input 3.
	C12IN3-	AN	_	Comparator C1 or C2 negative input.
	C1IN+	AN	_	Comparator C1 positive input.
	VREF+	AN	_	A/D Voltage Reference input.
	C1OUT	_	CMOS	Comparator C1 output.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SRQ		CMOS	SR latch non-inverting output.
RA4/AN4/CPS4/C2OUT/T0CKI/	RA4	TTL	CMOS	General purpose I/O.
CCP4 ⁽²⁾ /SRNQ	AN4	AN	_	A/D Channel 4 input.
	CPS4	AN	_	Capacitive sensing input 4.
	C2OUT		CMOS	Comparator C2 output.
	TOCKI	ST	_	Timer0 clock input.
	CCP4	ST	CMOS	Capture/Compare/PWM4.
	SRNQ	_	CMOS	SR latch inverting output.
RA5/MCLR/VPP/SS1 ^(1,2)	RA5	TTL	CMOS	General purpose I/O.
	MCLR	ST	—	Master Clear with internal pull-up.
	Vpp	HV	—	Programming voltage.
	SS1	ST	—	Slave Select input 1.

TABLE 1-2: PIC16(L)F1826/27 PINOUT DESCRIPTION

Legend:AN= Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I²CHV= High VoltageXTAL= Crystallevels

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Functions are only available on the PIC16(L)F1827.

TABLE 1-2: PIC16(L)F1826/27 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description
RA6/OSC2/CLKOUT/CLKR/	RA6	TTL	CMOS	General purpose I/O.
P1D ⁽¹⁾ /P2B ^(1,2) /SDO1 ⁽¹⁾	OSC2	_	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	_	CMOS	Fosc/4 output.
	CLKR	_	CMOS	Clock Reference Output.
	P1D	—	CMOS	PWM output.
	P2B	—	CMOS	PWM output.
	SDO1	_	CMOS	SPI data output 1.
RA7/OSC1/CLKIN/P1C ⁽¹⁾ /	RA7	TTL	CMOS	General purpose I/O.
CCP2 ^(1,2) /P2A ^(1,2)	OSC1	XTAL	—	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	CMOS	—	External clock input (EC mode).
	P1C	_	CMOS	PWM output.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A	_	CMOS	PWM output.
RB0/T1G/CCP1 ⁽¹⁾ /P1A ⁽¹⁾ /INT/ SRI/FLT0	RB0	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	T1G	ST		Timer1 Gate input.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	P1A	_	CMOS	PWM output.
	INT	ST	_	External interrupt.
	SRI	ST		SR latch input.
	FLT0	ST		ECCP Auto-Shutdown Fault input.
RB1/AN11/CPS11/RX ^(1,3) / DT ^(1,3) /SDA1/SDI1	RB1	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
	AN11	AN	_	A/D Channel 11 input.
	CPS11	AN	—	Capacitive sensing input 11.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	SDA1	l ² C™	OD	I ² C™ data input/output 1.
	SDI1	CMOS	_	SPI data input 1.
RB2/AN10/CPS10/MDMIN/ TX ^(1,3) /CK ^(1,3) /RX ⁽¹⁾ /DT ⁽¹⁾ /	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.
SDA2 ⁽²⁾ /SDI2 ⁽²⁾ /SDO1 ^(1,3)	AN10	AN	_	A/D Channel 10 input.
	CPS10	AN		Capacitive sensing input 10.
	MDMIN	_	CMOS	Modulator source input.
	ТΧ	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	RX	ST	—	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	SDA2	I ² C™	OD	I ² C™ data input/output 2.
	SDI2	ST	_	SPI data input 2.

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open Drain

HV = High Voltage

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C

XTAL = Crystal

levels

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Functions are only available on the PIC16(L)F1827.

Name	Function	Input Type	Output Type	Description
RB3/AN9/CPS9/MDOUT/ CCP1 ^(1,3) /P1A ^(1,3)	RB3	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN9	AN	_	A/D Channel 9 input.
	CPS9	AN	_	Capacitive sensing input 9.
	MDOUT	_	CMOS	Modulator output.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
	P1A	_	CMOS	PWM output.
RB4/AN8/CPS8/SCL1/SCK1/ MDCIN2	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN8	AN	_	A/D Channel 8 input.
	CPS8	AN	_	Capacitive sensing input 8.
	SCL1	I ² C™	OD	I ² C™ clock 1.
	SCK1	ST	CMOS	SPI clock 1.
	MDCIN2	ST	_	Modulator Carrier Input 2.
RB5/AN7/CPS7/P1B/TX ⁽¹⁾ /CK ⁽¹⁾ / SCL2 ⁽²⁾ /SCK2 ⁽²⁾ /SS1 ^(1,3)	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
	AN7	AN	_	A/D Channel 7 input.
	CPS7	AN	_	Capacitive sensing input 7.
	P1B		CMOS	PWM output.
	ТΧ	_	CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	SCL2	I ² C™	OD	I ² C [™] clock 2.
	SCK2	ST	CMOS	SPI clock 2.
	SS1	ST	—	Slave Select input 1.
RB6/AN5/CPS5/T1CKI/T1OSI/ P1C ^(1,3) /CCP2 ^(1,2,3) /P2A ^(1,2,3) /	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
CSPCLK	AN5	AN	—	A/D Channel 5 input.
	CPS5	AN	—	Capacitive sensing input 5.
	T1CKI	ST	—	Timer1 clock input.
	T10S0	XTAL	XTAL	Timer1 oscillator connection.
	P1C		CMOS	PWM output.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
	P2A	_	CMOS	PWM output.
	ICSPCLK	ST	—	Serial Programming Clock.
RB7/AN6/CPS6/T1OSO/ P1D ^(1,3) /P2B ^(1,2,3) /MDCIN1/	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change Individually enabled pull-up.
CSPDAT	AN6	AN	—	A/D Channel 6 input.
	CPS6	AN	—	Capacitive sensing input 6.
	T10SO	XTAL	XTAL	Timer1 oscillator connection.
	P1D	_	CMOS	PWM output.
	P2B		CMOS	PWM output.
	MDCIN1	ST	—	Modulator Carrier Input 1.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.

TARI E 1-2. PIC16/I)F1826/27 PINOLIT DESCRIPTION (CONTINUED)

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C

levels

HV = High Voltage XTAL = Crystal

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Functions are only available on the PIC16(L)F1827.

TABLE 1-2: PIC16(L)F1826/27 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description				
VDD	Vdd	Power	—	Positive supply.				
Vss	Vss	Power	_	Ground reference.				
Legend: AN = Analog input or output $CMOS = CMOS$ compatible input or output $OD = Open Drain$								

AN = Analog input or outputCMOS = CMOS compatible input or outputOD= Open DrainTTL = TTL compatible inputST= Schmitt Trigger input with CMOS levels l^2C^{TM} = Schmitt Trigger input with l^2C HV = High VoltageXTAL= Crystallevels gend: AN

Note 1: Pin functions can be moved using the APFCON0 or APFCON1 register.

2: Functions are only available on the PIC16(L)F1827.

2.0 ENHANCED MID-RANGE CPU

This family of devices contain an enhanced mid-range 8-bit CPU core. The CPU has 49 instructions. Interrupt capability inc ludes aut omatic co ntext sa ving. The hardware stack is 16 levels deep and has Overflow and Underflow R eset c apability. D irect, In direct, an d Relative addressing modes are av ailable. T wo Fil e Select R egisters (F SRs) provide th e a bility to rea d program and data memory.

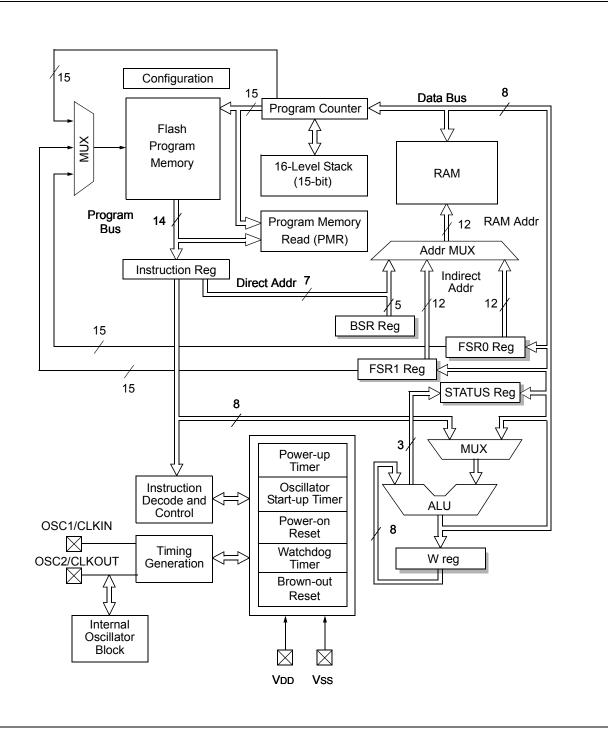
- Automatic Interrupt Context Saving
- 16-level Stack with Overflow and Underflow
- File Select Registers
- Instruction Set

2.1 Automatic Interrupt Context Saving

During interrupts, c ertain re gisters are a utomatically saved in shadow registers and restored when returning from the interrupt. T his saves stack space and us er code. See **Section 8.5 "Automatic Context Saving"**, for more information.

2.2 16-level Stack with Overflow and Underflow

These devices have an external stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled will cause a software Reset. See section **Section 3.4 "Stack**" for more details.


2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access al I f ile reg isters and p rogram me mory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed lin early, p roviding th e ab ility to access contiguous data larger than 80 bytes. There are also n ew i nstructions to s upport the FSRs . Se e Section 3.4 "Stack"for more details.

2.4 Instruction Set

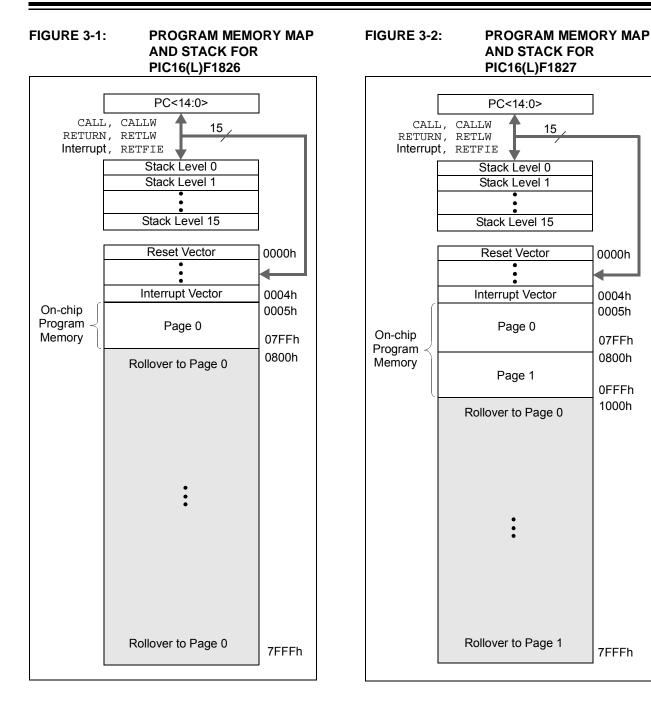
There are 49 instructions for the enhanced mid-range CPU to sup port the fea tures of the C PU. See **Section 29.0** "**Instruction Set Sum mary**" for m ore details.

3.0 MEMORY ORGANIZATION

There are three types of memory in PIC16(L)F1826/27: Data Memory, Program Memory and Data EEPROM Memory⁽¹⁾.

- Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
 - Device Memory Maps
 - Special Function Registers Summary
- Data EEPROM memory⁽¹⁾

Note 1: The D ata EEPROM Me mory and the method to access Flash memory through the EEC ON reg isters is de scribed in Section 11.0 "Data EEPROM and Flash Program Memory Control". The following features are associated with access and control of program memory and data memory:


- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhan ced mid-range core has a 15-bit program counter capable of addressing a 32K x 14 program memory s pace. Table 3-1 show s the memo ry sizes implemented for the PIC 16(L)F1826/27 family. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figures 3-1 and 3-2).

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address
PIC16(L)F1826	2,048	07FFh
PIC16(L)F1827	4,096	0FFFh

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to us e t ables of RETLW instructions. The second method is to s et an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INI	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower 8 bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the p rogram memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH directive will set bit<7> if a label points to a location in program memory.

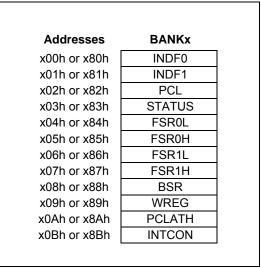
EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants				
RETLW	DATA0	;Index0	data	
RETLW	DATA1	;Index1	data	
RETLW	DATA2			
RETLW	DATA3			
my_functi	on			
;… LOI	TS OF CODE			
MOVLW	LOW cons	stants		
MOVWF	FSR1L			
MOVLW	HIGH cor	nstants		
MOVWF	FSR1H			
MOVIW	0[FSR1]			
; THE PROG	RAM MEMORY	IS IN W		

3.2 Data Memory Organization

The data memory is p artitioned in 32 memory banks with 12 8 by tes in a ban k. Each ban k c onsists of (Figure 3-3):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- · 16 bytes of common RAM


The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory wi II r ead as '0'. AI I da ta m emory c an b e accessed either directly (via instructions that us e the file registers) o r indirectly vi a th e tw o Fi le Se lect Registers (F SR). Se e Section 3.5 " Indirect Addressing" for more information.

Data Memory uses a 12-bit address. The upper 7-bit of the address define the Bank address and the lower 5-bits select the registers/RAM in that bank.

3.2.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 1 2 addresses of every data memory bank (addresses x00h/x08h through x 0Bh/x8Bh). These registers are listed below in Table 3-2. For for detailed information, see Table 3-5.

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

'1' = Bit is set

The STATUS register can be the de stination for an y instruction, I ike any other register. If t he S TATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

'0' = Bit is cleared

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, be cause the se instructions do n ot affect an y S tatus bit s. For other instructions not affecting a ny Status bit s (R efer to Section 29.0 "Instruction Set Summary").

Note 1: The <u>C</u> and <u>D</u> <u>C</u> <u>b</u> its op erate a s Borrow and Digit Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
_		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7 bit 0									
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
u = Bit is uncha	anged	x = Bit is unkr	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			

q = Value depends on condition

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-out bit
	1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-down bit
	1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	1 = A carry-out from the Most Significant bit of the result occurred
	0 = No carry-out from the Most Significant bit of the result occurred
Note 1:	For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order

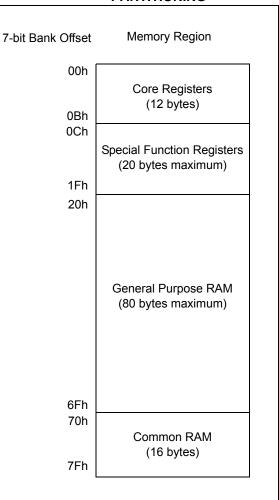
bit of the source register.

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the ap plication t o contro I the de sired oper ation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every dat a memory bank (addr esses x0C h/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the per ipherals are descr ibed in t he appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of ev ery dat a memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).


3.2.3.1 Linear Access to GPR

The general pu rpose R AM can be ac cessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See Section 3.5.2 "Linear Data Memory" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-3 and Table 3-4.

TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP

	BANK 0	010(BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	_	30Dh	_	38Dh	
00Eh	_	08Eh	—	10Eh	—	18Eh	—	20Eh	_	28Eh	_	30Eh	_	38Eh	—
00Fh	_	08Fh	_	10Fh		18Fh	_	20Fh		28Fh		30Fh	_	38Fh	_
010h	—	090h	_	110h	—	190h	_	210h	_	290h	_	310h	_	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L ⁽¹⁾	391h	_
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H ⁽¹⁾	392h	_
013h	PIR3 ⁽¹⁾	093h	PIE3 ⁽¹⁾	113h	CM2CON0	193h	EEDATL	213h	SSP1MASK	293h	CCP1CON	313h	CCP3CON ⁽¹⁾	393h	—
014h	PIR4 ⁽¹⁾	094h	PIE4 ⁽¹⁾	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	PWM1CON	314h	_	394h	IOCBP
015h	TMR0	095h	OPTION	115h	CMOUT	195h	EECON1	215h	SSP1CON	295h	CCP1AS	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	PSTR1CON	316h		396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	SSP1CON3	297h		317h		397h	_
018h	T1CON	098h	OSCTUNE	118h	DACCON0	198h	—	218h	_	298h	CCPR2L ⁽¹⁾	318h	CCPR4L ⁽¹⁾	398h	—
019h	T1GCON	099h	OSCCON	119h	DACCON1	199h	RCREG	219h	SSP2BUF ⁽¹⁾	299h	CCPR2H ⁽¹⁾	319h	CCPR4H ⁽¹⁾	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	SRCON0	19Ah	TXREG	21Ah	SSP2ADD ⁽¹⁾	29Ah	CCP2CON ⁽¹⁾	31Ah	CCP4CON ⁽¹⁾	39Ah	CLKRCON
01Bh	PR2	09Bh	ADRESL	11Bh	SRCON1	19Bh	SPBRGL	21Bh	SSP2MASK ⁽¹⁾	29Bh	PWM2CON ⁽¹⁾	31Bh	_	39Bh	_
01Ch	T2CON	09Ch	ADRESH	11Ch	—	19Ch	SPBRGH	21Ch	SSP2STAT ⁽¹⁾	29Ch	CCP2AS ⁽¹⁾	31Ch	—	39Ch	MDCON
01Dh	_	09Dh	ADCON0	11Dh	APFCON0	19Dh	RCSTA	21Dh	SSP2CON ⁽¹⁾	29Dh	PSTR2CON ⁽¹⁾	31Dh	—	39Dh	MDSRC
01Eh	CPSCON0	09Eh	ADCON1	11Eh	APFCON1	19Eh	TXSTA	21Eh	SSP2CON2 ⁽¹⁾	29Eh	CCPTMRS ⁽¹⁾	31Eh	—	39Eh	MDCARL
01Fh	CPSCON1	09Fh	—	11Fh	_	19Fh	BAUDCON	21Fh	SSP2CON3 ⁽¹⁾	29Fh		31Fh	_	39Fh	MDCARH
020h		0A0h		120h		1A0h		220h	General	2A0h		320h		3A0h	
	General		General Purpose Register		General Purpose Register		General Purpose Register		Purpose Register 48 Bytes ⁽¹⁾		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
	Purpose		80 Bytes		80 Bytes		80 Bytes ⁽¹⁾		Unimplemented						
06Fh	Register	0EFh		16Fh		1EFh		26Fh	Read as '0'	2EFh		36Fh		3EFh	
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh						
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'

Note 1: Available only on PIC16(L)F1827.

TABLE 3-3: PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h	Core Registers (Table 3-2)	480h	Core Registers (Table 3-2)	500h	Core Registers (Table 3-2)	580h	Core Registers (Table 3-2)	600h	Core Registers (Table 3-2)	680h	Core Registers (Table 3-2)	700h	Core Registers (Table 3-2)	780h	Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	—	58Ch	—	60Ch	—	68Ch	—	70Ch	—	78Ch	_
40Dh	—	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	_
40Eh	—	48Eh	—	50Eh	—	58Eh	—	60Eh	—	68Eh	—	70Eh	—	78Eh	_
40Fh	—	48Fh	—	50Fh	—	58Fh	—	60Fh	—	68Fh	—	70Fh	—	78Fh	
410h	—	490h	—	510h	—	590h	—	610h	—	690h	—	710h	—	790h	—
411h	—	491h	—	511h	—	591h	—	611h	—	691h	—	711h	—	791h	—
412h	—	492h	—	512h	—	592h	—	612h		692h	—	712h	—	792h	—
413h	—	493h	—	513h	—	593h	—	613h		693h	—	713h	—	793h	—
414h	—	494h	—	514h	—	594h	—	614h	_	694h	—	714h	—	794h	_
415h	TMR4 ⁽¹⁾	495h	—	515h	—	595h	—	615h	—	695h	—	715h	—	795h	_
416h	PR4 ⁽¹⁾	496h	_	516h	_	596h	_	616h	_	696h	_	716h	_	796h	_
417h	T4CON ⁽¹⁾	497h	—	517h	—	597h	—	617h	—	697h	—	717h	—	797h	_
418h	—	498h	_	518h	_	598h	—	618h	—	698h	—	718h	—	798h	_
419h	_	499h	—	519h	—	599h	—	619h	—	699h	—	719h	—	799h	_
41Ah	—	49Ah	—	51Ah	_	59Ah	—	61Ah	—	69Ah	—	71Ah	—	79Ah	_
41Bh	—	49Bh	—	51Bh	—	59Bh	—	61Bh	—	69Bh	—	71Bh	—	79Bh	_
41Ch	TMR6 ⁽¹⁾	49Ch	_	51Ch	_	59Ch	—	61Ch		69Ch	—	71Ch	—	79Ch	_
41Dh	PR6 ⁽¹⁾	49Dh	—	51Dh	—	59Dh	—	61Dh	—	69Dh	—	71Dh	—	79Dh	_
41Eh	T6CON ⁽¹⁾	49Eh	_	51Eh	_	59Eh	_	61Eh	_	69Eh	_	71Eh	_	79Eh	_
41Fh	—	49Fh	—	51Fh	—	59Fh	—	61Fh	—	69Fh	—	71Fh	—	79Fh	_
420h		4A0h		520h		5A0h		620h		6A0h		720h		7A0h	
	Unimplemented Read as '0'														
46Fh		4EFh		56Fh		5EFh		66Fh		6EFh		76Fh		7EFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	Accesses 70h – 7Fh														
47Fh		4FFh		57Fh		5FFh		67Fh		6FFh		77Fh		7FFh	

Legend: = Unimplemented data memory locations, read as '0'

TABLE 3-3:PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	BANK16		BANK17		BANK18		BANK19		BANK20		BANK21		BANK22		BANK23
800h	Core Registers (Table 3-2)	880h	Core Registers (Table 3-2)	900h	Core Registers (Table 3-2)	980h	Core Registers (Table 3-2)	A00h	Core Registers (Table 3-2)	A80h	Core Registers (Table 3-2)	B00h	Core Registers (Table 3-2)	B80h	Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'														
86Fh		8EFh		96Fh		9EFh		A6Fh		AEFh		B6Fh		BEFh	
870h	Common RAM (Accesses 70h – 7Fh)	8F0h	Common RAM (Accesses 70h – 7Fh)	970h	Common RAM (Accesses 70h – 7Fh)	9F0h	Common RAM (Accesses 70h – 7Fh)	A70h	Common RAM (Accesses 70h – 7Fh)	AF0h	Common RAM (Accesses 70h – 7Fh)	B70h	Common RAM (Accesses 70h – 7Fh)	BF0h	Common RAM (Accesses 70h – 7Fh)
87Fh	,	8FFh	,	97Fh	,	9FFh		A7Fh		AFFh	,	B7Fh		BFFh	

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	Core Registers (Table 3-2)	C80h	Core Registers (Table 3-2)	D00h	Core Registers (Table 3-2)	D80h	Core Registers (Table 3-2)	E00h	Core Registers (Table 3-2)	E80h	Core Registers (Table 3-2)	F00h	Core Registers (Table 3-2)	F80h	Core Registers (Table 3-2)
C0Bh		C8Bh		D0Bh		D8Bh		E0Bh		E8Bh		F0Bh		F8Bh	
C0Ch	Unimplemented Read as '0'	C8Ch	Unimplemented Read as '0'	D0Ch	Unimplemented Read as '0'	D8Ch	Unimplemented Read as '0'	E0Ch	Unimplemented Read as '0'	E8Ch	Unimplemented Read as '0'	F0Ch	Unimplemented Read as '0'	F9Fh	
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FA0h FEFh	See Table 3-4 for more information
C70h C7Fh	Accesses 70h – 7Fh	CF0h CFFh	Accesses 70h – 7Fh	D70h D7Fh	Accesses 70h – 7Fh	DF0h DFFh	Accesses 70h – 7Fh	E70h E7Fh	Accesses 70h – 7Fh	EF0h EFFh	Accesses 70h – 7Fh	F70h F7Fh	Common RAM (Accesses 70h – 7Fh)	FF0h FFFh	Common RAM (Accesses 70h – 7Fh)

Legend: = Unimplemented data memory locations, read as '0'

DS41391D-page 25

TABLE 3-4:PIC16(L)F1826/27 MEMORY MAP (CONTINUED)

	Bank 31	
F80h F8Bh	Core Registers (Table 3-2)	
F8Ch		
	Unimplemented Read as '0'	
FE3h		
FE4h	STATUS_SHAD	
FE5h	WREG_SHAD	
FE6h	BSR_SHAD	
FE7h	PCLATH_SHAD	
FE8h	FSR0L_SHAD	
FE9h	FSR0H_SHAD	
FEAh	FSR1L_SHAD	
FEBh	FSR1H_SHAD	
FECh	—	
FEDh	STKPTR	
FEEh	TOSL	
FEFh	TOSH	
FF0h	Common RAM (Accesses 70h – 7Fh)	
FFFh		

= Unimplemented data memory locations, read as '0',

3.2.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-5 can be addressed from any Bank.

r	1	1			1	1			i		·
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	0-31										
x00h or x80h	INDF0	0	this locatior ical register)		nts of FSR0H	/FSR0L to a	ddress data r	nemory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1		this locatior ical register)		nts of FSR1H	/FSR1L to a	ddress data r	nemory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program Co	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	_	_	-	С	1 1000	q quuu				
x04h or x84h	FSR0L	Indirect Dat	ta Memory A	ddress 0 Lo		0000 0000	uuuu uuuu				
x05h or x85h	FSR0H	Indirect Dat	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Dat	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Dat	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	_	_	BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Re	egister							0000 0000	uuuu uuuu
x0Ah or x8Ah	PCLATH	—	- Write Buffer for the upper 7 bits of the Program Counter -000								
x0Bh or x8Bh	INTCON	GIE P	EIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-5: CORE FUNCTION REGISTERS SUMMARY

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	xxxx xxxx
00Dh	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	xxxx xxxx
00Eh	_	Unimplement	ed							_	_
00Fh	—	Unimplement	ed							_	_
010h	—	Unimplement	ed							_	_
011h	PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
012h	PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	_	CCP2IF ⁽¹⁾	0000 00	0000 00
013h	PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF		00 0-0-	00 0-0-
014h	PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	00	00
015h	TMR0	Timer0 Modu	le Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Regis	ster for the Lea	ast Significant	Byte of the 16	6-bit TMR1 Re	gister			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Regis	ster for the Mo	st Significant E	Byte of the 16	-bit TMR1 Re	gister			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	0000 0x00	uuuu uxuu
01Ah	TMR2	Timer2 Modu	le Register			•	•			0000 0000	0000 0000
01Bh	PR2	Timer2 Period	d Register							1111 1111	1111 1111
01Ch	T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
01Dh	_	Unimplement	ed							_	_
01Eh	CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	0 0000	0 0000
01Fh	CPSCON1	_	_	_	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0	0000	0000
Bank 1	•		•			•	•			•	
08Ch	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
08Dh	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
08Eh	_	Unimplement	ed							_	_
08Fh	_	Unimplement	ed							_	_
090h	_	Unimplement	ed							_	_
091h	PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	-	CCP2IE ⁽¹⁾	0000 00	0000 00
093h	PIE3 ⁽¹⁾	_	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	00 0-0-	00 0-0-
094h	PIE4 ⁽¹⁾	_	_	_	_	_	_	BCL2IE	SSP2IE	00	00
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	00 11qq	qq qquu
097h	WDTCON	_	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	01 0110	01 0110
098h	OSCTUNE	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	00 0000
099h	OSCCON	SPLLEN	IRCF3	IRCF2	IRCF1	IRCF0	—	SCS1	SCS0	0011 1-00	0011 1-00
09Ah	OSCSTAT	T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	10q0 0q00	dddd ddod
09Bh	ADRESL	A/D Result R								xxxx xxxx	
09Ch	ADRESH	A/D Result Re	•							xxxx xxxx	
09Dh	ADCON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	-000 0000	
09Eh	ADCON1	ADFM	ADCS2	ADCS1	ADCS0	_	ADNREF	ADPREF1	ADPREF0		0000 -000
09Fh	_	Unimplement								_	_
										1	

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
LATA	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	xx-x xxxx	uu-u uuuu
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx xxxx	uuuu uuuu
_	Unimplement	ed							_	_
_	Unimplement	ed							_	_
_	Unimplement	ed							_	_
CM1CON0	C10N	C1OUT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NC	H<1:0>	000000	000000
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NCH1	C2NCH0	000000	000000
CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
BORCON	SBOREN	_	_	_	_	_	_	BORRDY	1q	uu
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	0qrr 0000	0qrr 0000
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS1	DACPSS0	_	DACNSS	000- 00-0	000- 00-0
DACCON1	_	_	_	DACR4	DACR3	DACR2	DACR1	DACR0	0 0000	0 0000
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
	Unimplement	ed							_	_
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	0000 0000	0000 0000
APFCON1	_	_	_	_	_	_	_	TXCKSEL	0	0
	Unimplement	ed							_	_
ANSELA	_	_	_	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	1 1111	1 1111
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	_	1111 111-	1111 111-
_	Unimplement	ed							_	_
_	Unimplement	ed							_	_
_	Unimplement	ed							_	_
EEADRL	EEPROM / P	rogram Memo	ry Address Re	gister Low By	te				0000 0000	0000 0000
EEADRH	_	EEPROM / P	rogram Memo	ry Address Re	egister High B	yte			-000 0000	-000 0000
EEDATL	EEPROM / P	rogram Memo	ry Read Data	Register Low	Byte				xxxx xxxx	uuuu uuuu
EEDATH	_	_	EEPROM / P	rogram Memo	ry Read Data	Register Hig	h Byte		xx xxxx	uu uuuu
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	0000 x000	0000 q000
EECON2	EEPROM cor	ntrol register 2							0000 0000	0000 0000
	Unimplement	ed							_	_
_	Unimplement	ed							_	_
RCREG	USART Rece	ive Data Regi	ster						0000 0000	0000 0000
TXREG	USART Trans	smit Data Reg	ister						0000 0000	0000 0000
SPBRGL	Baud Rate G	enerator Data	Register Low						0000 0000	0000 0000
SPBRGH			•						0000 0000	0000 0000
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
				1	1			1	1	
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
	LATA LATB 	LATA LATA7 LATB LATB7 — Unimplement CM1CON0 C1ON CM2CON1 C2INTP CMOUT — BORCON SBOREN FVRCON FVREN DACCON0 DACEN DACCON1 — SRCON1 SRSPE — Unimplement APFCON1 — — Unimplement ANSELA — ANSELA — ANSELB ANSB7 — Unimplement — EEDATL	LATA LATA7 LATA6 LATB LATB7 LATB6 — Unimplemented CM1CON0 C10N CM2CON1 C2INTP CMOUT — MOUT — BORCON SBOREN PKRCON FVREN FVRCON FVREN DACCON0 DACEN DACCON1 — SRCON0 SRLEN SRCON1 SRSPE SRCON1 SRSPE SRCON1 RXDTSEL APFCON1 — — Unimplemented APFCON1 — — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — —	LATA LATA7 LATA6 — LATB LATB7 LATB6 LATB5 — Unimplemented — — Unimplemented — — Unimplemented — — Unimplemented C10UT C10E CM1CON0 C10N C10UT C10E CM1CON1 C1INTP C1INTN C1PCH1 CM2CON0 C2ON C2OUT C2OE CM2CON1 C2INTP C2INTN C2PCH1 CMOUT — — — BORCON SBOREN — — FVRCON FVREN FVRRDY Reserved DACCON0 DACEN DACLPS DACOE DACCON1 — — — SRCON0 SRLEN SRCLK2 SRCLK1 SRCON1 SRSPE SRSCKE SRSC2E — Unimplemented — — APFCON1 — — — ANSELA — — — ANSELB ANSB7 ANSB6<	LATA LATA7 LATA6 — LATA4 LATB LATB7 LATB6 LATB5 LATB4 — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented CM1CON0 C10N C10UT C10E C1POL CM1CON1 C1INTP C1INTN C1PCH1 C1PCH0 CM2CON0 C20N C2OUT C2OE C2POL CM2CON1 C2INTP C2INTN C2PCH1 C2PCH0 CM0UT — — — — — — BORCON SBOREN — — — — — FVRCON FVREN FVRRDY Reserved Reserved DACCON0 DACEN DACLPS DACOE — DACCON1 DACEN DACLPS DACOE — DACCON1 SRSPE SRSCKE SRSC2E SRSC1E — Unimplemented — Unimplemented APFCON0 RXDTSEL SD01SEL SS1SEL P2BSEL ⁽¹⁾ APFCON1 — — — — A ANSELA — — — — A ANSELA — — — A ANSELA — ANSB7 ANSB6 ANSB5 ANSB4 — Unimplemented — Unimplemented EEDATL EEPROM / Program Memory Address Register Low By EEDATL EEPROM / Program Memory Address Register Low EEDATH — — — EPROM / Program Memory Address Register Low EEDATH EEPROM / Program Memory Address Register Low EEDATH EEPROM / Program Memory Address Register Low EEDATH — — — — — — — — — — — — — — — — — — —	LATA LATA7 LATA6 — LATA4 LATA3 LATB LATB7 LATB6 LATB5 LATB4 LATB3 — Unimplemented — Unimplemented — — Unimplemented — — Unimplemented — Unimplemented C1OUT C1OE C1PCH — CM1CON0 C1ON C1OUT C1OE C1PCH — CM1CON0 C1N C1OUT C1OE C1PCH — CM1CON0 C2ON C2OUT C2OE C2POL — CM2CON1 C2INTP C2INTN C2PCH1 C2PCH0 — CM2CON1 SBOREN — — — — — FVRCON FVREN FVRRDY Reserved Reserved DACPSS1 DACCON DACEN DACLPS DACOE — DACPSS1 DACCON1 — — — DACR4 DACPS SRCON0 SRLEN SRCKE SRSC2E SRSC1E SRPE ANSELA —	LATA LATA7 LATA6 — LATA4 LATA3 LATA2 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — C1SP CM1CON0 C1ON C1OUT C1OE C1POL — C1SP CM1CON1 C1INTP C1INTN C1PCH1 C1PCH0 — — C2SP CM2CON0 C2ON C2OUT C2OE C2POL — C2SP CM2CON1 C2INTP C2INTN C2PCH1 C2PCH0 — — — CM0UT — — — — — — — — — BORCON SBOREN — — — — — — — — — FVRCON FVREN FVRRDY Reserved Reserved CDAFVR1 CDAFVR0 DACCON0 DACEN DACLPS DACOE — DACPSS1 DACPSS0 DACCON1 — — — — — DACR4 DACR3 DACPS SRCON0 SRLEN SRCLK2 SRCLK1 SRCLK0 SRQEN SRNQEN SRCON1 SRSPE SRSCKE SRSC2E SRSC1E SRPE SRRCKE — Unimplemented APFCON1 — — — — ANSA4 ANSA3 ANSA2 APFCON1 — — — — ANSA4 ANSA3 ANSA2 ANSELA — <u>— — — ANSA4 ANSA3 ANSA2</u> ANSELA <u>ANSB7 ANSB6 ANSB5 ANSB4 ANSB3 ANSB2</u> — Unimplemented — EEPROM / Program Memory Address Register Low Byte EEDATH <u>— EEPROM / Program Memory Address Register Low Byte</u> EEDATH — <u>— EEPROM / Program Memory Address Register Low Byte</u> EEDATH — <u>— EEPROM / Program Memory Address Register High Byte</u> EECON1 EEPGO CFGS LVUO FREE WRER WREN EECON2 EEPROM control register 2 — Unimplemented — Unimplemented — UNimplemented — UNIMPLEMENTED — UNIMPLEMENTED — UNIMPLEMENTED — — — — — — — — — — — — — — — — — — —	LATA LATA LATA6 — LATA4 LATA3 LATA2 LATA1 LATB LATB7 LATB6 LATB5 LATB4 LATA3 LATA2 LATB1 — Unimplemented	LATA LATA7 LATA6 — LATA4 LATA3 LATA2 LATA1 LATA0 LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB0 Unimplemented — Unimplemented — C1ON C1OUT C1OE C1POL — C1SP C1HYS C1SYNC CM1CON1 C1INTP C1INTN C1PCH1 C1PCH0 — — C1SP C1HYS C1SYNC CM2CON1 C2INTP C2INTN C2PCH1 C2PCH0 — C2SP C2HYS C2SYNC CM2CON1 C2INTP C2INTN C2PCH1 C2PCH0 — — MC2OUT MC1OUT BORCON SBOREN — — — — — — — MC2OUT MC1OUT BORCON SBOREN — — — — — — — MC2OUT MC1OUT BORCON SBOREN — — — — — — — — BORRDY FVRCON FVREN FVRDY Reserved Reserved DACR3 DACR2 DACR1 DACRS DACCON0 DACEN DACLPS DACCE SRC1E SRC1E SRNCE SRNCE SRNCE SRNCE SRNCE SRCCN0 SRLEN SRCLK2 SRCL1 SRCLK0 SROEN SRNCEN SRNCE SRRCE SRRCE MUNIPLEMENTED — Unimplemented — EEPROM / Program Memory Address Register Low Byte EEDATL EEPROM / Program Memory Address Register Low Byte EEDATL EEPROM / Program Memory Address Register Low Byte EEDATL EEPROM / Program Memory Address Register Low Byte EEDATH — EEPROM / Program Memory Address Register Low Byte EEDATH — EEPROM / Program Memory Address Register Low Byte EEDATH — EEPROM / Program Memory Address Register High Byte EECON1 EEPROM / Program Memory Address Register Low Byte EEDATH — EEPROM / Program Memory Address Register Low Byte EECON1 EEPROM / Program Memory Address Register Low Byte EECON1 EEPROM / Program Memory Address Register Low Byte EECON1 EEPROM control register 2 — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — Unimplemented — EEPROM / Program Memory Address Register Low Byte EECON1 EEPROM / Program Memory Address Register Low Byte	Name Bit / Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR, BOR LATA LATA7 LATA6 — LATA4 LATA3 LATA2 LATA1 LATA7 Xx - x zxxx LATB LATB7 LATB6 LATB5 LATB4 LATB3 LATB2 LATB1 LATB3 Sxx - x zxxx — Unimplemented — -

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4		•			•		•	•			
20Ch	WPUA	_	_	WPUA5	_	—	_	_	_	1	1
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	—	Unimplement	ed							_	_
20Fh	—	Unimplement	ed							_	_
210h	—	Unimplement	ed							_	_
211h	SSP1BUF	Synchronous	Serial Port Re	eceive Buffer/1	ransmit Regis	ter				xxxx xxxx	uuuu uuuu
212h	SSP1ADD	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	0000 0000	0000 0000
213h	SSP1MSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h	—	Unimplement	ed							_	_
219h	SSP2BUF ⁽¹⁾	Synchronous	Serial Port Re	eceive Buffer/1	ransmit Regis	ter				xxxx xxxx	uuuu uuuu
21Ah	SSP2ADD ⁽¹⁾	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	0000 0000	0000 0000
21Bh	SSP2MSK ⁽¹⁾	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	1111 1111
21Ch	SSP2STAT ⁽¹⁾	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
21Dh	SSP2CON1(1)	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
21Eh	SSP2CON2(1)	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
21Fh	SSP2CON3(1)	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
Bank 5											
28Ch	—	Unimplement	ed							_	
28Dh	—	Unimplement	ed							_	_
28Eh	—	Unimplement	ed							_	_
28Fh	—	Unimplement	ed							_	_
290h	—	Unimplement	ed							_	_
291h	CCPR1L	Capture/Com	pare/PWM Re	gister 1 (LSB)						xxxx xxxx	uuuu uuuu
292h	CCPR1H	Capture/Com	pare/PWM Re	gister 1 (MSB)					xxxx xxxx	uuuu uuuu
293h	CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000
294h	PWM1CON	P1RSEN	P1DC6	P1DC5	P1DC4	P1DC3	P1DC2	P1DC1	P1DC0	0000 0000	0000 0000
295h	CCP1AS	CCP1ASE	CCP1AS2	CCP1AS1	CCP1AS0	PSS1AC1	PSS1AC0	PSS1BD1	PSS1BD0	0000 0000	0000 0000
296h	PSTR1CON	—	—	—	STR1SYNC	STR1D	STR1C	STR1B	STR1A	0 0001	0 0001
297h	—	Unimplement	ed							-	—
298h	CCPR2L ⁽¹⁾	Capture/Com	pare/PWM Re	gister 2 (LSB)						xxxx xxxx	uuuu uuuu
299h	CCPR2H ⁽¹⁾	Capture/Com	pare/PWM Re	gister 2 (MSB)					XXXX XXXX	uuuu uuuu

CCP2M3

P2DC3

PSS2AC1

STR2D

C2TSEL1

DC2B0

P2DC4

CCP2AS0

STR2SYNC

C3TSEL0

CCP2M2

P2DC2

PSS2AC0

STR2C

C2TSEL0

CCP2M1

P2DC1

PSS2BD1

STR2B

C1TSEL1

CCP2M0

P2DC0

PSS2BD0

STR2A

C1TSEL0

0000 0000

0000 0000

0000 0000

0000 0000

--0 0001 0000 0000

0000 0000

0000 0000

0000 0000

--0

0001

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

DC2B1

P2DC5

CCP2AS1

C3TSEL1

P2M0

P2DC6

CCP2AS2

C4TSEL0

Note 1: PIC16(L)F1827 only.

CCP2CON⁽¹⁾

PWM2CON⁽¹⁾

PSTR2CON⁽¹⁾

CCPTMRS(1)

CCP2AS⁽¹⁾

P2M1

P2RSEN

CCP2ASE

C4TSEL1

Unimplemented

29Ah

29Bh

29Ch

29Dh

29Eh

29Fh

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
30Ch	_	Unimplement	ed							_	_
30Dh	_	Unimplement	ed							_	_
30Eh	_	Unimplement	ed							_	_
30Fh	_	Unimplement	ed							_	_
310h	-	Unimplement	ed							_	—
311h	CCPR3L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 3 (MSB))					xxxx xxxx	uuuu uuuu
313h	CCP3CON ⁽¹⁾	_		DC3B1	DC3B0	CCP3M3	CCP3M2	CCP3M1	CCP3M0	00 0000	00 0000
314h		Unimplement	ed							—	—
315h	_	Unimplement	ed							_	_
316h	_	Unimplement	ed							_	_
317h		Unimplement	ed							—	—
318h	CCPR4L ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (LSB)						XXXX XXXX	uuuu uuuu
319h	CCPR4H ⁽¹⁾	Capture/Com	pare/PWM Re	egister 4 (MSB))					XXXX XXXX	uuuu uuuu
31Ah	CCP4CON ⁽¹⁾	_	_	DC4B1	DC4B0	CCP4M3	CCP4M2	CCP4M1	CCP4M0	00 0000	00 0000
31Bh	_	Unimplement	ed							_	_
31Ch	_	Unimplement	ed							_	_
31Dh	_	Unimplement	ed							_	_
31Eh	_	Unimplement	ed							_	_
31Fh	_	Unimplement	ed							_	_
Bank 7											
38Ch	_	Unimplement	ed							_	_
38Dh	_	Unimplement	ed							_	_
38Eh	_	Unimplement	ed							_	_
38Fh	_	Unimplement	ed							_	_
390h	_	Unimplement	ed							_	_
391h	_	Unimplement	ed							_	_
392h	_	Unimplement	ed							_	_
393h	_	Unimplement	ed							_	_
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	0000 0000	0000 0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	0000 0000	0000 0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	0000 0000	0000 0000
397h	_	Unimplement	ed							_	_
398h	_	Unimplement	ed							_	_
399h	_	Unimplement	ed							_	_
39Ah	CLKRCON	CLKREN	CLKROE	CLKRSLR	CLKRDC1	CLKRDC0	CLKRDIV2	CLKRDIV1	CLKRDIV0	0011 0000	0011 0000
39Bh	_	Unimplement	ed							_	_
39Ch	MDCON	MDEN	MDOE	MDSLR	MDOPOL	_	—	—	MDBIT	00100	00100
39Dh	MDSRC	MDMSODIS	—	—	—	MDMS3	MDMS2	MDMS1	MDMS0	x xxxx	u uuuu
39Eh	MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	—	MDCL3	MDCL2	MDCL1	MDCL0	xxx- xxxx	uuu- uuuu
39Fh	MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	_	MDCH3	MDCH2	MDCH1	MDCH0	xxx- xxxx	uuu- uuuu

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.
Shaded locations are unimplemented, read as '0'.Note1:PIC16(L)F1827 only.

IADLL	TABLE 3-6. SPECIAL FUNCTION REGISTER SUMMART (CONTINUED)										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 8											
40Ch	_	Unimplemented									—
40Dh	—	Unimplement	ted							—	—
40Eh	—	Unimplement	ted							—	—
40Fh	—	Unimplement	ted							—	—
410h	—	Unimplement	ted							—	—
411h	—	Unimplement	ted							—	—
412h	—	Unimplement	Unimplemented								
413h	—	Unimplement	Unimplemented								
414h	—	Unimplement	ted							—	—
415h	TMR4 ⁽¹⁾	Timer4 Modu	Timer4 Module Register								
416h	PR4 ⁽¹⁾	Timer4 Perio	d Register							1111 1111	1111 1111
417h	T4CON ⁽¹⁾	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	-000 0000	-000 0000
418h	—	Unimplement	Unimplemented								
419h	—	Unimplement	Unimplemented								—
41Ah	—	Unimplement	Unimplemented								—
41Bh	—	Unimplemented								—	—
41Ch	TMR6 ⁽¹⁾	Timer6 Module Register								0000 0000	0000 0000
41Dh	PR6 ⁽¹⁾	Timer6 Period Register								1111 1111	1111 1111
41Eh	T6CON ⁽¹⁾										-000 0000
41Fh	_	Unimplemented									_

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-6:**

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: PIC16(L)F1827 only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 9											
48Ch 	_	Unimplement	ed							—	—
49Fh											
Bank 10)										
50Ch	_	Unimplement	ed							—	—
51Fh											
Bank 11											
58Ch 	_	Unimplement	ed							—	—
 59Fh											
Bank 12	2										
60Ch	_	Unimplement	ed							—	-
 61Fh											
Bank 13	3										
68Ch	_	Unimplement	ed							—	_
 69Fh											
Bank 14	4	I									
70Ch	_	Unimplement	ed							—	_
 71Fh											
Bank 15	5										
78Ch	_	Unimplement	ed							_	_
 79Fh											
Bank 16	3										
80Ch	_	Unimplement	ed							_	—
 86Fh											
Bank 17	7										
88Ch	_	Unimplement	ed							_	_
 8EFh											
Bank 18	3										
90Ch	_	Unimplement	ed							_	_
 96Fh											
Bank 19)										
98Ch	_	Unimplement	ed							_	_
 9EFh											
Bank 20)										
A0Ch		Unimplement	ed							_	_
 A6Fh											
Bank 21	1										
A8Ch		Unimplement	ed							_	_
_											
AEFh Bank 22	>										
B0Ch	-	Unimplement	ed							_	_
B6Fh		epionion									
BEEN											

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1827 only.

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)												
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 23												
B8Ch	_	Unimplement	ted							-	—	
BEFh												
Bank 24												
C0Ch	_	Unimplement	ted							_	_	
 C6Fh												
Bank 25	i											
C8Ch	_	Unimplement	ted							—	—	
CEFh												
Bank 26	;											
D0Ch	_	Unimplement	ted							-	—	
D6Fh												
Bank 27	,											
D8Ch	_	Unimplement	ted							-	—	
DEFh												
Bank 28	3											
200	_	Unimplement	ted							_	_	
E6Fh												
Bank 29)											
E8Ch	_	Unimplement	ted							—	—	
EEFh												
Bank 30)											
F0Ch	_	Unimplement	ted							_	—	
F6Fh												

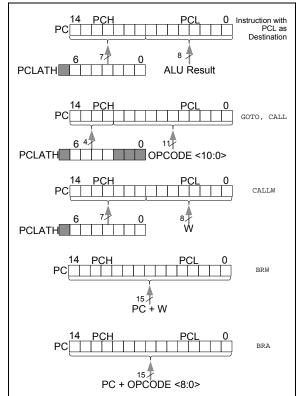
 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16(L)F1827 only.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Bank 3	Bank 31												
F8Ch	—	Unimplemented									—		
 FE3h													
FE4h	STATUS_ SHAD	—	_	_	_	—	Z_SHAD	DC_ SHAD	C_SHAD	xxx	uuu		
FE5h	WREG_ SHAD	Working Register Shadow								0000 0000	uuuu uuuu		
FE6h	BSR_ SHAD	—	—	—	Bank Select	x xxxx	u uuuu						
FE7h	PCLATH_ SHAD	Program Counter Latch High Register Shadow								-xxx xxxx	uuuu uuuu		
FE8h	FSR0L_ SHAD	Indirect Data Memory Address 0 Low Pointer Shadow								XXXX XXXX	uuuu uuuu		
FE9h	FSR0H_ SHAD	Indirect Data Memory Address 0 High Pointer Shadow								XXXX XXXX	uuuu uuuu		
FEAh	FSR1L_ SHAD	Indirect Data	Indirect Data Memory Address 1 Low Pointer Shadow								uuuu uuuu		
FEBh	FSR1H_ SHAD	Indirect Data Memory Address 1 High Pointer Shadow								XXXX XXXX	uuuu uuuu		
FECh		Unimplemented								_	_		
FEDh	STKPTR	_	— — — Current Stack pointer							1 1111	1 1111		
FEEh	TOSL	Top-of-Stack Low byte								xxxx xxxx	uuuu uuuu		
FEFh	TOSH	Top-of-Stack High byte								-xxx xxxx	-uuu uuuu		

TABLE 3-6: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:logistical_logistical$


Shaded locations are unimplemented, read as '0'.

Note 1: PIC16(L)F1827 only.

3.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte(PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-4 shows the five situations for the loading of the PC.

FIGURE 3-4: LOADING OF PC IN DIFFERENT SITUATIONS

3.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the p rogram counter to be changed by writing the desired upper 7 bits to the PCLATH register. When the lower 8 bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

3.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (e ach 256-byte block). R efer to Ap plication Note AN556, *"Implementing a Table Read"* (DS00556).

3.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the ope rand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W an d PCH is loaded with PCLATH.

3.3.4 BRANCHING

The branching instructions add an of fset to the PC. This all ows relocatable c ode and code that c rosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If u sing BRW, I oad t he W r egister w ith t he d esired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

3.4 Stack

All de vices ha ve a 16 -level x 15-bit w ide h ardware stack (refer to Fig ures 3-5 th rough 3-8). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are ex ecuted o r an in terrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Word 2). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites th e s econd PU SH (a nd so on). Th e STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, re gardless of whether the Reset is enabled.

Note 1: There are no in structions/mnemonics called PUSH or POP. These are actions that occur fr om the e xecution o f the CALL, CALLW, RETU RN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.4.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which w ill position T OSH:TOSL, th en read/write to TOSH:TOSL. STKPTR is 5 bit s to al low detection of overflow and underflow.

Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and Interrupts will in crement ST KPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement STKPTR.

Reference Figure 3-5 through Figure 3-8 for examples of accessing the stack.

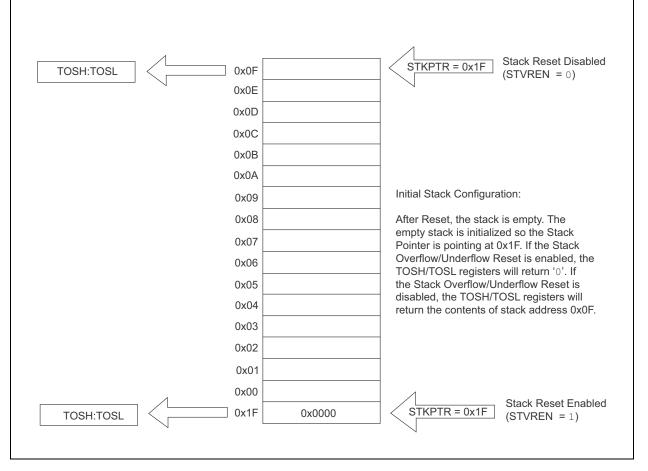
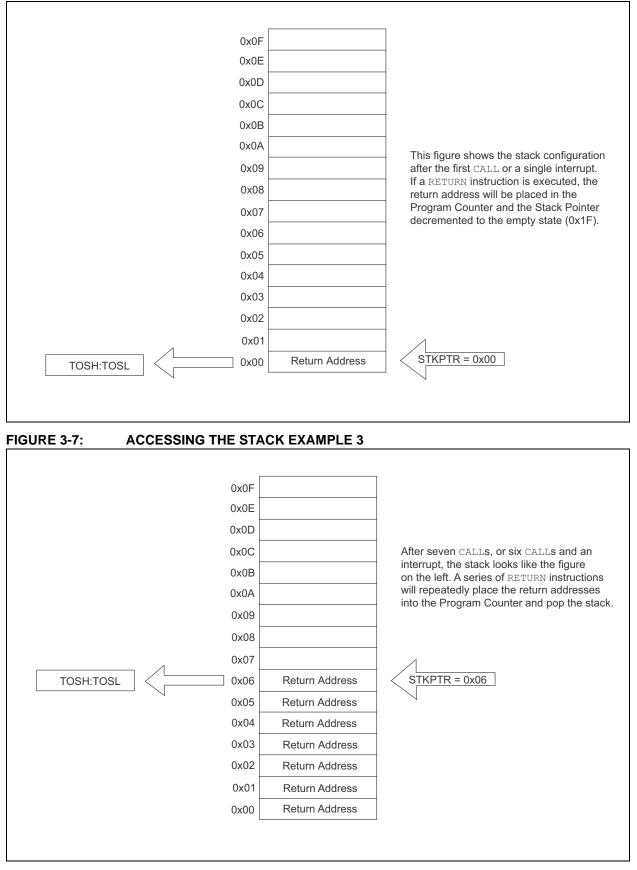
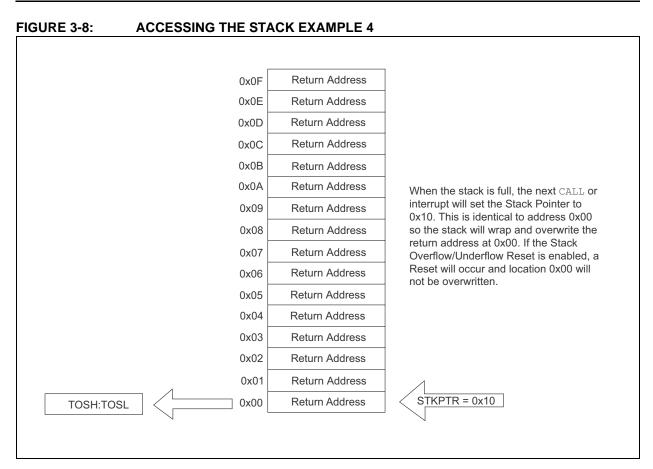
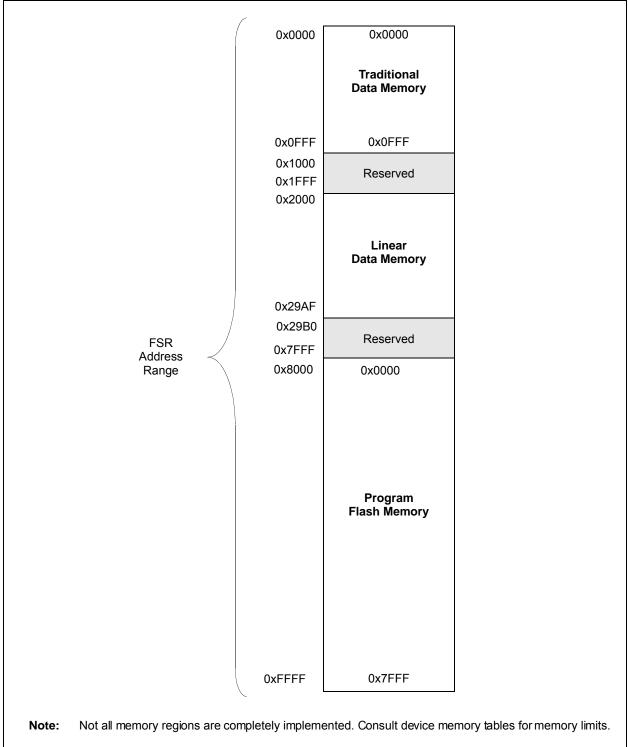




FIGURE 3-6: ACCESSING THE STACK EXAMPLE 2

3.4.2 OVERFLOW/UNDERFLOW RESET

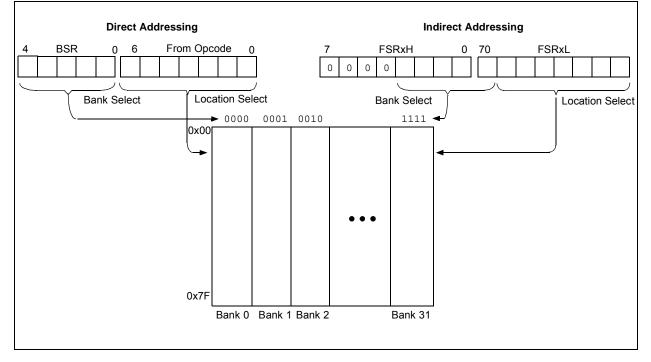
If the STVR EN b it i n C onfiguration W ord 2 i s programmed to '1', the device will be reset if the stack is PU SHed bey ond th e s ixteenth I evel o r POPe d beyond the first le vel, s etting the a ppropriate bit s (STKOVF or STKUNF, res pectively) i n th e PCON register.


3.5 Indirect Addressing

The IN DFn registers are not physical registers. Any instruction that accesses an IN DFn register ac tually accesses the register at the address specified by the File Select Reg isters (FSR). If the FSRn add ress specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

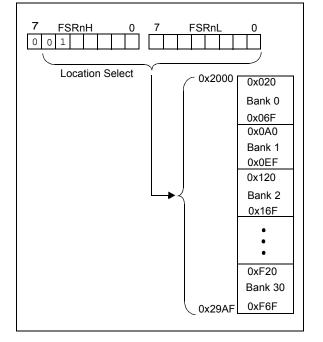
The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory



3.5.1 TRADITIONAL DATA MEMORY

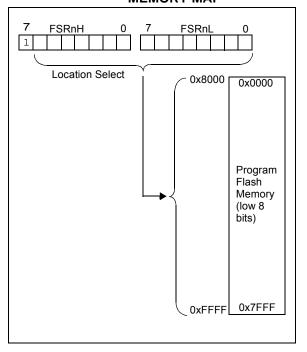
The t raditional d ata m emory is a r egion f rom F SR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.


3.5.2 LINEAR DATA MEMORY

The I inear d ata me mory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented me mory r eads as 0x00. U se of t he linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.


FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To ma ke constant da ta ac cess eas ier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSR nH is set, the lower 15 bits are the address in pro gram memory which will be accessed through INDF. Only the lower 8 bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished v ia th e FSR /INDF interface. Al I instructions that access program Flash memory via the FSR/INDF in terface w ill require one add itional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different os cillator a nd me mory p rotection op tions. These are im plemented as C onfiguration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in C onfiguration W ord is managed a utomatically by de vice development to ols in cluding de buggers and p rogrammers. F or normal d evice operation, this bit should be maintained as a '1'.

REGISTER 4-1: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1/1		
		FCMEN	IESO	CLKOUTEN	BORE	EN<1:0>	CPD		
		bit 13		- I			bit 8		
			D/D 4						
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
CP	MCLRE	PWRTE	WD	TE<1:0>		FOSC<2:0>			
bit 7							bit C		
Legend:									
R = Readabl	le bit	P = Programn	nable bit	U = Unimpleme	ented bit, rea	ad as '1'			
'0' = Bit is cle		'1' = Bit is set		-n = Value whe					
	curcu	i Dit lo oct							
bit 13		-Safe Clock Mo Clock Monitor		bit					
		Clock Monitor							
bit 12	IESO: Interna	al External Swit	chover bit						
		External Switcho							
		External Switch		disabled					
bit 11		: Clock Out Ena		T US modes					
		If FOSC configuration bits are set to LP, XT, HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin.							
	All other FOSC modes:								
	1 = CLKOUT function is disabled. I/O function on the CLKOUT pin.								
	0 = CLK	OUT function is	enabled on t	he CLKOUT pin					
bit 10-9		>: Brown-out R	eset Enable b	pits					
	11 = BOR enabled10 = BOR enabled during operation and disabled in Sleep								
				ne BORCON regis	tor				
	00 = BOR dis			ic bortoon regis					
bit 8		ode Protection	bit (2)						
	1 = Data memory code protection is disabled								
		mory code prote							
bit 7	CP: Code Pr								
		1 = Program memory code protection is disabled							
		memory code p							
bit 6		LR/VPP Pin Fur	nction Select	bit					
	<u>If LVP bit = 1</u> : This bit is imported								
	If LVP bit = 0	This bit is ignored. If LVP bit = 0°							
		1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled.							
	0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of								
	WPU	E3 bit.							
bit 5		wer-up Timer Er	nable bit						
	1 = PWRT d								
	0 = PWRT e								
bit / '2		: Watchdog Tim	er Enable bit						
bit 4-3		ablod							
DIL 4-3	11 = WDT en 10 = WDT en		ning and disa						
DIL 4-3	10 = WDT er	abled while run			egister				

REGISTER 4-1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 **FOSC<2:0>:** Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins

REGISTER 4-2: CONFIGURATION WORD 2

		R/P-1	R/P-1	U-1	R/P-1	R/P-1	R/P-1/1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	—	BORV	STVREN	PLLEN
		bit 13					bit 8
U-1	U-1	U-1	R/P-1/1	U-1	U-1	R/P-1	R/P-1
	—	—	Reserved	_	—	WRT	<1:0>
bit 7	·				•		bit 0
Legend:							
R = Readab	ole bit	P = Programn	nable bit	U = Unimplem	nented bit, read	d as '1'	
'0' = Bit is c	leared	'1' = Bit is set		-n = Value wh	en blank or aft	er Bulk Erase	
L							
bit 13	LVP: Low-V	oltage Programr	ning Enable bit	t			
	1 = Low-volt	age programmir	g enabled				
	0 = High-vol	tage on MCLR n	nust be used fo	or programming	9		
bit 12		Circuit Debugge					
		t Debugger disa t Debugger enal					
bit 11		nted: Read as ':			are dedicated		51
bit 10	-			hit			
		vn-out Reset Vol out Reset voltage					
		ut Reset voltage					
bit 9	STVREN: S	tack Overflow/U	nderflow Reset	t Enable bit			
		verflow or Under					
		verflow or Under	flow will not ca	iuse a Reset			
bit 8	PLLEN: PLL						
	1 = 4xPLL e 0 = 4xPLL d						
bit 7-5			ı '				
bit 4	-	Unimplemented: Read as '1' Reserved: This location should be programmed to a '1'.					
bit 3-2		nted: Read as ':					
bit 1-0	-	Flash Memory S		action bite			
DIL I-O		memory (PIC16)					
		/rite protection o					
		00h to 1FFh writ					
		00h to 3FFh writ			•	•	
		00h to 7FFh writ memory (PIC16(•		ay be modified		III OI
		/rite protection o		•			
	10 = 00	00h to 1FFh writ	e-protected, 20				
		00h to 7FFh writ					
	00 = 00	00h to FFFh writ	e-protected, no	b addresses ma	ay be modified	by EECON cor	IUOI
Note 1:	The LVP bit can	not be programr	ned to '0' wher	n Programming	mode is enter	ed via LVP.	
		n Configuration \					
i	ncluding debugg	gers and program	mers. For norr	nal device opera	ation, this bit sh	ould be	

maintained as a '1'.

4.2 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal ac cess to the program memory and da ta EEPROM are u naffected by a ny c ode pro tection setting.

4.2.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Word 1. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit s ettings. W riting th e program memory is de pendent up on t he w rite protection se tting. See Section 4.3 " Write Protection" for more information.

4.2.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the \overline{CPD} bit. When $\overline{CPD} = 0$, external reads and writes of data EEPROM are in hibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

4.3 Write Protection

Write protection allows the device to be protected from unintended se If-writes. Ap plications, su ch as bo otloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Word 2 define the size of the program memory block that is protected.

4.4 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and w ritable d uring n ormal execution. Se e Section 11.5 "User ID, Device ID and Configuration Word A ccess" for more information on a ccessing these me mory I ocations. For m ore in formation on checksum ca lculation, se e the "*PIC16F/LF1826/27 Memory Programming Specification*" (DS41390).

4.5 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 11.5 "User ID, Device ID and Configuration Word A ccess**" for more information on a ccessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

bit 0

REGISTER 4-3: DEVICEID: DEVICE ID REGISTER⁽¹⁾

RRRRRR	R
	DEV<8:3>
bit 13	bit 8
	REV<4:0>
- -	

bit 7

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '1'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	P = Programmable bit

bit 13-5 **DEV<8:0>:** Device ID bits

Device	DEVICEID<13:0> Values				
Device	DEV<8:0>	REV<4:0>			
PIC16F1826	10 0111 100	x xxxx			
PIC16F1827	10 0111 101	x xxxx			
PIC16LF1826	10 1000 100	x xxxx			
PIC16LF1827	10 1000 101	x xxxx			

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision.

Note 1: This location cannot be written.

NOTES:

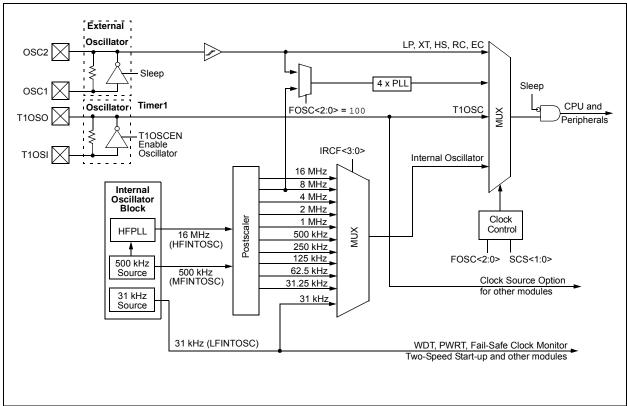
5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The o scillator mo dule has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz c rystal resonators, c eramic res onators a nd Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators and PLL c ircuits, w ith a c hoice of sp eeds selectable vi a sof tware. Addi tional clo ck features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability of crystal oscillator sources


The oscillator module can be configured in one of eight clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium-Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 32 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS H igh Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. RC External Resistor-Capacitor (RC).
- 8. INTOSC Internal oscillator (31 kHz to 32 MHz).

Clock Source modes are selected by the FOSC<2:0> bits i n th e C onfiguration Wor d 1. T he F OSC b its determine the type of oscillator that will be used when the device is first powered.

The EC clock mode relies on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different f requency ra nge. The RC c lock mode requires an external resistor and capacitor to set the oscillator frequency.

The IN TOSC int ernal os cillator bl ock prod uces low, medium, and high frequency clock sources, designated LFINTOSC, MFI NTOSC, and HFINT OSC. (se e Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these three clock sources.

FIGURE 5-1: SIMPLIFIED PIC[®] MCU CLOCK SOURCE BLOCK DIAGRAM

5.2 Clock Source Types

Clock sources can be classified as external or internal.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (L P, XT and HS m odes) and R esistor-Capacitor (RC) mode circuits.

Internal clock sources are contained internally within the oscillator module. The internal oscillator block has two internal oscillators and a ded icated Phase-Lock Loop (HFPLL) that are used to generate three internal system cl ock s ources: t he 1 6 MHz Hi gh-Frequency Internal Oscillator (HFINTOSC), 500 kHz (MFINTOSC) and th e 3 1 kHz Lo w-Frequency In ternal O scillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See Section 5.3 "Clock Switching" for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

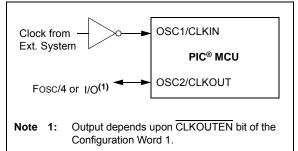
An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Word 1 to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Timer1 Oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See Section 5.3 "Clock Switching" for more information.

5.2.1.1 EC Mode

The Ext ernal C lock (EC) mode al lows an ext ernally generated logic level sig nal t o be the system clock source. When operating in this mode, an external clock source is con nected to the OSC 1 inp ut. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.


EC mode has 3 pow er modes to select from through Configuration Word 1:

- High-power, 4-32 MHz (FOSC = 111)
- Medium power, 0.5-4 MHz (FOSC = 110)
- Low-power, 0-0.5 MHz (FOSC = 101)

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or w ake-up from Sleep. B ecause the $PIC^{\textcircled{B}}$ M CU de sign is fully static, sto pping the external clock in put will have the effect of halting the device while leaving all data intact. Upon res tarting the external cl ock, th e dev ice w ill resume operation as if no time had elapsed.

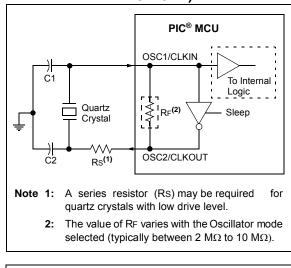
FIGURE 5-2:

EXTERNAL CLOCK (EC) MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the us e of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a I ow, me dium or high gain setting of the internal inverter-amplifier to support v arious resonator ty pes and speed.

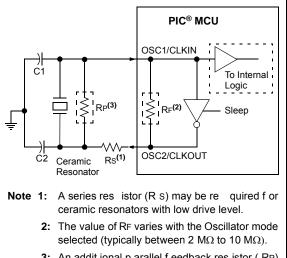
LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).


XT Oscillator mo de se lects the in termediate gain setting of the internal inv erter-amplifier. XT mode current consumption is the medium of the three modes. This mo de is be st s uited to d rive re sonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 a nd Figure 5-4 show ty pical c ircuits f or quartz crystal and ceramic resonators, respectively.

FIGURE 5-3:


QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz c rystal c haracteristics v ary according t o type, p ackage an d manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the V DD and tem perature rang e that is expected for the application.
 - 3: For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillabr Work" (DS00949)

FIGURE 5-4: CERAMIC RESONATOR OPERATION

(XT OR HS MODE)

3: An addit ional p arallel f eedback res istor (RP) may be required for proper cer amic reson ator operation.

5.2.1.3 Oscillator Start-up Timer (OST)

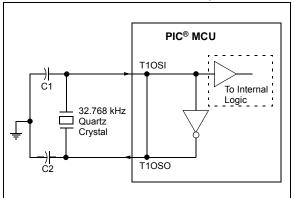
If the oscillator module is configured for LP, XT or HS modes, the O scillator S tart-up T imer (OST) co unts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a s table system c lock to the os cillator module.

In order to minimize latency between external oscillator start-up a nd c ode ex ecution, the T wo-Speed C lock Start-up m ode can be selected (se e Section 5.4 "Two-Speed Clock Start-up Mode").

5.2.1.4 4X PLL

The oscillator module contains a 4X PLL that can be used with both external and internal clock sources to provide a system clock source. The input frequency for the 4X PLL must fall within specifications. See the PLL Clock T iming Specifications in Section 30.0 "Electrical Specifications".

The 4X PL L may be enabled for us e by one of two methods:

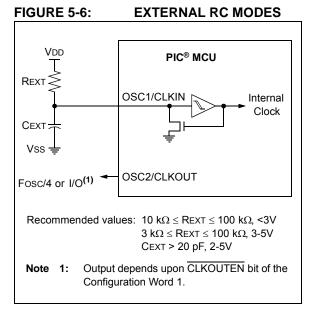

- 1. Program the PLLEN bit in Configuration Word 2 to a '1'.
- Write the SPLLEN bit in the OSCCON register to a '1'. If the PLLEN bit in Configuration Word 2 is programmed to a '1', then the value of SPLLEN is ignored.

5.2.1.5 TIMER1 Oscillator

The Timer1 Os cillator is a separate crystal os cillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.7 68 kHz crystal c onnected bet ween the T1 OSO a nd T1OSI device pins.

The Timer1 Oscillator can be used as an alternate system clock source and can be selected during run-time using c lock sw itching. R efer to **Section 5.3 "Cloc k Switching"** for more information.

FIGURE 5-5: QUARTZ CRYSTAL OPERATION (TIMER1 OSCILLATOR)


- Note 1: Quartz c rystal c haracteristics v ary according t o type, p ackage an d manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the V DD and tem perature rang e that is expected for the application.
 - 3: For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillabr Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

5.2.1.6 External RC Mode

The external Resistor-Capacitor (RC) modes support the u se of an external R C c ircuit. Th is al lows th e designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required.

The RC circuit connects to OSC1. OSC2/CLKOUT is available f or general purpose I/O or C LKOUT. The function of the OSC2/CLKOUT pin is determined by the state of the CLKOUTEN bit in Configuration Word 1.

Figure 5-6 shows the external RC mode connections.

The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values and the operating temperature. Other factors affecting the oscillator frequency are:

- threshold voltage variation
- component tolerances
- · packaging variations in capacitance

The user also needs to take into account variation due to tolerance of external RC components used.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Word 1 to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 5.3 "Clock Switching"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OS C2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the state of the \overline{C} LKOUTEN bit in C onfiguration Word 1.

The i nternal os cillator b lock has tw o i ndependent oscillators and a dedicated Phase-Lock Loop, HFPLL that c an produce on e of t hree internal s ystem clock sources.

- The HFINTOSC (H igh-Frequency Int ernal Oscillator) is factory calibrated and operates at 16 MHz. The H FINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Ph ase-Lock Loo p, H FPLL. Th e frequency of th e H FINTOSC c an b e user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be u ser-adjusted vi a software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Lo w-Frequency Int ernal Oscillator) is uncalibrated an d operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of th e H FINTOSC can be all tered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and mu ltiplexer (see Figure 5-1). One of nine frequencies derived from the H FINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON regis ter. See Section 5.2.2.7 "Int ernal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- •F OSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

The H igh Fre quency I nternal Os cillator R eady b it (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running and can be utilized.

The High Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High Frequency Internal Oscillator Status Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The M edium-Frequency Internal O scillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered v ia s oftware u sing th e O SCTUNE reg ister (Register 5-3).

The output of the MFINTOSC connects to a postscaler and mu ltiplexer (see Figure 5-1). One of nine frequencies deriv ed from the M FINTOSC c an be selected via software using the IRCF<3:0> bits of the OSCCON regis ter. See Section 5.2.2.7 "Int ernal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- •F OSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Me dium Frequency In ternal O scillator R eady bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running and can be utilized.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 k Hz i nternal os cillator is f actory ca librated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HF INTOSC and MF INTOSC clock s ources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh w ill provide an adj ustment to the ma ximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this s hift. There is no indication that the shift has occurred.

OSCTUNE does not af fect the L FINTOSC frequency. Operation of features that depend on the LF INTOSC clock source frequency, such as the Power-up Timer (PWRT), W atchdog Timer (WD T), Fai I-Safe Clock Monitor (FSCM) and peripherals, are*not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). Select 3 1 kHz, vi a software, using the IR CF<3:0> bits of the OSC CON register. See Section 5.2.2.7 "Interna I Oscillator Clock S witch Timing" for m ore information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The L FINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system cl ock so urce (SCS b its of t he OS CCON register = 1x), or when an y of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- •F OSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The L ow F requency Int ernal O scillator R eady b it (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running and can be utilized.

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Fre quency Sel ect bit s IRCF<3:0> of the OSCCON register.

The o utput of the 16 MHz H FINTOSC and 3 1 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The Internal Os cillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

• 32 MHz (requires 4X PLL)

- •1 6 MHz
- •8 MHz
- •4 MHz
- •2 MHz
- •1 MHz
- 500 kHz (Default after Reset)
- •2 50 kHz
- •1 25 kHz
- •6 2.5 kHz
- •3 1.25 kHz
- 31 kHz (LFINTOSC)

Note:	Following any Reset, the IRCF<3:0> bits
	of the OSCCON register are set to '0111'
	and the freq uency selection is set to
	500 kHz. The u ser can modify the IRCF
	bits to select a different frequency.

The IR CF<3:0> bit s of the O SCCON register all ow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power c onsumption can be o btained when c hanging oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4X PLL as sociated with the External O scillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Word 1 must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Word 1 (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Word 2 must be programmed to a '1'.
- Note: When using the PLL EN bit of the Configuration Word 2, the 4x PLL cannot be disabled by software and the 8 M Hz HFINTOSC o ption will n ol onger be available.

The 4x PLL is n ot a vailable for us e with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the fre quency selection takes p lace. Th e O SCSTAT reg ister w ill reflect the current a ctive s tatus of the HF INTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bit s o f the OSCCON register ar e modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The c urrent c lock is he ld low a nd the cl ock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 5-1.

Start-up de lay sp ecifications are located in the oscillator t ables of **Section 30.0** " **Electrical Specifications**".

FIGURE 5-7:	INTERNAL OSCILLATOR SWITCH TIMING
	LEINTOSC (ESCM and WDT disabled)
MFINTOSC/	LFINTOSC (FSCM and WDT disabled)
HFINTOSC/ MFINTOSC	Start-up Time 2-cycle Sync Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $\chi = 0$
System Clock	
HFINTOSC/→ MFINTOSC	LFINTOSC (Either FSCM or WDT enabled)
HFINTOSC/ MFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
LFINTOSC \rightarrow	HFINTOSC/MFINTOSC LFINTOSC turns off unless WDT or FSCM is enabled
LFINTOSC	
HFINTOSC/	Start-up Time 2-cycle Sync Running
MFINTOSC	
IRCF <3:0>	= 0 X ≠ 0
System Clock	

5.3 Clock Switching

The s ystem clock source c an b e sw itched b etween external and internal clock sources via software using the System Clock Select (SCS) bits of the OSCCON register. The following clock sources can be selected using the SCS bits:

- Default system oscillator determined by FOSC bits in Configuration Word 1
- Timer1 32 kHz crystal oscillator
- Internal Oscillator Block (INTOSC)

5.3.1 SYSTEM CLOCK SELECT (SCS) BITS

The System Clock Select (SCS) bits of the OSCCON register selects the system clock source that is used for the CPU and peripherals.

- When the SCS bits of the OSCCON register = 00, the system clock source is determined by value of the FOSC<2:0> bits in the Configuration Word 1.
- When the SCS bits of the OSCCON register = 01, the system clock source is the Timer1 oscillator.
- When the SCS bits of the OSCCON register = 1x, the system clock source is chosen by the internal oscillator frequency selected by the IRCF<3:0> bits of the OSCCON register. After a Reset, the SCS bits of the OSCCON register are always cleared.

Note:	Any automatic clock sw itch, w hich may
	occur f rom Two-Speed S tart-up or
	Fail-Safe Clock Monitor, does not update
	the SCS bits of the OSCCON register. The
	user can m onitor the OSTS bit of the
	OSCSTAT register to determine the current
	system clock source.

When sw itching b etween c lock s ources, a de lay i s required to allow the new clock to stabilize. These oscillator delays are shown in Table 5-1.

5.3.2 OSCILLATOR START-UP TIME-OUT STATUS (OSTS) BIT

The Oscillator Start-up Time-out Status (OSTS) bit of the OSCSTAT register indicates whether the system clock is run ning from the external clock source, a s defined by the FO SC<2:0> bits in the Configuration Word 1, or from the internal clock source. In particular, OSTS ind icates that the Os cillator Start-up T imer (OST) has timed out for LP, XT or HS modes. The OST does not reflect the status of the Timer1 Oscillator.

5.3.3 TIMER1 OSCILLATOR

The Timer1 Os cillator is a separate crystal osc illator associated with the Timer1 peripheral. It is optimized for tim ekeeping operations with a 32. 768 kHz crystal connected be tween the T1OSO and T1OSI device pins.

The Timer1 oscillator is enabled using the T1OSCEN control bit in the T1 CON register. See Section 21.0 "Timer1 M odule w ith G ate Control" for m ore information about the Timer1 peripheral.

5.3.4 TIMER1 OSCILLATOR READY (T1OSCR) BIT

The use r must ensure that the T imer1 O scillator is ready to be used before it is selected as a system clock source. The Timer1 Oscillator Ready (T1OSCR) bit of the OSCSTAT register indicates whether the Timer1 oscillator is ready to be used. After the T1OSCR bit is set, the SCS bits can be configured to select the Timer1 oscillator.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides a dditional power savings by minimizing the latency bet ween external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will rem ove the external os cillator s tart-up time from the time spent awake and can red uce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or H S modes. The Oscillator S tart-up T imer (OST) is en abled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the o scillator module is configured for an y mode other than LP, XT or HS mode, then T wo-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

If the OST co unt reac hes 1 024 be fore the device enters Sleep mode, the OSTS bit of the OSCSTAT register is s et a nd program execution switches t o the external os cillator. H owever, the sy stem may n ever operate from the external o scillator if the time sp ent awake is very short.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the OSTS bit of the OSCSTAT register to remain clear.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed S tart-up mode i s configured by th e following settings:

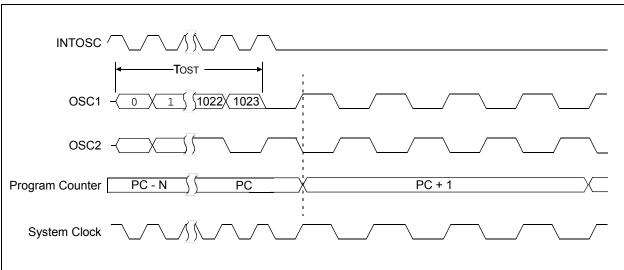
- IESO (of the Configuration Word 1) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Word 1 configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- Wake-up from Sleep.

TABLE 5-1: C	SCILLATOR SWITCHING DELAYS
--------------	----------------------------

Switch From	Switch To	Frequency	Oscillator Delay
Sleep/POR	LFINTOSC ⁽¹⁾ MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31 kHz 31.25 kHz-500 kHz 31.25k Hz-16 MHz	Oscillator Warm-up Delay (TwaRM)
Sleep/POR	EC, RC ⁽¹⁾	DC – 32 MHz	2 cycles
LFINTOSC	EC, RC ⁽¹⁾	DC – 32 MHz	1 cycle of each
Sleep/POR	Timer1 Oscillator LP, XT, HS ⁽¹⁾	32 kHz-20 MHz	1024 Clock Cycles (OST)
Any clock source	MFINTOSC ⁽¹⁾ HFINTOSC ⁽¹⁾	31.25 kHz-500 kHz 31.25k Hz-16M Hz	2 μs (approx.)
Any clock source	LFINTOSC ⁽¹⁾	31 kHz	1 cycle of each
Any clock source	Timer1 Oscillator	32 kHz	1024 Clock Cycles (OST)
PLL inactive	PLL active	16-32 MHz	2 ms (approx.)


Note 1: PLL inactive.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions be gin ex ecution b y t he i nternal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed ou t, wait f or f alling ed ge of t he internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System cl ock is sw itched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will c onfirm if the m icrocontroller is running from the external cl ock so urce, as defined by the FOSC<2:0> bits in the Configuration W ord 1, or the internal oscillator.

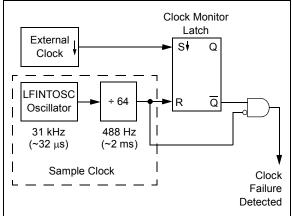


FIGURE 5-8: TWO-SPEED START-UP

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator fail. The FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. The FSCM is enabled by setting the F CMEN bit in the Configuration Word 1. The FSCM is applicable to all external O scillator modes (LP, X T, H S, EC, Timer1 Oscillator and RC).

FIGURE 5-9: FSCM BLOCK DIAGRAM

5.5.1 FAIL-SAFE DETECTION

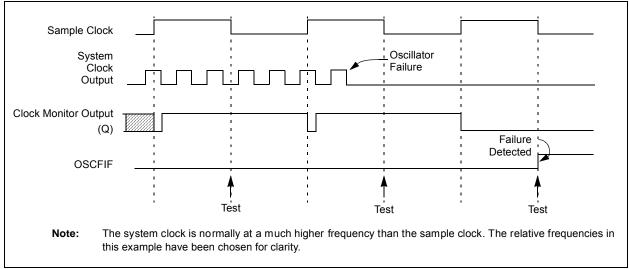
The FS CM m odule dete cts a fai led os cillator b y comparing the external oscillator to the FSCM sample clock. The sample clock is generated by dividing the LFINTOSC b y 64. S ee Figure 5-9. Ins ide the fai I detector block is a latc h. The external clock sets the latch on each falling edge of the external clock. The sample clock clears the latch on each rising edge of the sample clock. A fail ure is de tected when an entire half-cycle of the sample clock el apses before t he external clock goes low.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the device clock to an internal clock source and sets the bit flag OSFIF of the PIR2 register. Setting this flag will generate an interrupt if the OSFIE bit of the PIE2 register is also set. The device firmware can then take steps to mi tigate the problems that may arise from a failed cl ock. The system c lock will continue t o be sourced from the internal clock source until the device firmware s uccessfully re starts the external os cillator and switches back to external operation.

The in ternal clock so urce chosen by the FSC M is determined by the IRCF<3:0> bits of the OSC CON register. This allows the internal os cillator to be configured before a failure occurs.

5.5.3 FAIL-SAFE CONDITION CLEARING


The Fa il-Safe c ondition is c leared a fter a R eset, executing a SLEEP instruction or changing the SCS bits of the OSCCON register. When the SCS bit ts are changed, the OST is restarted. W hile the OST is running, the device continues to operate from the INTOSC selected in OSCCON. When the OST times out, the Fail-Safe condition is cleared and the device will be operating from the external clock source. The Fail-Safe condition must be cleared before the OSFIF flag can be cleared.

5.5.4 RESET OR WAKE-UP FROM SLEEP

The FSCM is designed to detect an os cillator failure after the Oscillator Start-up Timer (OST) has expired. The OST is used after waking up from Sleep and after any type of Reset. The OST is not used with the EC or RC Clock modes so that the FSCM will be active as soon as the Reset or wake-up has completed. When the FSCM is enabled, the Two-Speed Start-up is also enabled. Therefore, the device will always be executing code while the OST is operating.

Note: Due to the wide range of oscillator start-up times, the Fai I-Safe circuit is not active during oscillator start-up (i.e., after exiting Reset or Sleep). Af ter an appropriate amount of time, the user should check the Status bit s in t he OSCSTAT register to verify the oscillator start-up and that the system clock switchover has successfully completed.

FIGURE 5-10: FSCM TIMING DIAGRAM

5.6 Oscillator Control Registers

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0
SPLLEN	IRCF<3:0>				_	SCS	<1:0>
bit 7	·						bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value at	t POR and B	OR/Value at all	other Resets
1' = Bit is set		'0' = Bit is clea	ared				
bit 7	<u>If PLLEN in</u> SPLLEN bit	Configuration W	<u>ord 1 = 1:</u> LL is always e	enabled (subject	to oscillator r	equirements)	
bit 6-3	IRCF<3:0>: Internal Oscillator Frequency 000x =31 kHz LF 0010 =31.25 kHz MF 0011 =31.25 kHz MF 0100 =62.5 kHz MF 0110 =250 kHz MF 0111 =500 kHz MF (default upon Reset) 1000 =125 kHz HF ⁽¹⁾ 1001 =250 kHz HF ⁽¹⁾ 1010 =500 kHz HF ⁽¹⁾ 1011 =1 MHz HF 1100 =2 MHz HF 1101 =4 MHz HF 1110 =8 MHz or 32 MHz HF(see Section 1111 =16 MHz HF				OSC")		
bit 2	-	nted: Read as '					
bit 1-0	SCS<1:0>: 3	System Clock S					

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q		
T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable		-	mented bit, read				
u = Bit is uncl	•	x = Bit is unk			at POR and BO	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	q = Conditior	nal				
bit 7 T1OSCR: Timer1 Oscillator Ready bit <u>If T1OSCEN = 1</u> : 1 = Timer1 oscillator is ready 0 = Timer1 oscillator is not ready <u>If T1OSCEN = 0</u> :									
bit 6	1 = 11mer1 PLLR 4x PLI 1 = 4x PLL 0 = 4x PLL	is ready	always ready						
bit 5	1 = Running	lator Start-up T g from the clocl g from an interr	c defined by the	e FOSC<2:0>	bits of the Confi 00)	guration Word	1		
bit 4	1 = HFINTO	gh Frequency Ir DSC is ready DSC is not ready		or Ready bit					
bit 3	HFIOFL: Hig 1 = HFINTC	h Frequency Ir SC is at least 2 SC is not 2% a	iternal Oscillato	or Locked bit					
bit 2	MFIOFR: Medium Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready								
bit 1	1 = LFINTO	w Frequency In SC is ready SC is not ready		r Ready bit					
bit 0	 HFIOFS: High Frequency Internal Oscillator Stable bit 1 = HFINTOSC is at least 0.5% accurate 0 = HFINTOSC is not 0.5% accurate 								

REGISTER 5-2: OSCSTAT: OSCILLATOR STATUS REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	_			TUN	<5:0>				
bit 7	·						bit 0		
Legend:									
R = Readabl	e bit	W = Writable	N = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Reset					
'1' = Bit is se	t	'0' = Bit is clea	ared						
bit 7-6	Unimpleme	nted: Read as '	0'						
bit 5-0	TUN<5:0>:	Frequency Tunir	ng bits						
	011111 = N	/laximum freque	ncy						
	011110 =								
	•								
	•								
	000001 =								
	000000 = C	Scillator module	e is running at	t the factory-calil	orated frequen	cy.			
111111 =									
	•								
	•								
	100000 = N	/linimum frequer	ncv						
	100000 - 1	in in an incque	109						

REGISTER 5-3: OSCTUNE: OSCILLATOR TUNING REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN	IRCF3	IRCF2	IRCF1	IRCF0		SCS1	SCS0	65
OSCSTAT	T10SCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS	66
OSCTUNE	—	—	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	67
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE		_	CCP2IE ⁽¹⁾	<mark>94</mark>
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	_	—	CCP2IF ⁽¹⁾	<mark>97</mark>
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	187

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by clock sources.

Note 1: PIC16(L)F1827 only.

TABLE 5-3: SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_		FCMEN	IESO	CLKOUTEN	BOREN1	BOREN0	CPD	
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE1	WDTE0	FOSC2	FOSC1	FOSC0	50

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by clock sources.

NOTES:

6.0 REFERENCE CLOCK MODULE

The reference dock module provides the ability to send a divided clock to the clock output pin of the device (CLKR) and provide a secondary internal clock source to the modulator module. This module is available in all oscillator configurations and allows the user to select a greater ran ge of clock submultiples to drive external devices in the application. The reference clock module includes the following features:

- System clock is the source
- Available in all oscillator configurations
- · Programmable clock divider
- Output enable to a port pin
- · Selectable duty cycle
- Slew rate control

The re ference c lock mo dule is controlled by the CLKRCON register (Register 6-1) and is enabled when setting the CLKREN bit. To output the divided clock signal to the CLKR port pin, the CLKROE bit must be set. The CLKRDIV<2:0> bits enable the selection of 8 different clock divider op tions. The C LKRDC<1:0> bits can be u sed to modify the du ty c ycle of t he o utput clock⁽¹⁾. The CLKRSLR bit controls slew rate limiting.

Note 1: If the base clock rate is selected without a div ider, the out put clock w ill a lways have a duty cy cle eq ual to that of the source clock, unless a 0% duty cycle is selected. If the clock divider is set to base clock/2, t hen 25 % and 7 5% duty c ycle accuracy w ill be d ependent u pon the source clock.

For information on using the reference clock output with the modulator module, see Section 23.0 "D ata Signal Modulator".

6.1 Slew Rate

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the CLKRSLR bit in the CLKRCON register.

6.2 Effects of a Reset

Upon any device Reset, the reference clock module is disabled. The us er's firm ware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

6.3 Conflicts with the CLKR Pin

There are two cases when the reference clock output signal cannot be output to the CLKR pin, if:

- LP, XT or HS Oscillator mode is selected.
- · CLKOUT function is enabled.

Even if either of these cases are true, the module can still be enabled and the reference clock signal may be used in conjunction with the modulator module.

6.3.1 OSCILLATOR MODES

If LP, XT or HS os cillator m odes a re selected, th e OSC2/CLKR pin must be used as an oscillator input pin and th e C LKR o utput ca nnot be ena bled. Se e **Section 5.2 "Clock Source Types**" for more information on different oscillator modes.

6.3.2 CLKOUT FUNCTION

The CLKOUT function has a higher priority than the reference clock module. <u>The refore</u>, if the C LKOUT function is enabled by the CLKOUTEN bit in Configuration Word 1, F OSC/4 will always be output on the port pin. Reference **Section 4.0** "**Device C onfiguration**" for more information.

6.4 Operation During Sleep

As the reference clock module relies on the system clock as its source, and the system clock is disabled in Sleep, the module does not function in Sleep, even if an external clock source or the Timer1 clock source is configured as the system clock. The module outputs will remain in their current state until the device exits Sleep.

6.5 Reference Clock Control Register

REGISTER 6-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
CLKREN	CLKROE	CLKRSLR	CLKRE)C<1:0>	(CLKRDIV<2:0>	,				
bit 7							bit 0				
Legend:											
R = Readabl	e hit	W = Writable	hit	U = Unimpler	mented bit, read	1 as '0'					
u = Bit is und		x = Bit is unkr		•	at POR and BC		other Resets				
'1' = Bit is se	•	'0' = Bit is clea									
bit 7	CLKREN : R	eference Clock	Module Enabl	e bit							
	1 = Referen	1 = Reference Clock module is enabled									
	0 = Referen	0 = Reference Clock module is disabled									
bit 6	CLKROE: Reference Clock Output Enable bit ⁽³⁾										
	1 = Reference Clock output is enabled on CLKR pin										
	0 = Reference Clock output disabled on CLKR pin										
bit 5	CLKRSLR: Reference Clock Slew Rate Control limiting enable bit										
	1 = Slew Rate limiting is enabled										
	0 = Slew Rate limiting is disabled										
bit 4-3	CLKRDC<1:0>: Reference Clock Duty Cycle bits										
		11 = Clock outputs duty cycle of 75%									
	 10 = Clock outputs duty cycle of 50% 01 = Clock outputs duty cycle of 25% 										
	00 = Clock outputs duty cycle of 0%										
bit 2-0	CLKRDIV<2:0> Reference Clock Divider bits										
	111 = Base clock value divided by 128										
		110 = Base clock value divided by 64									
	101 = Base clock value divided by 32										
	100 = Base clock value divided by 16 011 = Base clock value divided by 8										
	011 = Base clock value divided by 8 010 = Base clock value divided by 4										
		clock value divi									
	$000 = \text{Base clock value}^{(2)}$										
Note 1 In	this mode the	25% and 75% o	duty cycle acc	uracy will be de	enendent on the	source clock	duty cycle				
		20/0 unu / 0/0 (any cycle acc				addy byold.				

- 2: In this mode, the duty cycle will always be equal to the source clock duty cycle, unless a duty cycle of 0% is selected.
- **3:** To route CLKR to pin, CLKOUTEN of Configuration Word 1 = 1 is required. CLKOUTEN of Configuration Word 1 = 0 will result in Fosc/4. See Section 6.3 "Conflicts with the CLKR Pin" for details.

TABLE 6-1: SUMMARY OF REGISTERS ASSOCIATED WITH REFERENCE CLOCK SOURCES

	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
CLKRCON CLKREN CLKROE CLKRSLR CLKRDC1 CLKRDC0 CLKRDIV								CLKRDIV1	CLKRDIV0	70	
	Legend: — = unimplemented locations read as '0' Shaded cells are not used by reference clock sources										

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

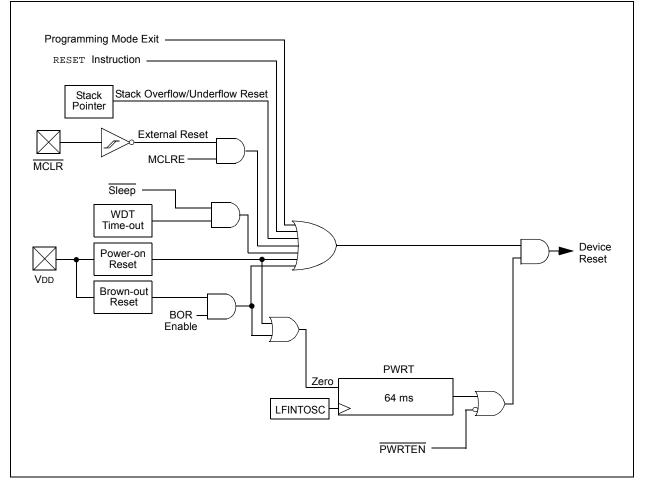
TABLE 6-2: SUMMARY OF CONFIGURATION WORD WITH REFERENCE CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN1	BOREN0	CPD	
	7:0	CP	MCLRE	PWRTE	WDTE1	WDTE0	FOSC2	FOSC1	FOSC0	44

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by reference clock sources.

NOTES:

7.0 RESETS


There are multiple ways to reset this device:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- WDT Reset
- RESET instruction
- · Stack Overflow
- Stack Underflow
- Programming mode exit

To a llow VDD to stabilize, an optional power-up timer can be enabled to extend the Reset time after a BOR or POR event.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 7-1.

FIGURE 7-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

7.1 Power-on Reset (POR)

The POR circuit holds the device in Reset until VDD has reached an ac ceptable level for m inimum operation. Slow rising V DD, fast operatin g speeds or analog performance may require g reater than minimum VDD. The PWRT, BOR or MC LR features c an be us ed to extend t he start-up period until all dev ice operation conditions have been met.

7.1.1 POWER-UP TIMER (PWRT)

The Power-up Timer provides a nominal 64 ms timeout on POR or Brown-out Reset.

The device is held in Reset as long as PWRT is active. The PWRT delay allows additional time for the VDD to rise to an a cceptable le vel. The Pow er-up T imer is enabled by clearing the PWRTE bit in C onfiguration Word 1.

The Power-up Timer starts after the release of the POR and BOR.

For add itional in formation, refer to App lication N ote AN607, *"Power-up Trouble Shooting"* (DS00607).

7.2 Brown-Out Reset (BOR)

The BOR circuit holds the device in Reset when Vdd reaches a s electable m inimum I evel. Betw een th e POR and BOR, complete voltage range coverage for execution protection can be implemented.

The Brow n-out R eset m odule has fou r operating modes controlled by the BOREN<1:0> bits in Configuration Word 1. The four operating modes are:

- · BOR is always on
- · BOR is off when in Sleep
- · BOR is controlled by software
- · BOR is always off

Refer to Table 7-1 for more information.

The B rown-out Reset v oltage I evel is selectable b y configuring the BORV bit in Configuration Word 2.

A VDD noise rejection filter prevents the BOR from triggering on small events. If VDD falls below VBOR for a duration greater than parameter TBORDC, the device will reset. See Figure 7-2 for more information.

BOREN<1:0>	SBOREN	Device Mode	BOR Mode	Device Operation upon release of POR	Device Operation upon wake- up from Sleep		
11	Х	Х	Active	Waits for BOR ready ⁽¹⁾			
1.0		Awake	Active	Weite for DOD ready			
10	Х	Sleep	Disabled	Waits for BOR ready			
0.1	1	X	Active	Begins in	mediately		
01	0	X	Disabled	Begins in	mediately		
00	Х	х	Disabled	Begins in	mediately		

TABLE 7-1:BOR OPERATING MODES

Note 1: Even though this case specifically waits for the BOR, the BOR is already operating, so there is no delay in start-up.

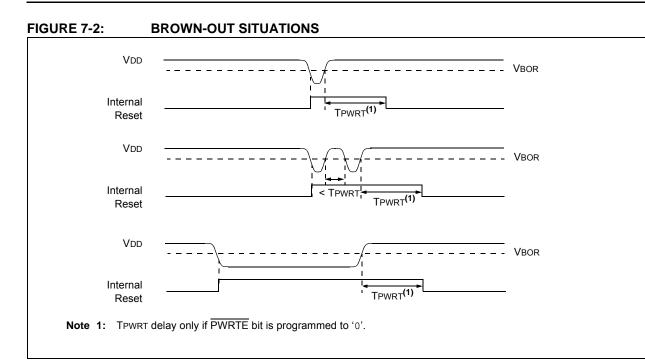
7.2.1 BOR IS ALWAYS ON

When the BOREN bits of Configuration Word 1 are set to '11', the BOR is always on. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.

BOR protection is active during Sleep. The BOR does not delay wake-up from Sleep.

7.2.2 BOR IS OFF IN SLEEP

When the BOREN bits of Configuration Word 1 are set to '10', the BOR is on, except in Sleep. The device start-up will be delayed until the BOR is ready and VDD is higher than the BOR threshold.


BOR protection is not active during Sleep. The device wake-up will be delayed until the BOR is ready.

7.2.3 BOR CONTROLLED BY SOFTWARE

When the BOREN bits of Configuration Word 1 are set to '01', the BOR is controlled by the SBOREN bit of the BORCON register. The device start-up is not delayed by the BOR ready condition or the VDD level.

BOR protection begins as soon as the BOR circuit is ready. The status of the BOR circuit is reflected in the BORRDY bit of the BORCON register.

BOR protection is unchanged by Sleep.

REGISTER 7-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	_	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	<pre>SBOREN: Software Brown-out Reset Enable bit If BOREN <1:0> in Configuration Word 1 ≠ 01: SBOREN is read/write, but has no effect on the BOR. If BOREN <1:0> in Configuration Word 1 = 01: 1 = BOR Enabled 0 = BOR Disabled</pre>
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive

7.3 MCLR

The $\overline{\text{MCLR}}$ is an optional exter nal input that can reset the device. The $\overline{\text{MCLR}}$ function is controlled by the MCLRE bit of Configuration Word 1 and the L VP bit of Configuration Word 2 (Table 7-2).

TABLE 7-2: MCLR CONFIGURATION

MCLRE	LVP	MCLR
0	0	Disabled
1	0	Enabled
x	1	Enabled

7.3.1 MCLR ENABLED

When $\overline{\text{MCLR}}$ is enabled and the pin is held low, the device is held in Reset. The $\overline{\text{MCLR}}$ pin is connected to VDD through an internal weak pull-up.

The device has a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

Note: A Reset does not drive the MCLR pin low.

7.3.2 MCLR DISABLED

When MCLR is disabled, the pin functions as a general purpose input and the internal weak pull-up is under software control. S ee Section 12.2 "POR TA Registers" for more information.

7.4 Watchdog Timer (WDT) Reset

The Watchdog Timer generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the WDT Reset. See Section 10.0 "Watchdog Timer" for more information.

7.5 RESET Instruction

A RESET instruction will cause a device Reset. The \overline{RI} bit in the PCON register will be set to '0'. See Table 7-4 for default conditions after a RESET instruction has occurred.

7.6 Stack Overflow/Underflow Reset

The device can reset when the S tack Ov erflows or Underflows. The STKOVF or STKUNF bits of the PCON register indicate the Reset condition. These Resets are enabled by setting the STVREN bit in Configuration Word 2. See **Section 3.4.2 "Overflow/Underflow Reset**" for more information.

7.7 Programming Mode Exit

Upon ex it of Prog ramming m ode, the de vice w ill behave as if a POR had just occurred.

7.8 Power-Up Timer

The Power-up Timer optionally delays device execution after a BOR or POR event. This timer is typically used to allow VDD to stabilize before allowing the device to start running.

The Power-up Timer is controlled by the $\overrightarrow{\text{PWRTE}}$ bit of Configuration Word 1.

7.9 Start-up Sequence

Upon the release of a POR or BOR, the following must occur before the device will begin executing:

- 1. Power-up Timer runs to completion (if enabled).
- 2. Oscillator st art-up tim er runs to completion (if required for oscillator source).
- 3. MCLR must be released (if enabled).

The total time-out will vary based on oscillator configuration and Pow er-up T imer c onfiguration. Se e Section 5.0 "Oscillator M odule (With Fail-Safe Clock Monitor)" for more information.

The Power-up Timer and oscillator start-up timer run independently of MCLR Reset. If MCLR is kept low long enough, the Power-up Timer and oscillator start-up timer will expire. Upon bringing MCLR high, the device will begin execution immediately (see Figure 7-3). This is useful for testing purposes or to synchronize more than one device operating in parallel.

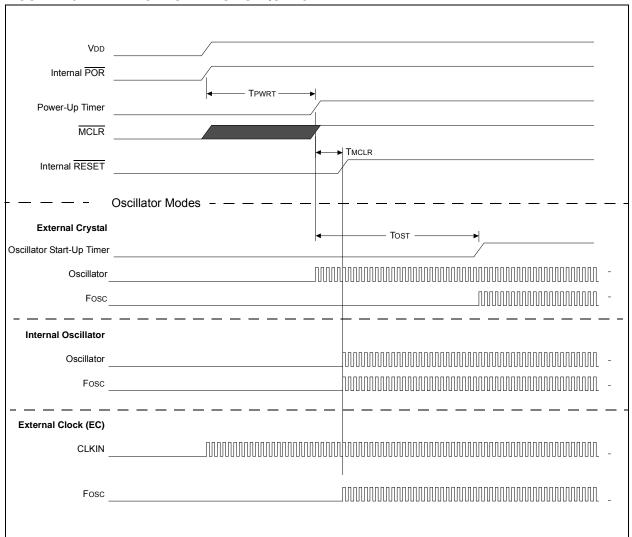


FIGURE 7-3: RESET START-UP SEQUENCE

7.10 Determining the Cause of a Reset

Upon an y R eset, m ultiple bit s in the ST ATUS and PCON register are updated to indicate the cause of the Reset. Table 7-3 and Table 7-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RMCLR	RI	POR	BOR	то	PD	Condition	
0	0	1	1	0	x	1	1	Power-on Reset	
0	0	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$	
0	0	1	1	0	x	x	0	Illegal, PD is set on POR	
0	0	1	1	u	0	1	1	Brown-out Reset	
u	u	u	u	u	u	0	u	WDT Reset	
u	u	u	u	u	u	0	0	WDT Wake-up from Sleep	
u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep	
u	u	0	u	u	u	u	u	MCLR Reset during normal operation	
u	u	0	u	u	u	1	0	MCLR Reset during Sleep	
u	u	u	0	u	u	u	u	RESET Instruction Executed	
1	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)	
u	1	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)	

TABLE 7-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 7-4: RESET CONDITION FOR SPECIAL REGISTERS⁽²⁾

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

2: If a Status bit is not implemented, that bit will be read as '0'.

7.11 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- MCLR Reset (RMCLR)
- Stack Underflow Reset (STKUNF)
- Stack Overflow Reset (STKOVF)

The PCON register bits are shown in Register 7-2.

REGISTER 7-2: PCON: POWER CONTROL REGISTER

R/W/HS-0/q	R/W/HS-0/q	U-0	U-0	R/W/HC-1/q	R/W/HC-1/q	R/W/HC-q/u	R/W/HC-q/u
STKOVF	STKUNF	—	-	RMCLR	RI	POR	BOR
bit 7							bit 0

Legend:			
HC = Bit is cl	eared by hardw	vare	HS = Bit is set by hardware
R = Readable	e bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unc	hanged	x = Bit is unknown	-m/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set		'0' = Bit is cleared	q = Value depends on condition
bit 7	1 = A Stack	tack Overflow Flag bit Overflow occurred	
bit 6	STKUNF: Si 1 = A Stack	Overflow has not occurred tack Underflow Flag bit Underflow occurred Underflow has not occurre	
bit 5-4		nted: Read as '0'	
bit 3	RMCLR: MC	CLR Reset Flag bit	
		Reset has not occurred or Reset has occurred (set to	set to '1' by firmware) '0' in hardware when a MCLR Reset occurs)
bit 2	RI: RESET I	nstruction Flag bit	
			xecuted or set to '1' by firmware ted (set to '0' in hardware upon executing a RESET instruction)
bit 1	1 = No Powe	r-on Reset Status bit er-on Reset occurred ⁻ -on Reset occurred (must t	be set in software after a Power-on Reset occurs)
bit 0	BOR: Browr 1 = No Brow	n-out Reset Status bit n-out Reset occurred	be set in software after a Power-on Reset or Brown-out Reset

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
BORCON	SBOREN							BORRDY	75			
PCON	STKOVF	STKUNF	_	_	RMCLR	RI	POR	BOR	79			
STATUS	_	_		TO	PD	Z	DC	С	21			
WDTCON		_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	99			

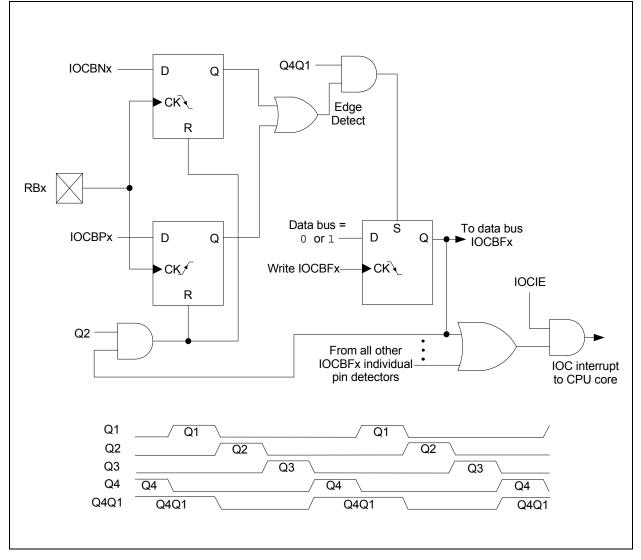
TABLE 7-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Legend: — = unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

8.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. F irmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to w ake the MC U from Sleep mode.


This chapter contains the following in formation for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- •I NT Pin
- · Automatic Context Saving

Many per ipherals pro duce In terrupts. R efer to the corresponding chapters for details.

A bl ock di agram of the in terrupt lo gic is s hown in Figure 8-1.

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt events)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIEx registers)

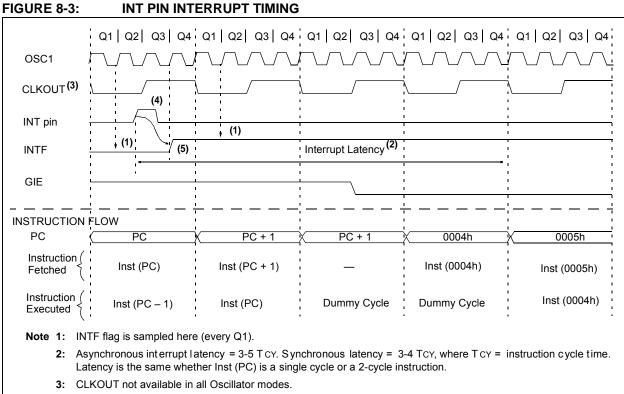
The INTCON, PI Rx registers rec ord i ndividual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before e xiting t he ISR t o avoid r epeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through i ts i nterrupt flag, b ut wil I n ot c ause th e processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.


For add itional in formation on a specific int errupt's operation, refer to its peripheral chapter.

- **Note 1:** Individual int errupt fla g bi ts are s et, regardless of the state of an y ot her enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cl eared. An y i nterrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. T he latency for synchronous interrupts is 3 or 4 instruction cycles. For asynchronous interrupts, the latency is 3 t o 5 instruction cycles, depending on when the interrupt occurs. See Figure 8-2 and Figure 8.3 for more details.

FIGURE	IGURE 8-2: INTERRUPT LATENCY											
OSC1				MM								
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4				
CLKOUT			Interru during	pt Sampled Q1								
Interrupt												
GIE												
PC	PC-1	PC	PC	+1	0004h	0005h						
Execute	1 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)						
			1									
Interrupt												
GIE												
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h						
Execute-	2 Cycle Insti	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)						
Interrunt												
Interrupt GIE												
GIE												
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h					
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)				
Interrupt												
GIE												
PC	PC-1	PC	FSR ADDR	PC+1	PC	+2	0004h	0005h				
Execute	3 Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)				

4: For minimum width of INT pulse, refer to AC specifications in Section 30.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

8.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake f rom Slee p, th e pe ripheral m ust be a ble to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP i nstruction will a lways b e executed b efore branching to the ISR. Refer to Section 9.0 "Power-Down Mode (Sleep)" for more details.

8.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. Th is in terrupt is enabled by setting the IN TE bit of th e IN TCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the IN TEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also se t, the proc essor w ill redirect program execution to the interrupt vector

8.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the Shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are auto matically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding Shadow register should be modified and the value will be restored when exiting the ISR. The Shadow registers are a vailable in Bank 31 and a re readable and writable. Depending on the user's application, other registers may also need to be saved.

8.6 Interrupt Control Registers

8.6.1 INTCON REGISTER

The IN TCON reg ister is a rea dable and w ritable register, that contains the various enable and flag bits for TM R0 reg ister o verflow, int errupt-on-change and external INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate i nterrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0/0	R-0/0						
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	GIE: Global Interrupt Enable bit
	1 = Enables all active interrupts0 = Disables all interrupts
bit 6	 PEIE: Peripheral Interrupt Enable bit 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	TMROIE: Timer0 Overflow Interrupt Enable bit 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt
bit 4	INTE: INT External Interrupt Enable bit 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt
bit 3	IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change
bit 2	TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow
bit 1	INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur
bit 0	 IOCIF: Interrupt-on-Change Interrupt Flag bit⁽¹⁾ 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state

Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-Change flags in the IOCBF register have been cleared by software.

8.6.2 PIE1 REGISTER

The PIE1 register contains the interrupt enable bits, as shown in Register 8-2.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 8-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TMR1GIE | ADIE | RCIE | TXIE | SSP1IE | CCP1IE | TMR2IE | TMR1IE |
| bit 7 | | | | | | | bit 0 |

Legend:						
R = Readable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is u	nchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is s	set	'0' = Bit is cleared				
bit 7	TMR1GIE:	Timer1 Gate Interrupt Enab	le bit			
		es the Timer1 Gate Acquisition	•			
		es the Timer1 Gate Acquisiti	•			
bit 6		Converter (ADC) Interrupt E	Enable bit			
		es the ADC interrupt				
		es the ADC interrupt				
bit 5		ART Receive Interrupt Enabl				
		the USART receive interrupt				
	0 = Disables the USART receive interrupt					
bit 4 TXIE: USART Transmit Interrupt Enable bit 1 = Enables the USART transmit interrupt 0 = Disables the USART transmit interrupt						
				bit 3 SSP1IE: Synchronous Serial Port 1 (MSSP1) Interrupt Enable bit		
1 = Enables the MSSP1 interrupt						
		es the MSSP1 interrupt				
bit 2 CCP1IE: CCP1 Interrupt Enable bit						
		es the CCP1 interrupt				
	0 = Disable	es the CCP1 interrupt				
bit 1	TMR2IE: 7	MR2 to PR2 Match Interrup	t Enable bit			
	1 = Enable	es the Timer2 to PR2 match i	interrupt			
	0 = Disable	es the Timer2 to PR2 match	interrupt			
bit 0	TMR1IE: 7	imer1 Overflow Interrupt En	able bit			
		es the Timer1 overflow interru	•			
	0 = Disable	es the Timer1 overflow interr	upt			

8.6.3 PIE2 REGISTER

The PIE2 register contains the interrupt enable bits, as shown in Register 8-3.

Note: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-3: PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE ⁽¹⁾
bit 7							bit 0

Legend:						
R = Readable bit W = Writable bit		W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	anged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7 OSFIE: Oscillator Fail Interrupt Enable bit 1 = Enables the Oscillator Fail interrupt 0 = Disables the Oscillator Fail interrupt						
bit 6	 C2IE: Comparator C2 Interrupt Enable bit 1 = Enables the Comparator C2 interrupt 0 = Disables the Comparator C2 interrupt 					
bit 5	C1IE: Comparator C1 Interrupt Enable bit 1 = Enables the Comparator C1 interrupt 0 = Disables the Comparator C1 interrupt					
bit 4 EEIE: EEPROM Write Completion Interrupt Enable bit 1 = Enables the EEPROM Write Completion interrupt 0 = Disables the EEPROM Write Completion interrupt						
bit 3	BCL1IE: MSSP1 Bus Collision Interrupt Enable bit 1 = Enables the MSSP1 Bus Collision Interrupt 0 = Disables the MSSP1 Bus Collision Interrupt					
bit 2-1	Unimplemented: Read as '0'					
bit 0	CCP2IE: CCP2 Interrupt Enable bit 1 = Enables the CCP2 interrupt 0 = Disables the CCP2 interrupt					

Note 1: PIC16(L)F1827 only.

8.6.4 PIE3 REGISTER

The PIE3 register contains the interrupt enable bits, as shown in Register 8-4.

Note:	Bit PEIE of the INTCON register must be
	set to enable any peripheral interrupt.

REGISTER 8-4:	PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3 ⁽¹⁾

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	—	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—
bit 7							bit 0

Legend:						
R = Readable	bit	W = Writable bit	U = Unimplemented bit, read as '0'			
u = Bit is unch	nanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is cleared				
bit 7-6 Unimplemented: Read as '0'						
bit 5	CCP4IE: CCP4 Interrupt Enable bit					
1 = Enables the CCP4 interrupt						
	0 = Disables	s the CCP4 interrupt				
bit 4	CCP3IE: CCP3 Interrupt Enable bit					
	1 = Enables the CCP3 interrupt					
	0 = Disables the CCP3 interrupt					
bit 3	TMR6IE: TMR6 to PR6 Match Interrupt Enable bit					
	 1 = Enables the TMR6 to PR6 Match interrupt 0 = Disables the TMR6 to PR6 Match interrupt 					
bit 2	Unimplemented: Read as '0'					
bit 1	TMR4IE: TM	R4 to PR4 Match Interrup	t Enable bit			
	 TMR4IE: TMR4 to PR4 Match Interrupt Enable bit 1 = Enables the TMR4 to PR4 Match interrupt 0 = Disables the TMR4 to PR4 Match interrupt 					

bit 0 Unimplemented: Read as '0'

Note 1: This register is only available on PIC16(L)F1827.

8.6.5 PIE4 REGISTER⁽¹⁾

The PIE4 register contains the interrupt enable bits, as shown in Register 8-5.

- **Note 1:** The PIE4 register is available only on the PIC16(L)F1827 device.
 - Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.

REGISTER 8-5: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
—	—	—	_	_	—	BCL2IE	SSP2IE
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IE: MSSP2 Bus Collision Interrupt Enable bit
	 1 = Enables the MSSP2 Bus Collision Interrupt 0 = Disables the MSSP2 Bus Collision Interrupt
bit 0	SSP2IE: Master Synchronous Serial Port 2 (MSSP2) Interrupt Enable bit
	1 = Enables the MSSP2 interrupt0 = Disables the MSSP2 interrupt

Note 1: This register is only available on PIC16(L)F1827.

8.6.6 PIR1 REGISTER

The PIR1 register contains the interrupt flag bits, as shown in Register 8-6.

Note:	Interrupt flag bits are set when an interrupt						
	condition occurs, regardless of the state of						
	its corresponding enable bit or the Global						
	Enable bit, G IE, of the IN TCON register.						
	User s oftware s hould ensure the						
	appropriate interrupt flag bits are clear prior						
	to enabling an interrupt.						

REGISTER 8-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	TMR1GIF: Timer1 Gate Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 6	ADIF: A/D Converter Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 5	RCIF: USART Receive Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 4	TXIF: USART Transmit Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 3	SSP1IF: Synchronous Serial Port 1 (MSSP1) Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 2	CCP1IF: CCP1 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 1	TMR2IF: Timer2 to PR2 Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending
bit 0	TMR1IF: Timer1 Overflow Interrupt Flag bit
	1 = Interrupt is pending
	0 = Interrupt is not pending

8.6.7 PIR2 REGISTER

The PIR2 register contains the interrupt flag bits, as shown in Register 8-7.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, G IE, of the IN TCON register. User s oftware s hould ensure the appropriate interrupt flag bits are dear prior to enabling an interrupt.

REGISTER 8-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	OSFIF: Oscilla	ator Fail Interru	upt Flag bit				
	1 = Interrupt is pending						
	0 = Interrupt i	s not pending					
bit 6	t 6 C2IF: Comparator C2 Interrupt Flag bit						
1 = Interrupt is pending							
	0 = Interrupt is not pending						
bit 5 C1IF: Comparator C1 Interrupt Flag bit			ipt Flag bit				
	1 = Interrupt is	s pending					

0 = Interrupt is not pending

- bit 4 **EEIF:** EEPROM Write Completion Interrupt Flag bit
 - 1 = Interrupt is pending0 = Interrupt is not pending
- bit 3 BCL1IF: MSSP1 Bus Collision Interrupt Flag bit
 - 1 = Interrupt is pending
 0 = Interrupt is not pending
- bit 2-1 Unimplemented: Read as '0'
- bit 0 CCP2IF: CCP2 Interrupt Flag bit⁽¹⁾
 - 1 = Interrupt is pending
 - 0 = Interrupt is not pending

Note 1: PIC16(L)F1827 only.

8.6.8 PIR3 REGISTER

The PIR3 register contains the interrupt flag bits, as shown in Register 8-8.

Note:	Interrupt flag bits are set when an interrupt						
	condition occurs, regardless of the state of						
	its corresponding enable bit or the Global						
	Enable bit, G IE, of the IN TCON register.						
	User s oftware s hould ensure the						
	appropriate interrupt flag bits are clear prior						
	to enabling an interrupt.						

REGISTER 8-8: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3⁽¹⁾

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0
—	—	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	Unimplemented: Read as '0'
bit 5	CCP4IF: CCP4 Interrupt Flag bit
	 1 = Interrupt is pending 0 = Interrupt is not pending
bit 4	CCP3IF: CCP3 Interrupt Flag bit
	 1 = Interrupt is pending 0 = Interrupt is not pending
bit 3	TMR6IF: TMR6 to PR6 Match Interrupt Flag bit
	 1 = Interrupt is pending 0 = Interrupt is not pending
bit 2	Unimplemented: Read as '0'
bit 1	TMR4IF: TMR4 to PR4 Match Interrupt Flag bit
	 1 = Interrupt is pending 0 = Interrupt is not pending
bit 0	Unimplemented: Read as '0'

Note 1: This register is only available on PIC16(L)F1827.

8.6.9 PIR4 REGISTER⁽¹⁾

The PIR4 register contains the interrupt flag bits, as shown in Register 8-9.

- **Note 1:** The PIR4 register is available only on the PIC16(L)F1827 device.
 - 2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Glo bal Enable bit, GI E, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W/HS-0/0	R/W/HS-0/0
—	—	—	-	—	—	BCL2IF	SSP2IF
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS = Bit is set by hardware

bit 7-2	Unimplemented: Read as '0'
bit 1	BCL2IF: MSSP2 Bus Collision Interrupt Flag bit
	1 = A Bus Collision was detected (must be cleared in software)0 = No Bus collision was detected
bit 0	 SSP2IF: Master Synchronous Serial Port 2 (MSSP2) Interrupt Flag bit 1 = The Transmission/Reception/Bus Condition is complete (must be cleared in software) 0 = Waiting to Transmit/Receive/Bus Condition in progress

Note 1: This register is only available on PIC16(L)F1827.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE PE	IE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIE3 ⁽¹⁾	_	-	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	89
PIE4 ⁽¹⁾	_	-	_	_	_	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	-	CCP2IF ⁽¹⁾	92
PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	93
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	94

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

Note 1: PIC16(L)F1827 only.

9.0 POWER-DOWN MODE (SLEEP)

The Power-Down m ode is entered by executing a SLEEP instruction.

Upon entering Sle ep mode, the following conditions exist:

- 1. WDT will be cl eared but keeps run ning, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it m ay continue operation in Sleep.
- 6. Timer1 os cillator is unaffected and peripherals that operate from it may continue operation in Sleep.
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- 9. I/O p orts ma intain the s tatus th ey had before SLEEP was executed (driving high, low or highimpedance).
- 10. Resets ot her t han WD T a re n ot aff ected by Sleep mode.

Refer to in dividual ch apters for m ore det ails o n peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using Timer1 oscillator

I/O p ins that are hig h-impedance in puts s hould b e pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of in ternal circuitry that might be sourcing current in clude modules such as the DAC and FVR modules. See Section 17.0 "Digital-to-Analog Converter (DAC) Module" and Section 14.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

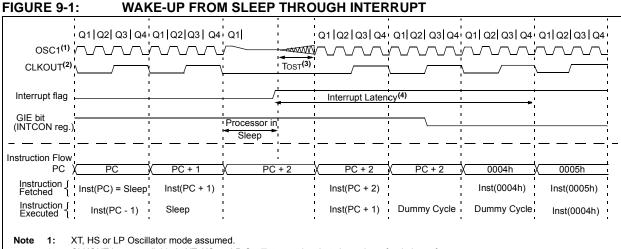
The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during SI eep (see ind ividual p eripheral for mo re information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up ev ent occ urred, re fer to **Section 7.10 "Determining the Cause of a Reset"**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt e nable b it m ust be enabled. W ake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.


9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- · If the interrupt occurs before the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- · If the interrupt occurs during or after the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it m ay be possible for fl ag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

CLKOUT is not available in XT, HS, or LP Oscillator modes, but shown here for timing reference. 2:

3: TOST = 1024 TOSC (drawing not to scale). This delay applies only to XT, HS or LP Oscillator modes.

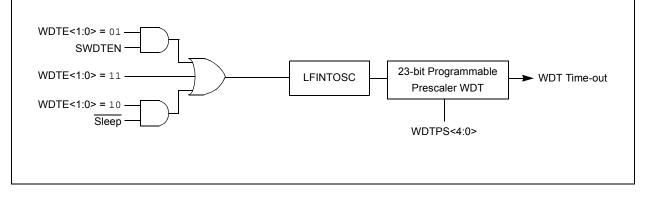
4: GIE = 1 assumed. In this case after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	91
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	134
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	134
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	134
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	92
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	_	CCP2IE ⁽¹⁾	93
PIE4 ⁽¹⁾	_	_	_	_	_	_	BCL2IE	SSP2IE	95
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	96
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF		_	CCP2IF ⁽¹⁾	97
PIR4 ⁽¹⁾			_	_	_	_	BCL2IF	SSP2IF	99
STATUS	_	_	_	TO	PD	Z	DC	С	23
WDTCON	_		WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	105

Legend: - = unimplemented, read as '0'. Shaded cells are not used in Power-down mode.

Note 1: PIC16(L)F1827 only.


10.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a R eset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is ty pically u sed to recover the system from unexpected events.

The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM

10.1 Independent Clock Source

The W DT d erives its t ime base f rom t he 31 kHz LFINTOSC internal o scillator. T ime i ntervals in this chapter are based on a nominal interval of 1 ms. See **Section 30.0 "El ectrical S pecifications**" for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by t he WDTE<1:0> b its i n Configuration Word 1. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is un changed b y Sle ep. See Table 10-1 for more details.

SWDTEN	Device Mode	WDT Mode
Х	XA	ctive
	Awake	Active
X	Sleep	Disabled
1	~	Active
0	~	Disabled
Х	Х	Disabled
	x x 1 0	SWDTENModeXXAXAwakeXSleep1X0X

TABLE 10-2: WDT CLEARING CONDITIONS

10.3 Time-Out Period

The W DTPS b its of t he W DTCON r egister set t he time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is 2 seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- •A ny Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail event
- WDT is disabled
- Oscillator Start-up TImer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the d evice ex its Sle ep, the W DT is cl eared again. T he W DT re mains c lear un til the O ST, if enabled, c ompletes. Se e Section 5.0 "O scillator Module (W ith F ail-Safe Clo ck M onitor)" for m ore information on the OST.

When a WDT time-out occurs while the device is in Sleep, no R eset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. See **Register 3-1** for more information.

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

10.6 Watchdog Control Register

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0					
_	—			WDTPS<4:0>			SWDTEN					
bit 7							bit (
Legend:												
R = Readat	ole bit	W = Writable	bit	U = Unimpleme	ented bit, read	1 as '0'						
u = Bit is un		x = Bit is unkr	nown	-m/n = Value a			other Resets					
'1' = Bit is s	•	'0' = Bit is cle	ared									
bit 7-6	Unimplem	ented: Read as '	o'									
bit 5-1	-	0>: Watchdog Ti		elect hits(1)								
DIL J-1		Prescale Rate										
		:32 (Interval 1 m	s nominal)									
		:64 (Interval 2 m	,									
		:128 (Interval 4 r	,									
			256 (Interval 8 ms nominal)									
			512 (Interval 16 ms nominal)									
		00101 = 1:1024 (Interval 32 ms nominal) 00110 = 1:2048 (Interval 64 ms nominal)										
		:4096 (Interval 1		,								
		:8192 (Interval 2		,								
		:16384 (Interval										
		:32768 (Interval										
		:65536 (Interval										
	01100 = 1	:131072 (2 ¹⁷) (Ir :262144 (2 ¹⁸) (Ir	iterval 4s nor	ninal) ninal)								
	01101 = 1 01110 = 1	:524288 (2 ¹⁹) (Ir	iterval 16s no	ominal)								
	01111 = 1	:1048576 (2 ²⁰) (Interval 32s r	nominal)								
	10000 = 1	:2097152 (2 ²¹) (:4194304 (2 ²²) (Interval 64s r	nominal)								
	10001 = 1	:4194304 (2 ²²) (Interval 128s	nominal)								
	10010 = 1	:8388608 (2 ²³) (Interval 256s	nominal)								
	10011 = F	Reserved. Result	s in minimum	interval (1:32)								
	•											
	•											
	11111 = F	Reserved. Result	s in minimum	interval (1:32)								
bit 0	SWDTEN: Software Enable/Disable for Watchdog Timer bit											
		<u>If WDTE<1:0> = 00</u> :										
	This bit is ig											
	If WDTE<1											
	1 = WDT is 0 = WDT is											
	0 = WDT 18 <u>If WDTE<1</u> :											
	This bit is ig											

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF<3:0>				SCS	<1:0>	69
STATUS	—	—	—	TO	PD	Z	DC	С	21
WDTCON	—	_			WDTPS<4:0>	>		SWDTEN	99

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8	_	_	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD	
CONFIGT	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC<2:0>		44

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The Data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file sp ace. Ins tead, they are ind irectly addressed th rough the S pecial Function R egisters (SFRs). T here are s ix SFR s used t o a ccess t hese memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the da ta m emory block, EED ATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EED-ATH:EEDATL register p air forms a 2 -byte w ord that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit ad dress of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase vol tages are gen erated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the s etting of the Fla sh Pro gram Memory Self Write Ena ble bit s WR T<1:0> of the e Configuration Word 2, the device may or may not be able to w rite certain blocks of the program memory. However, reads from the program memory are always allowed.

When the de vice is co de-protected, the device programmer can n o longer a ccess data o r pro gram memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

11.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

11.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE mem ory accesses.

Control bit E EPGD determines if the access will be a program or da ta me mory acce ss. Wh en cl ear, an y subsequent o perations will o perate on the E EPROM memory. Wh en set, an y subsequent op erations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bi ts R D a nd WR in itiate read an d w rite, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. O n po wer-up, the WR EN bit is c lear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following R eset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is us ed exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

11.2 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently c hanging inf ormation (e.g., pro gram va riables or other data that are updated often). When variables in one section change frequently, while variables in an other s ection do not ch ange, it is possible to exceed the total nu mber of w rite c ycles to th e EEPROM without exceeding the total number of write cycles to a single byte. Refer to **Section 30.0 "Electrical Specifications"**. If this is the case, then a refresh of the array must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) s hould b e st ored in F lash pro gram memory.

11.2.1 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADRL register, clear the EEPGD and CFGS control bits of the EECON1 register, and then set control bit RD. The data is available at the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 11-1: DATA EEPROM READ

BANKSEL	EEADRL		i
MOVLW	DATA_EE	_ADDR	i
MOVWF	EEADRL		;Data Memory
			;Address to read
BCF	EECON1,	CFGS	;Deselect Config space
BCF	EECON1,	EEPGI	;Point to DATA memory
BSF	EECON1,	RD	;EE Read
MOVF	EEDATL,	W	;W = EEDATL

Note: Data EEPROM can be read regardless of the setting of the CPD bit.

11.2.2 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set the WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable w rite. This m echanism p revents a ccidental writes to da ta EEPROM due to erra nt (u nexpected) code execution (i.e., lost programs). The user should keep the WR EN bit cl ear at all times, ex cept w hen updating EEPROM. The W REN bit is n ot cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

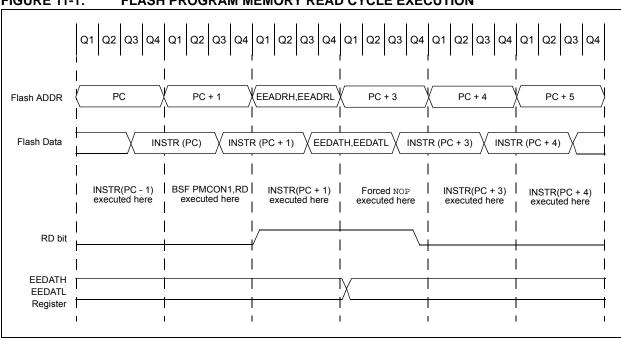
At the completion of the write cycle, the WR bit is cleared in ha rdware a nd the EE Write Complete Interrupt F lag bit (EEIF) is set. The u ser c an e ither enable this in terrupt or po II th is bit. EEIF m ust be cleared by software.

11.2.3 PROTECTION AGAINST SPURIOUS WRITE

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also, the Power-up Timer (64 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during:

- Brown-out
- · Power Glitch
- Software Malfunction


11.2.4 DATA EEPROM OPERATION DURING CODE-PROTECT

Data memory can be code-protected by programming the CPD bit in the Configuration Word 1 (Register 4-1) to '0'.

When the d ata m emory is code-protected, only the CPU is ab le to rea d and write dat a to the dat a EEPROM. It is recommended to code-protect the program me mory when c ode-protecting d ata memory. This prevents anyone from replacing your program with a program that will a ccess the c ontents of t he data EEPROM.

EXAMPLE 11-2: DATA EEPROM WRITE

	BANKSEL MOVLW MOVWF MOVWF BCF BCF BSF		_DATA CFGS EEPGD	;Data Memory Value to write
Required Sequence	MOVWF MOVLW BSF BSF BCF BTFSC GOTO	EECON2 OAAh EECON2 EECON1, INTCON, EECON1, EECON1, \$-2	WR GIE WREN	;Disable writes

FIGURE 11-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

11.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash Program memory is arranged in rows. A row consists of a f ixed n umber of 14- bit p rogram me mory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Word 2.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be re ad
	and saved in RAM prior to the erase.

The number of data write latches may not be equivalent to the n umber of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write la tches m ay v ary by d evice. See Table 11-1 for details.

TABLE 11-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/ Boundary	Number of Write Latches/ Boundary
PIC16(L)F1826/27	32 words,	32 words,
	EEADRL<4:0>	EEADRL<4:0>
	= 00000	= 00000

11.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the L east and Most S ignificant ad dress bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPG D c ontrol bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read t he d ata. Th is causes t he second in struction immediately following the "BSF EECON1, RD" instruction to be ignored. Thedata is available in thevery next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory r ead a re r equired t o b e NOPs. This prevents the user from executing a two-cycle ins truction on the ne xt instruction after the RD bit is set.
 - 2: Flash pro gram m emory can be re ad regardless of the setting of the CP bit.

EXAMPLE 11-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
  MOVLW PROG_ADDR_LO ;
MOVWF EEADRL ; Select Bank for EEPROM registers
MOVWF EEADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWL EEADRH
            EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
           EECON1,CFGS
   BSF
             INTCON,GIE ; Disable interrupts
   BCF
   BSF
             EECON1,RD
                                ; Initiate read
   NOP
                                ; Ignored (Figure 11-1)
                               ; Ignored (Figure 11-1)
   NOP
             INTCON, GIE
                               ; Restore interrupts
   BSF
   MOVF
           EEDATL,W
                               ; Get LSB of word
   MOVWF
           PROG_DATA_LO ; Store in user location
                               ; Get MSB of word
   MOVE
             EEDATH,W
             PROG_DATA_HI ; Store in user location
   MOVWF
```

11.3.2 ERASING FLASH PROGRAM MEMORY

While executing code, program memory can only be erased by rows. To erase a row:

- 1. Load the EEADRH:EEADRL register pair with the address of new row to be erased.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD, FREE, and WREN bits of the EECON1 register.
- 4. Write 55h, then A Ah, t o E ECON2 (Flash programming unlock sequence).
- 5. Set control bit WR of the EECON1 register to begin the erase operation.
- 6. Poll the F REE bit in the EE CON1 r egister to determine when the row erase has completed.

See Example 11-4.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the erase operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms erase time. This is not Sleep mode as the clocks and peripherals will continue to run. After the erase cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

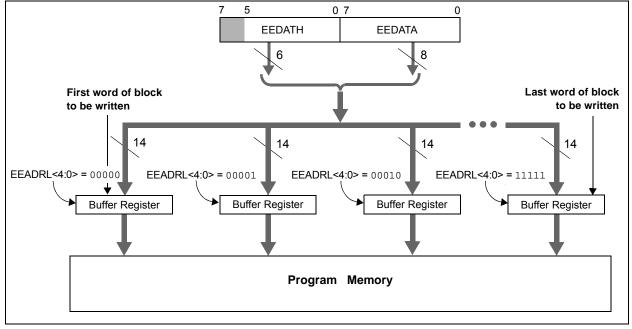
11.3.3 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the starting address of the word(s) to be programmed.
- 2. Load the write latches with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or prev iously un written. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is e qual to th e nu mber of w rite lat ches. See Figure 11-2 (block writes to program memory with 32 write latches) for mo re details. The write latches are aligned to the address boundary defined by EEADRL as shown in Table 11-1. Write operations do not cross these b oundaries. At the c ompletion of a pro gram memory write operation, the write latches are reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a block of program memory. These steps are divided into two parts. First, all write latches are loaded with data except for the last program memory location. Then, the last write latch is loaded and the programming sequence is initiated. A special unlock sequence is required to load a write latch with data or ini tiate a Fl ash programming ope ration. This unlock sequence should not be interrupted.


- 1. Set the EEPGD and WREN bits of the EECON1 register.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the LWLO bit of the EECON1 register. When the LWLO bit of the EECON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the EEA DRH:EEADRL register p air with the address of the location to be written.
- 5. Load the EED ATH:EEDATL register pair with the program memory data to be written.
- 6. Write 55h, then AAh, to EECON2, then set the WR b it of the EEC ON1 reg ister (FI ash programming unlock sequence). The write latch is now loaded.
- 7. Increment the EEADRH:EEADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 un til all but the last write latch has been loaded.
- Clear the LWLO bit of t he EEC ON1 r egister. When the LWLO bit of the EECON1 register is '0', the write s equence will initiate the write to Flash program memory.
- 10. Load the EED ATH:EEDATL register pair with the program memory data to be written.
- 11. Write 55h, then AAh, to EECON2, then set the WR b it of the EEC ON1 reg ister (FI ash programming un lock se quence). T he en tire latch b lock is no w w ritten to Flash pro gram memory.

It is not necessary to load the entire write latch block with user program data. However, the entire write latch block will be written to program memory.

An example of the complete write sequence for eight words is shown in Example 11-5. The initial address is loaded into the EE ADRH:EEADRL register pair; the eight words of data are loaded using indirect addressing.

After the "BSF EECON1, WR" instruction, the processor requires two cycles to set up the write operation. The user must place two NOP instructions after the WR bit is set. The processor will halt internal operations for the typical 2 ms, only during the cycle in which the write takes place (i.e., the last word of the block write). This is not Sleep mode as the clocks and peripherals will continue to ru n. The processor does not st all when LWLO = 1, lo ading the write latches. After the write cycle, the processor will resume operation with the third instruction after the EECON1 write instruction.

PIC16(L)F1826/27

E)	AMF	PLE 11-4:	ERASING ON	W OF PROGRAM MEMORY -	
			outine assumes	5	
;	1. A	valid addre	ss within the	e block is loaded in ADDRH:ADDRL	
;	2. AI	DDRH and ADD	RL are located	shared data memory $0x70 - 0x7F$ (common RAM)	
		BCF	INTCON,GIE	Disable ints so required sequences will exec	cute properly
		BANKSEL	EEADRL		
		MOVF	ADDRL,W	Load lower 8 bits of erase address boundary	
		MOVWF	EEADRL		
		MOVF	ADDRH,W	Load upper 6 bits of erase address boundary	
		MOVWF	EEADRH		
		BSF	EECON1,EEPGD	Point to program memory	
		BCF	EECON1,CFGS	Not configuration space	
		BSF	EECON1, FREE	Specify an erase operation	
		BSF	EECON1,WREN	Enable writes	
		MOVLW	55h	Start of required sequence to initiate erase	5
		MOVWF	EECON2	Write 55h	
	ဗ ဗိ	MOVLW 0AAh			
	Required Sequence	MOVWF	EECON2	Write AAh	
	equ	BSF	EECON1,WR	Set WR bit to begin erase	
	a %	NOP		Any instructions here are ignored as process	or
				nalts to begin erase sequence	
		NOP		Processor will stop here and wait for erase	complete.
				after erase processor continues with 3rd ins	struction
		BCF	EECON1, WREN	Disable writes	
		BSF	INTCON,GIE	Enable interrupts	

PIC16(L)F1826/27

EXAMPLE 11-5: WRITING TO FLASH PROGRAM MEMORY

```
; This write routine assumes the following:
; 1. The 16 bytes of data are loaded, starting at the address in DATA_ADDR
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,
     stored in little endian format
; 3. A valid starting address (the least significant bits = 000) is loaded in ADDRH: ADDRL
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)
;
       BCF
                   INTCON,GIE
                                 ; Disable ints so required sequences will execute properly
       BANKSEL
                  EEADRH
                                  ; Bank 3
                   ADDRH,W
                                  ; Load initial address
       MOVF
       MOVWF
                   EEADRH ;
       MOVF
                   ADDRL,W ;
       MOVWF
                   EEADRL ;
                   LOW DATA_ADDR ; Load initial data address
       MOVLW
       MOVWF
                  FSROL ;
       MOVLW
                 HIGH DATA_ADDR ; Load initial data address
       MOVWF
                  FSROH ;
       BSF
                  EECON1,EEPGD
                                 ; Point to program memory
       BCF
                  EECON1,CFGS ; Not configuration space
       BSF
                   EECON1,WREN
                                  ; Enable writes
       BSF
                  EECON1,LWLO
                                  ; Only Load Write Latches
LOOP
                 FSR0++
       MOVIW
                                  ; Load first data byte into lower
       MOVWF
                  EEDATL ;
       MOVIW
                  FSR0++
                                  ; Load second data byte into upper
       MOVWF
                   EEDATH ;
       MOVF
                   EEADRL,W
                                  ; Check if lower bits of address are '000'
       XORLW
                   0 \times 07
                                  ; Check if we're on the last of 8 addresses
       ANDLW
                   0x07 ;
       BTFSC
                   STATUS,Z
                                  ; Exit if last of eight words,
       GOTO
                   START_WRITE ;
       MOVLW
                   55h
                                  ; Start of required write sequence:
       MOVWF
                   EECON2
                                  ; Write 55h
  Required
Sequence
       MOVLW 0AAh
       MOVWF
                   EECON2
                                  ; Write AAh
       BSF
                   EECON1,WR
                                  ; Set WR bit to begin write
       NOP
                                  ; Any instructions here are ignored as processor
                                  ; halts to begin write sequence
       NOP
                                  ; Processor will stop here and wait for write to complete.
                                  ; After write processor continues with 3rd instruction.
       INCF
                   EEADRL, F
                                  ; Still loading latches Increment address
       GOTO
                   LOOP
                                  ; Write next latches
START_WRITE
       BCF
                   EECON1,LWLO
                                  ; No more loading latches - Actually start Flash program
                                   ; memory write
       MOVLW
                   55h
                                  ; Start of required write sequence:
       MOVWF
                   EECON2
                                  ; Write 55h
  Required
Sequence
       MOVLW
                   0AAh ;
       MOVWF
                   EECON2
                                  ; Write AAh
       BSF
                   EECON1,WR
                                  ; Set WR bit to begin write
       NOP
                                  ; Any instructions here are ignored as processor
                                  ; halts to begin write sequence
       NOP
                                   ; Processor will stop here and wait for write complete.
                                  ; after write processor continues with 3rd instruction
       BCF
                   EECON1,WREN
                                  ; Disable writes
                   INTCON,GIE
                                  ; Enable interrupts
       BSF
```

11.4 Modifying Flash Program Memory

When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a R AM i mage. Pro gram memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.
- 8. Repeat steps 6 and 7 as many times as required to reprogram the erased row.

11.5 User ID, Device ID and Configuration Word Access

Instead of accessing pro gram m emory or EEPRO M data memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the EECON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-2.

When read access is initiated on an address outside the parameters listed in Table 11-2, the EEDATH:EED-ATL register pair is cleared.

Address	Function	Read Access	Write Access	
8000h-8003h	User IDs	Yes	Yes	
8006h	Device ID/Revision ID	Yes	No	
8007h-8008h	Configuration Words 1 and 2	Yes	No	

TABLE 11-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)

EXAMPLE 11-3: CONFIGURATION WORD AND DEVICE ID ACCESS

* 1 * *	This code block will read 1 word of program memory at the memory address: PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables; PROG_DATA_HI, PROG_DATA_LO								
	BANKSEL	EEADRL	; Select correct Bank						
	MOVLW	PROG_ADDR_LO	;						
	MOVWF	EEADRL	; Store LSB of address						
	CLRF	EEADRH	; Clear MSB of address						
	BSF	EECON1,CFGS	; Select Configuration Space						
	BCF	INTCON,GIE	; Disable interrupts						
	BSF	EECON1,RD	; Initiate read						
	NOP		; Executed (See Figure 11-1)						
	NOP		; Ignored (See Figure 11-1)						
	BSF	INTCON,GIE	; Restore interrupts						
	MOVF	EEDATL,W	; Get LSB of word						
	MOVWF	PROG_DATA_LO	; Store in user location						
	MOVF	EEDATH,W	; Get MSB of word						
	MOVWF	PROG_DATA_HI	; Store in user location						

11.6 Write Verify

Depending o n th e a pplication, good p rogramming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the d esired v alue to b e written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEI	L EEDATL		;
MOVF	EEDATL, V	M	;EEDATL not changed
			;from previous write
BSF	EECON1, F	RD	;YES, Read the
			;value written
XORWF	EEDATL, V	M	;
BTFSS	STATUS, 2	Z	;Is data the same
GOTO	WRITE_ERF	R	;No, handle error
:			;Yes, continue

11.7 EEPROM and Flash Control Registers

REGISTER 11-1: EEDATL: EEPROM LOW BYTE DATA REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
EEDAT<7:0>										
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	as '0'				
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			

bit 7-0 EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 11-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
—	—		EEDAT<13:8>								
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

'1' = Bit is set

bit 5-0 **EEDAT<13:8>**: Read/write value for Most Significant bits of program memory

REGISTER 11-3: EEADRL: EEPROM ADDRESS REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
EEADR<7:0>										
bit 7 bit 0										

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—				EEADR<14:8	>		
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

R/W-0/0	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W-x/q	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0				
EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD				
bit 7							bit (
Legend:											
R = Readable		W = Writable		•	nented bit, rea						
S = Bit can on	ly be set	x = Bit is unk				R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cl	eared by hardv	vare					
bit 7	EEPGD: Flas	h Program/Da	ta EEPROM M	emory Select	bit						
	1 = Accesses	-	ce Flash memo	-							
bit 6	CFGS: Flash	Program/Data	EEPROM or C	Configuration S	Select bit						
	CFGS: Flash Program/Data EEPROM or Configuration Select bit 1 = Accesses Configuration, User ID and Device ID Registers										
	0 = Accesses Flash Program or data EEPROM Memory										
bit 5		Write Latches	•								
	If CFGS = 1 (Configuration space) OR CFGS = 0 and EEPGD = 1 (program Flash):										
	 1 = The n ext WR command does not initiate a w rite; on ly the p rogram memory latches are updated. 										
			nand writes a v	alue from EE	DATH:EEDATL	into program m	emorv latche				
			e of all the data				5				
	If CFGS = 0 a	and EEPGD =	0: (Accessing o	lata EEPROM)						
	LWLO is ignored. The next WR command initiates a write to the data EEPROM.										
bit 4	FREE: Progra	am Flash Eras	e Enable bit								
		-	<u>space)</u> OR <u>CFC</u>								
	1 = Performs an erase operation on the next WR command (cleared by hardware after comple-										
		of erase). orms a write o	peration on the	next WR com	mand						
					innana.						
			0: (Accessing o								
	-			will initiate bot	h a erase cycle	e and a write cyc	cle.				
bit 3		PROM Error F	•								
			im proper prog et attempt (write		•	mpt or termina	tion (dit is se				
			operation comp								
bit 2		ram/Erase Ena		-							
	1 = Allows pr	program/erase cycles									
	0 = Inhibits p	rogramming/e	rasing of progra	am Flash and	data EEPROM						
bit 1	WR: Write Co										
			sh or data EEPI								
	•			•		operation is co	mplete.				
	The WR bit can only be set (not cleared) in software. 0 = Program/erase operation to the Flash or data EEPROM is complete and inactive.										
bit 0	RD: Read Co	•			·						
			lash or da ta E	EPROM read	d. Read takes	one cycle. RD	is c leared ir				
			an only be set			-					
			ram Flash or da								

REGISTER 11-5: EECON1: EEPROM CONTROL 1 REGISTER

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ontrol Register 2			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can onl	y be set	x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on the se writes. R efer to Section 11.2.2 "Writing to the D ata EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	115
EECON2	EEPROM	Control Reg	ister 2 (not a	a physical re	egister)				101*
EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	113
EEADRH	—	EEADRH6	EEADRH5	EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	114
EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDALT1	EEDATL0	113
EEDATH	—	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	113
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	—	CCP2IE	<mark>93</mark>
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF	97

Legend: — = unimplemented read as '0'. Shaded cells are not used by data EEPROM module.

* Page provides register information.

12.0 I/O PORTS

Depending on the device s elected and peripherals enabled, the reare two ports av ailable. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

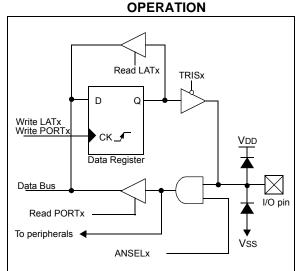
Each port has three registers for its operation. These registers are:

- TRISx registers (data direction register)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

TABLE 12-1:PORT AVAILABILITY PER
DEVICE


Device	PORTA	РОКТВ	PORTC
PIC16(L)F1826	••		
PIC16(L)F1827	•••		

The D ata La tch (LA Tx regi sters) is u seful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/ O PORT la tches, w hile a re ad of the PO RTx register reads the actual I/O pin value.

Ports with an alog functions al so h ave an AN SELx register which can disable the digital input and save power. A simplified model of a generic I/O port, without the interfaces to oth erp eripherals, is shown in Figure 12-1.

FIGURE 12-1: GENERIC I/O PORT

EXAMPLE 12-1: INITIALIZING PORTA

; This code example illustrates	
---------------------------------	--

- ; initializing the PORTA register. The
- ; other ports are initialized in the same
- ; manner.

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF ANS	SELA	;digital I/O
CLRF ANS BANKSEL		;digital I/O ;
BANKSEL	TRISA	;digital I/O ; ;Set RA<5:3> as inputs
BANKSEL	TRISA	;
BANKSEL MOVLW	TRISA B'00111000'	; ;Set RA<5:3> as inputs

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON0 and APFCON1) registers are us ed to steer specific peripheral input and output functions between different pins. The APFC ON0 and APFCON1 registers are shown in Register 12-1 and Register 12-2. For this device fa mily, the following functions can be moved between different pins.

- •R X/DT
- •S DO1
- •S S1 (Slave Select 1)
- P2B
- CCP2/P2A
- P1D
- P1C
- CCP1/P1A
- TX/CK

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL
bit 7							bit 0
Legend:							
R = Readable		W = Writable b		U = Unimpleme	,		
u = Bit is uncha	anged	x = Bit is unkn		-n/n = Value at	POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	RXDTSEL: Pi	n Selection bit					
	0 = RX/DT fu	nction is on RB	1				
	1 = RX/DT fu	nction is on RB	2				
bit 6	SDO1SEL: Pi	n Selection bit					
	0 = SDO1 function is on RB2						
		nction is on RA6	6				
bit 5	SS1SEL: Pin						
	0 = SS1 funct 1 = SS1 funct						
bit 4	P2BSEL: Pin						
511 4	0 = P2B functions						
	1 = P2B function						
bit 3	CCP2SEL: Pir	n Selection bit					
	0 = CCP2/P2	A function is on	RB6				
	1 = CCP2/P2	A function is on	RA7				
bit 2	P1DSEL: Pin						
	0 = P1D func						
	1 = P1D func						
bit 1	P1CSEL: Pin						
	0 = P1C func 1 = P1C func						
bit 0	CCP1SEL: Pi						
		A function is on	RB3				
		A function is on					

REGISTER 12-1: APFCON0: ALTERNATE PIN FUNCTION CONTROL REGISTER 0

Note 1: PIC16(L)F1827 only.

REGISTER 12-2: APFCON1: ALTERNATE PIN FUNCTION CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	
_	—	—	—	—	—	_	TXCKSEL	
bit 7							bit C	
Legend:								
R = Readab	ole bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is ur	nchanged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared		ared						
bit 7-1	Unimplem	ented: Read as '0'						
bit 0	TXCKSEL:	Pin Selection bit						
		C function is on RB	_					
	1 = TX/CK	function is on RB	5					

12.2 PORTA Registers

PORTA i s a 8-bi t w ide, b idirectional port. Th e corresponding da ta direction reg ister i s TRISA (Register 12-4). Setting a TRISA bit (= 1) will make the corresponding PO RTA p in an input (i.e., di sable th e output driver). Clearing a TRISA bit (= 0) will make the corresponding PO RTA p in an output (i.e., e nables output driver and puts the contents of the output latch on the selected pin). The exception is RA5, which is input only a nd i ts T RIS bit w ill a lways re ad a s ' 1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 12-3) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pi ns are read, thi s v alue is m odified and the n written to the PORT data latch (LATA).

The TR ISA regi ster (Register 12-4) c ontrols the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.2.1 WEAK PULL-UPS

Each of the PORTA pins has an individually configurable internal weak pull-up. Control bit WPUA<5> enables or disables the pull-up (seeRegister 12-6). The weak pull-up is automatically turned off when the port pin is configured as an <u>autput.</u> The pull-up is disabled on a Power-on Reset by the WPUEN bit of the OPTION register.

12.2.2 ANSELA REGISTER

The ANSEL A reg ister (Register 12-7) is us ed to configure the Input mo de of an I/O pin to an alog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and a llow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be an alog. This can cause une xpected b ehavior when executing read-modify-write instructions on the affected port.

Note: The AN SELA bits de fault to the Analog mode af ter R eset. To u se any pins as digital general pur pose or peripheral inputs, the corresponding AN SEL bits must be initialized to '0' by user software.

12.2.3 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-2.

When multiple o utputs are en abled, the ac tual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, comparator and CapSense inputs, are not shown in the priority lists. These inputs are active when the I/O pin is s et for Analog m ode u sing the ANSELx reg isters. D igital output functions may control the pin when it is in Analog mode with the priority shown in Table 12-2.

Pin Name	Function Priority ⁽¹⁾
RA0	SDO2 (PIC16(L)F1827 only) RA0
RA1	SS2 (PIC16(L)F1827 only) RA1
RA2	DACOUT (DAC) RA2
RA3	SRQ (SR latch) CCP3 (PIC16(L)F1827 only) C1OUT (Comparator) RA3
RA4	SRNQ (SR latch) CCP4 (PIC16(L)F1827 only) T0CKI C2OUT (Comparator) RA4
RA5	Input only pin
RA6	OSC2 (enabled by Configura- tion Word) CLKOUT CLKR SDO1 P1D P2B (PIC16(L)F1827 only) RA6
RA7	OSC1/CLKIN (enabled by Configuration Word) P1C CCP2 (PIC16(L)F1827 only) P2A (PIC16(L)F1827 only) RA7

TABLE 12-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are briefly des cribed here. For add itional information, refer to the appropriate section in this data sheet.

When multiple o utputs are en abled, the ac tual pin control goes to the peripheral with the lowest number in the following lists.

REGISTER 12-3: PORTA: PORTA REGISTER

R/W-x/x	R/W-x/x	R-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7		·					bit 0
Legend:							
R = Readable bit W = Writable bit		it	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		own	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is > VIH 0 = Port pin is < VIL

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 12-4: TRISA: PORTA TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	TRISA<7:6>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output
bit 5	TRISA5: RA5 Port Tri-State Control bit This bit is always '1' as RA5 is an input only
bit 4-0	TRISA<4:0>: PORTA Tri-State Control bit 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

REGISTER 12-5: LATA: PORTA DATA LATCH REGISTER

R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	LATA<7:6>: RA<7:6> Output Latch Value bits ⁽¹⁾
---------	---

bit 5 Unimplemented: Read as '0

bit 4-0 LATA<4:0>: RA<4:0> Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

U-0	U-0	R/W-1/1	U-0	U-0	U-0	U-0	U-0
—	—	WPUA5	—	—	—	—	—
bit 7							bit 0
bit i							

REGISTER 12-6: WPUA: WEAK PULL-UP PORTA REGISTER

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Unimplemented: Read as '0'
WPUA5: Weak Pull-up RA5 Control bit
If $\overline{\text{MCLRE}}$ in Configuration Word 1 = 0, $\overline{\text{MCLR}}$ is disabled):
1 = Weak Pull-up enabled ⁽¹⁾
0 = Weak Pull-up disabled
If MCLRE in Configuration Word 1 = 1, MCLR is enabled):
Weak Pull-up is always enabled.

bit 4-0 Unimplemented: Read as '0'

Note 1: Global WPUEN bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-7: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0

ANSA<4:0>: Analog Select between Analog or Digital Function on pins RA<4:0>, respectively

0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	-	-	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
LATA	LATA7	LATA6	—	LATA4	LATA3	LATA2	LATA1	LATA0	122
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	122
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
WPUA	_		WPUA5	_	_	_		_	123

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 12-4: SUMMARY OF CONFIGURATION WORD ASSOCIATED WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			FCMEN	IESO	CLKOUTEN	BOREN1	BOREN0	CPD	4.4
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE1	WDTE0	FOSC2	FOSC1	FOSC0	44

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

12.3 PORTB and TRISB Registers

PORTB is an 8-b it wide, bidirectional port. The corresponding d ata di rection reg ister is TRISB (Register 12-9). Setting a TRISB bit (= 1) will make the corresponding POR TB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PO RTB register (Register 12-8) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The u ser should ensure the b its in t he TRISB registerare maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

12.3.1 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an int errupt-on-change pin. C ontrol bit s IO CB<7:0> enable or di sable the interrupt function for each pin. The in terrupt-on-change fea ture is di sabled on a Power-on R eset. Refe rence **Section 13.0 "Interrupt-On-Change"** for more information.

12.3.2 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-11). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on R eset by the WPU EN b it of the OPTION register.

12.3.3 ANSELB REGISTER

The ANSELB re gister (Register 12-12) is us ed to configure the Input mo de of an I/O pin to ana log. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the A NSELB bits has no affect on digital output functions A pin with TRIS clear and ANSELB set will still operate as a digital output, but the I nput mode will be ana log. This c an c ause unexpected be havior when executing read-modify-write instructions on the affected port.

The TRISB register (Register 12-9) controls the PORTB pin output drivers, even when they are being used as analog inputs. The u ser should ensure the b its in t he TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note: The ANSELB register must be initialized to configure an analog channel as a digital input. Pin s c onfigured a s an alog i nputs will read '0'.

12.3.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-5.

When multiple o utputs are en abled, the ac tual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions, such as the EUSART RX signal, override other port functions and are included in the priority list.

TABLE 12-5: PORTB OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
	P1A
RB0	RB0
RB1	SDA1 RX/DT RB1
RB2	SDA2 (PIC16(L)F1827 only) TX/CK RX/DT SDO1 RB2
RB3	MDOUT CCP1/P1A RB3
RB4	SCL1 SCK1 RB4
RB5	SCL2 (PIC16(L)F1827 only) TX/CK SCK2 (PIC16(L)F1827 only) P1B RB5
RB6	ICSPCLK (Programming) T1OSI P1C CCP2 (PIC16(L)F1827 only) P2A (PIC16(L)F1827 only) RB6
RB7	ICSPDAT (Programming) T1OSO P1D P2B (PIC16(L)F1827 only) RB7

Note 1: Priority listed from highest to lowest.

REGISTER 12-8: PORTB: PORTB REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0		
bit 7		·				•	bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared			ared						

bit 7-0 **RB<7:0>**: PORTB I/O Pin bit 1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 12-9: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISB<7:0>: PORTB Tri-State Control bit

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 12-10: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7		•				•	bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Va					R/Value at all c	ther Resets	

REGISTER 12-11: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 **WPUB<7:0>**: Weak Pull-up Register bits

1 = Pull-up enabled

'1' = Bit is set

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

REGISTER 12-12: ANSELB: PORTB ANALOG SELECT REGISTER

'0' = Bit is cleared

R/W-1/1	U-0						
ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-1 **ANSB<7:1>**: Analog Select between Analog or Digital Function on Pins RB<7:1>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function.

1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

bit 0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	127
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	127
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	128

TABLE 12-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

PIC16(L)F1826/27

NOTES:

13.0 INTERRUPT-ON-CHANGE

The PO RTB pin s c an be c onfigured to o perate a s Interrupt-On-Change (IOC) p ins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual PORTB pin can be c onfigured to g enerate an i nterrupt. Th e interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- Rising and falling edge detection
- Individual pin interrupt flags

Figure 13-1 is a block diagram of the IOC module.

13.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

13.2 Individual Pin Configuration

For each port pin, a ris ing edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, th e associated IOCBPx bit of the IO CBP register is set. To enable a pin to detect a falling edge, the associated IOCBNx bit of the IOCBN register is set.

A pin c an be configured t o d etect r ising an d f alling edges simultaneously by setting both the IOCBPx bit and the IOCBNx bit of the IOCBP and IOCBN registers, respectively.

13.3 Interrupt Flags

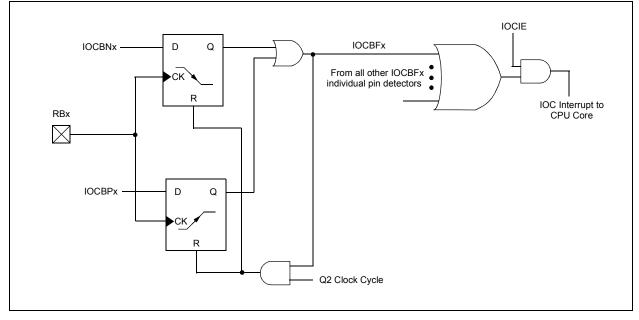
The IO CBFx bits located in the IO CBF register are status flags that correspond to the Interrupt-on-change pins of the port. If an expected edge is detected on an appropriately enabledpin, then the status flag for that pin will be set, and an interrupt will be generated if the ICCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCBFx bits.

13.4 Clearing Interrupt Flags

The in dividual st atus fl ags, (IOC BFx bit s), c an be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag w ill be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no de tected edge is lost w hile clearing flags, only AND operations masking out known changed bit s should be performed. The follow ing sequence is an example of what should be performed.

EXAMPLE 13-1:


```
MOVLW 0xff
XORWF IOCBF, W
ANDWF IOCBF, F
```

13.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOOE bit is set.

If an edge is detected while in Sleep mode, the IOCBF register will be u pdated p rior t o the first instruction executed out of Sleep.

FIGURE 13-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM

13.6 Interrupt-On-Change Registers

REGISTER 13-1: IOCBP: INTERRUPT-ON-CHANGE POSITIVE EDGE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BOI	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

IOCBP<7:0>: Interrupt-on-Change Positive Edge Enable bits

- 1 = Interrupt-on-change e nabled on the pin for a positive going e dge. As sociated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-2: IOCBN: INTERRUPT-ON-CHANGE NEGATIVE EDGE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| IOCBN7 | IOCBN6 | IOCBN5 | IOCBN4 | IOCBN3 | IOCBN2 | IOCBN1 | IOCBN0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

IOCBN<7:0>: Interrupt-on-Change Negative Edge Enable bits

- 1 = Interrupt-on-change enabled on the pin for a ne gative going edge. Associated Status bit and interrupt flag will be set upon detecting an edge.
- 0 = Interrupt-on-change disabled for the associated pin.

REGISTER 13-3: IOCBF: INTERRUPT-ON-CHANGE FLAG REGISTER

| R/W/HS-0/0 |
|------------|------------|------------|------------|------------|------------|------------|------------|
| IOCBF7 | IOCBF6 | IOCBF5 | IOCBF4 | IOCBF3 | IOCBF2 | IOCBF1 | IOCBF0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-0

IOCBF<7:0>: Interrupt-on-Change Flag bits

- 1 = An enabled change was detected on the associated pin.
 Set when IOCBPx = 1 and a rising edge was detected on RBx, or when IOCBNx = 1 and a falling edge was detected on RBx.
- 0 = No change was detected, or the user cleared the detected change.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	132
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	132
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	132
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

 TABLE 13-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by interrupt-on-change.

PIC16(L)F1826/27

NOTES:

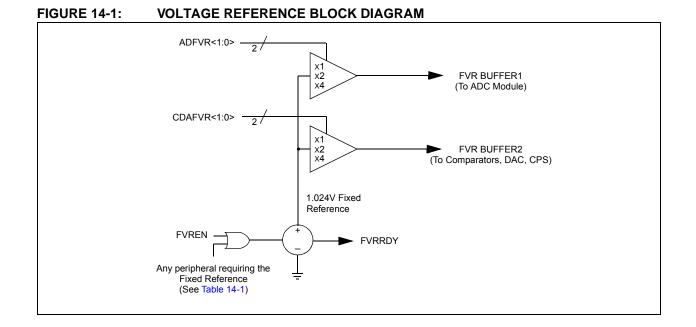
14.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage R eference, or FVR, is a stable voltage r eference, independent of V DD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to su pply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)
- Capacitive Sensing (CPS) module

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

14.1 Independent Gain Amplifiers


The output of the FVR s upplied to the AD C, Comparators, and DAC and CPS is routed through two independent programmable g ain am plifiers. Eac h amplifier can be configured to a mplify the reference voltage by 1x, 2x or 4x, to produce the three possible voltage levels.

The AD FVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference Section 16.0 "A nalog-to-Digital C onverter (ADC) Module" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Re ference Section 16.0 "Dig ital-to-Analog Converter (DAC) Module" and Section 18.0 "Comparator M odule" a nd Section 27.0 "Cap acitive Sensing Module" for additional information.

14.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See **Section 30.0 "E lectrical S pecifications**" for the e minimum delay requirement.

14.3 FVR Control Registers

REGISTER 14-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	Reserved	Reserved	CDAF	/R<1:0>	ADFVI	R<1:0>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value dep	pends on condit	ion	
bit 7	0 = Fixed Vo 1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is disabled e is enabled				
bit 6	0 = Fixed Vo	ed Voltage Rei Itage Referenc Itage Referenc	e output is no	t ready or not e	enabled		
bit 5-4	Reserved: R	ead as '0'. Mai	ntain these bit	ts clear.			
bit 3-2	00 = Compar 01 = Compar 10 = Compar	ator and DAC I ator and DAC I ator and DAC I	Fixed Voltage Fixed Voltage Fixed Voltage	Reference Per Reference Per Reference Per	ference Selection ipheral output is ipheral output is ipheral output is ipheral output is	s off. s 1x (1.024V) s 2x (2.048V) ⁽²	
bit 1-0	ADFVR<1:0> 00 = ADC Fix 01 = ADC Fix 10 = ADC Fix	: ADC Fixed V ked Voltage Re ked Voltage Re ked Voltage Re ked Voltage Re	oltage Refere ference Peripl ference Peripl ference Peripl	nce Selection b heral output is heral output is heral output is	bit off. 1x (1.024V) 2x (2.048V) (2)		
	RRDY is always '1' on devices with LDO (PIC16F1826/27). ed Voltage Reference output cannot exceed VDD.						

^{2:} Fixed Voltage Reference output cannot exceed VDD.

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE FVR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	136

Legend: Shaded cells are unused by the FVR module.

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the s ilicon di e. The circuit's ran ge of operating temperature falls be tween of -40 °C and + 85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a tem perature th reshold detector or a mo re accurate temperature indicator, depending on the level of calibration performed. A one-point ca libration all ows the ci rcuit to in dicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN 1333, " *Use an d C alibration of the Int ernal Temperature In dicator*" (DS01 333) for m ore det ails regarding the calibration process.

15.1 Circuit Operation

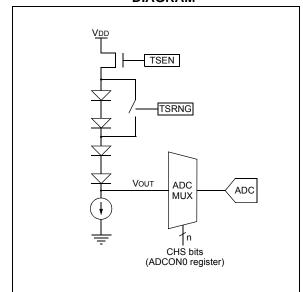
Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temper ature sense circuit is int egrated with the Fixed V oltage Reference (FV R) module. See **Section 14.0 "Fixe d V oltage R eference (FVR)**" for more information.

The circuit is enabled by sett ing the TS EN bit of t he FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by set ting t he TS RNG bit of t he FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD vs. Minimum Sensing Temperature

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the d evice o perating v oltage, V DD, mus t be hig h enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs.range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

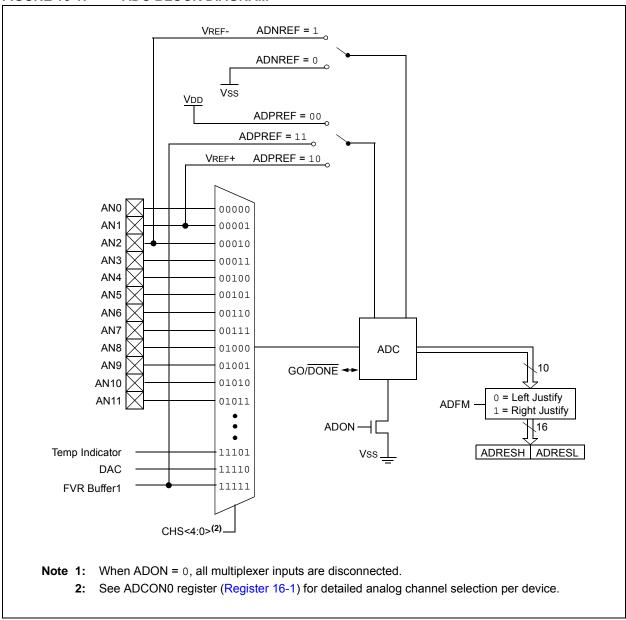
Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

15.3 Temperature Output

The output of the circuit is measured using the internal analog to digital converter. Channel 29 is reserved for the temperature circuit output. Refer to **Section 16.0 "Analog-to-Digital C onverter (ADC) Module**" for detailed information.

PIC16(L)F1826/27

NOTES:


16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Ana log-to-Digital C onverter (AD C) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold ci rcuit. The ou tput of t he sample a nd hold i s connected to the input of the converter. The converter generates a 1 0-bit b inary r esult vi a su ccessive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

FIGURE 16-1: ADC BLOCK DIAGRAM

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

16.1 ADC Configuration

When c onfiguring a nd using t he ADC th e following functions must be considered:

- · Port configuration
- · Channel selection
- · ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- Result formatting

16.1.1 PORT CONFIGURATION

The AD C can be us ed to convert both an alog and digital signals. When converting analog signals, the I/O pin s hould be configured for ana log by setting the associated TRIS and AN SEL bits. R efer to **Section 12.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input buf-
	fer to conduct excess current.

16.1.2 CHANNEL SELECTION

There are up to 15 channel selections available:

- •A N<11:0> pins
- Temperature Indicator
- DAC Output
- FVR (Fixed Voltage Reference) Output

Refer to Section 14.0 "Fixed V oltage R eference (FVR)"and Section 15.0 "T emperature In dicator Module" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a de lay is required before starting the n ext conversion. R efer t o **Section 16.2 "ADC Operation"** for more information.

16.1.3 ADC VOLTAGE REFERENCE

The AD PREF bits of the AD CON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- •V REF+ pin
- •V DD
- FVR 2.048V
- FVR 4.096V (Not available on LF devices)

The ADNREF bits of the ADCON1 register provides control of the negative voltage reference. The negative voltage reference can be:

•V REF- pin

•V ss

See Section 14.0 "Fixed Voltage Reference (FVR)" for more details on the fixed voltage reference.

16.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- •F osc/2
- •F osc/4
- •F osc/8
- •F osc/16
- •F osc/32
- •F osc/64
- •F RC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 16-2.

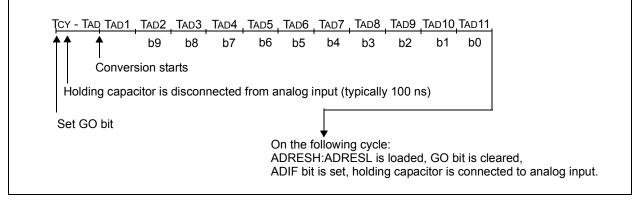
For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 30.0 "Electrical Specifications**" for more information. Table 16-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC c lock frequency, w hich may adversely affect the ADC result.

TABLE 16-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)					
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾
Fosc/32	010	1.0 μs1	.6 μs2	.0 μs4	.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾
Fosc/64	110	2.0 μs3	.2 μs4	.0 μs	8.0 μs ⁽³⁾	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾
FRC	x11	1.0-6.0 μs ^(1,4)					

Legend: Shaded cells are outside of recommended range.


Note 1: The FRC source has a typical TAD time of 1.6 μ s for VDD.

2: These values violate the minimum required TAD time.

3: For faster conversion times, the selection of another clock source is recommended.

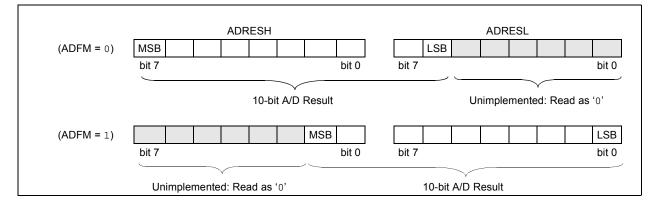
4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock FOSC. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.

16.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon com pletion of an Anal og-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 re gister. The ADC In terrupt Ena ble is th e ADIE bit in the PIE1 re gister. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The AD C ope rates du ring Slee p on ly when the FRC oscillator is selected.


This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. U pon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is a ttempting to wake-up from Sleep and resume in-line code execution, the G IE and PE IE bits of the INTCON register must be d isabled. If the G IE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

16.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 16-3 shows the two output formats.

FIGURE 16-3: 10-BIT A/D CONVERSION RESULT FORMAT

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable th e AD C module, the AD ON bit of th e ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the				
	same instruction that turns on the ADC.				
	Refer to Section 16.2.6 " A/D C onver-				
	sion Procedure".				

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the G O/DONE bit can be c leared in s oftware. Th e ADRESH and ADRESL registers will be updated with the p artially co mplete Ana log-to-Digital c onversion sample. Inc omplete bit s wil I m atch th e la st b it converted.

Note: A device Reset forces all registers to their Reset s tate. Th us, th e ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The AD C mod ule can ope rate during SI eep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP in struction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will w ake-up from SI eep when t he conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPx module allows p eriodic ADC measurements without s oftware intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1826	ECCP1
PIC16(L)F1827	CCP4

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 24.0 "Capture/Compare/PWM Modules" for more information.

16.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
 - Disable pin output driver (Refer to the TRIS register)
 - Configure pin as analog (Refer to the ANSEL register)
- 2. Configure the ADC module:
 - Select ADC conversion clock
 - Configure voltage reference
 - Select ADC input channel
 - Turn on ADC module
- 3. Configure ADC interrupt (optional):
 - Clear ADC interrupt flag
 - · Enable ADC interrupt
 - Enable peripheral interrupt
 - Enable global interrupt⁽¹⁾
- 4. Wait the required acquisition time⁽²⁾.
- 5. Start conversion by setting the GO/DONE bit.
- 6. Wait for ADC conversion to complete by one of the following:
 - Polling the GO/DONE bit
 - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result.
- 8. Clear the ADC interrupt flag (required if interrupt is enabled).

Note 1: The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: Refer to Section 16.4 "A/D Acquisition Requirements".

EXAMPLE 16-1: A/D CONVERSION

;This code block configures the ADC ; for polling, Vdd and Vss references, Frc ;clock and ANO input. ;Conversion start & polling for completion ; are included. BANKSEL ADCON1 ; B'11110000' ;Right justify, Frc MOVLW ;clock MOVWF ADCON1 ;Vdd and Vss Vref BANKSEL TRISA ; BSF TRISA,0 ;Set RA0 to input BANKSEL ANSEL ; BSF ANSEL,0 ;Set RA0 to analog BANKSEL ADCON0 B'00000001' ;Select channel ANO MOVLW MOVWE ;Turn ADC On ADCON0 SampleTime ;Acquisiton delay CALL ADCON0, ADGO ;Start conversion BSF BTFSC ADCON0, ADGO ; Is conversion done? GOTO \$-1 ;No, test again ADRESH BANKSEL ; ADRESH,W ;Read upper 2 bits MOVF MOVWF RESULTHI ;store in GPR space BANKSEL ADRESL ; ADRESL,W MOVF ;Read lower 8 bits MOVWE RESULTIO ;Store in GPR space

16.3 ADC Register Definitions

The following registers are used to control the operation of the ADC.

REGISTER 16-1: ADCON0: A/D CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	Unimplemented: Read as '0'
bit 6-2	CHS<4:0>: Analog Channel Select bits
	00000 = ANO
	00001 = AN1
	00010 = AN2
	00011 = AN3
	00100 = AN4
	00101 = AN5
	00110 = AN6
	00111 = AN7
	01000 = AN8
	01001 = AN9
	01010 = AN10
	01011 = AN11
	01100 = Reserved. No channel connected.
	•
	11101 = Temperature Indicator ⁽³⁾
	$11101 = DAC \text{ output}^{(1)}$
	11111 = FVR (Fixed Voltage Reference) Buffer 1 Output ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed.
	0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current
Note 1:	See Section 17.0 "Digital-to-Analog Converter (DAC) Module" for more information.
2:	See Section 14.0 "Fixed Voltage Reference (FVR)" for more information.
3:	See Section 15.0 "Temperature Indicator Module" for more information.

		ON1: A/D CON		-			
R/W-0	/0 R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
ADFN	Л	ADCS<2:0>			ADNREF	ADPRE	EF<1:0>
bit 7							bit
Legend:							
R = Read		W = Writable		•	mented bit, read		
u = Bit is	unchanged	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all	other Resets
'1' = Bit is	s set	'0' = Bit is clea	ared				
bit 7	1 = Right ji loaded	stified. Six Least	Significant bi				
bit 6-4	000 =F osc 001 =F osc 010 =F osc 011 =F RC 100 =F osc 101 =F osc 110 =F osc	:/8 :/32 (clock supplied fr :/4 :/16	om a dedicate	ed RC oscillato			
bit 3	Unimplem	ented: Read as '	0'				
bit 2	0 =V REF-	VD Negative Volt is connected to is connected to	Vss	•	n bit		
bit 1-0	00 =V REF- 01 = Rese 10 =V REF-	I:0>: A/D Positive + is connected to ved + is connected to + is connected to	VDD external VREF	-+ pin(1)		dule ⁽¹⁾	
Note 1:	•	the FVR or the V e specification ex	•		•		

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clear	red				

REGISTER 16-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 ADRES<9:2>: ADC Result Register bits Upper 8 bits of 10-bit conversion result

REGISTER 16-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<1:0>		_	—	—	—	_	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower 2 bits of 10-bit conversion result bit 5-0 Reserved: Do not use.

REGISTER 16-5: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	_	—	-	ADRE	S<9:8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-2 Reserved: Do not use.

bit 1-0 ADRES<9:8>: ADC Result Register bits Upper 2 bits of 10-bit conversion result

REGISTER 16-6: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<7:0>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower 8 bits of 10-bit conversion result

16.4 A/D Acquisition Requirements

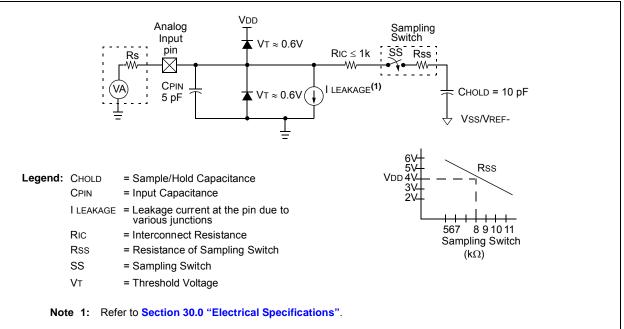
For the ADC to meet its specified accuracy, the charge holding c apacitor (CHOLD) mu st be allowed t o f ully charge to the input channel voltage level. The Analog Input mo del is sho wn in Figure 16-4. The so urce impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to c harge the c apacitor C HOLD. The s ampling s witch (R ss) impedance varies over the device voltage (VDD), refer to Figure 16-4. The ma ximum r ecommended impedance for a nalog so urces is 10 k Ω . As the

source impedance is decreased, the a cquisition time may be decreased. After the analog input channel is selected (or c hanged), an A/D ac quisition m ust be done before the conversion can be started. To calculate the minimum acquisition time, Equation 16-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 s teps for the ADC). The 1/2 LSb error is the maximum error all owed for the ADC to m eet it s specified resolution.

EQUATION 16-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 5.0V VDD$
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time Temperature Coefficient
 $= TAMP + FC TCOFF$
 $= 2\mu s + FC [[] Temperature - 25^{\circ}C (0.05\mu s/^{\circ}C)$
The value for TC can be approximated with the following equations:
 $VAPPL IED \left(-\frac{1}{(p^{nH} - 1)} = VCHOLD ;[1] VCHOLD charged to within 1/2 lsb$
 $VAPPL IED \left(-\frac{TC}{RC} = VCHOLD ;[2] VCHOLD charge response to VAPPLIED$
 $VAPPL IED \left(-\frac{-TC}{RC} = VAPPLIED \left(-\frac{1}{(p^{nH} - 1)} ; combining [1] and [2] \right)$
Note: Where $n =$ number of bits of the ADC.$

Solving for TC:


Therefore:

 $Tc = -C_{HOLD}(\Re IC + \Re SS RS ln(1/511))$ $= -10pF(\Im k\Omega + \Im k\Omega ln(0.001957))$ $= 1.12\mu s$ $TACQ = 2\mu s + \cancel{1}.12\mu s \qquad \text{[]} 50^{\circ}C - 25^{\circ}C (9.05\mu s/^{\circ}C)$ $= 4.42\mu s$


Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 16-4: ANALOG INPUT MODEL

	1		1	1	1	1	1	1	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	145
ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	ADNREF	ADPREF1	ADPREF0	146
ADRESH	A/D Result I	Register High	1						147, 148
ADRESL	A/D Result I	Register Low							147, 148
ANSELA	—	_	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	123
CCPxCON	PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	123
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	123
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	136
DACCON0	DACEN	DACLPS	DACOE	—	DACPSS1	DACPSS0	—	DACNSS	156
DACCON1	—	_	—	DACR4	DACR3	DACR2	DACR1	DACR0	156

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

NOTES:

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The D igital-to-Analog C onverter s upplies a variable voltage refe rence, rati ometric w ith the in put so urce, with 32 selectable output levels.

The input of the DAC can be connected to:

- External REF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACOUT ip
- Capacitive Sensing module (CSM)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

$\frac{IF DACEN = 1}{VOUT} = ()VSOURCE + -VSOURCE - \times \frac{DACR[#:0]}{2^5} + VSOURCE$

IF DACEN = 0 and DACLPS = 1 and DACR[4:0] = 11111

VOUT = VSOURCE +

IF DACEN = 0 and DACLPS = 0 and DACR[4:0] = 00000

VOUT = VSOURCE -

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE - = VSS

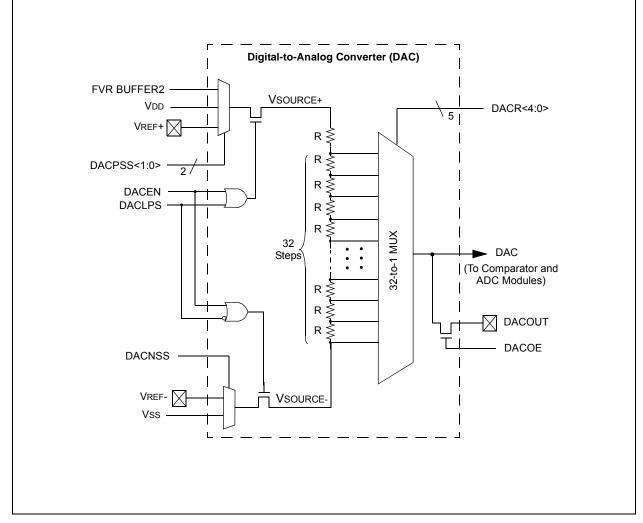
17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the lad der tied to a posit ive an d negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

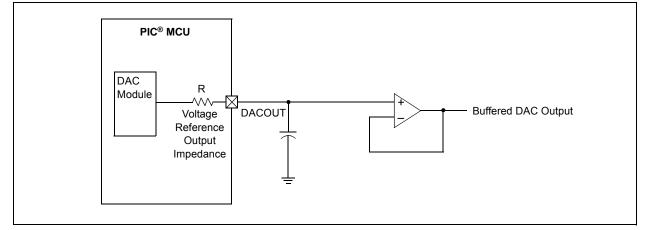
The value of the individual resistors within the ladder can be f ound in Section 29.0 " Electrical Specifications".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4 :0> b its of the DACCON1 register.


The DAC output voltage is determined by the equations in Equation 17-1.

17.3 DAC Voltage Reference Output


The DAC can be output to the DACOUT pin by setting the DACOE b it of the DACCO N0 re gister t o '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it h as been configured for D AC r eference v oltage ou tput w ill always return a '0'.

Due to the limited current drive capability, a buffer must be us ed on the DAC vo Itage r eference ou tput fo r external connections to DACOUT. Figure 17-2 shows an example buffering technique.

FIGURE 17-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

17.4 Low-Power Voltage State

In order for the DAC module to consu me the least amount of power, one of the two voltage reference input sources to the resistor ladder must be disconnected. Either the positive voltage source, (VSOURCE+), or the negative voltage source, (VSOURCE-) can be disabled.

The negative voltage source is disabled by setting the DACLPS bit in the DACCON0 r egister. C learing the DACLPS bit in t he DACCON0 register d isables the positive voltage source.

17.4.1 OUTPUT CLAMPED TO POSITIVE VOLTAGE SOURCE

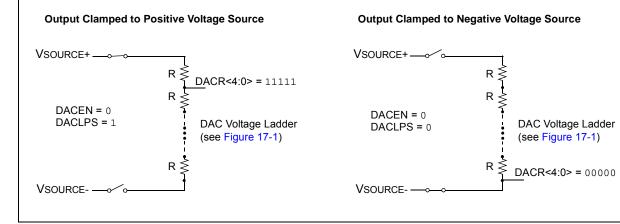
The DAC output voltage can be set to VSOURCE+ with the least amount of power consumption by performing the following:

- · Clearing the DACEN bit in the DACCON0 register.
- Setting the DACLPS bit in the DACCON0 register.
- Configuring the DACPSS bits to the proper positive source.
- Configuring the DACR<4:0> bits to '11111' in the DACCON1 register.

This is also the method used to output the voltage level from the FV R to an out put pin. See **Section 17.5 "Operation During Sleep**" for more information.

Reference Figure 17-3 for output clamping examples.

17.4.2 OUTPUT CLAMPED TO NEGATIVE VOLTAGE SOURCE


The DAC output voltage can be set to VSOURCE- with the least amount of power consumption by performing the following:

- Clearing the DACEN bit in the DACCON0 register.
- Clearing the DACLPS bit in the DACCON0 register.
- Configuring the DACNSS bits to the proper negative source.
- Configuring the DACR<4:0> bits to '00000' in the DACCON1 register.

This allows the comparator to detect a zero-crossing while not consuming additional current through the DAC module.

Reference Figure 17-3 for output clamping examples.

FIGURE 17-3: OUTPUT VOLTAGE CLAMPING EXAMPLES

17.5 Operation During Sleep

When the device wakes up from SI eep th rough a n interrupt or a Watchdog Timer time-out, the contents of the DACCON0 register are not af fected. To minimize current c onsumption i n SI eep m ode, t he voltage reference should be disabled.

17.6 Effects of a Reset

A device Reset affects the following:

- · DAC is disabled.
- DAC output voltage is removed from the DACOUT pin.
- The DACR<4:0> range select bits are cleared.
- © 2011 Microchip Technology Inc.

17.7 DAC Control Registers

REGISTER 17-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DACEN	DACLPS	DACOE		DACP	SS<1:0>	—	DACNSS
bit 7							bit 0
Legend:							
R = Readable t	bit	W = Writable bi	ł	II = Unimplem	ented bit, read as	' O '	
u = Bit is uncha		x = Bit is unkno			POR and BOR/Va		Resets
'1' = Bit is set	liged	'0' = Bit is clear					103013
			cu				
bit 7	DACEN: DAC I 1 = DAC is en 0 = DAC is dis	abled					
bit 6	1 = DAC Posit	CLow-Power Volt tive reference so ative reference so	urce selected	ct bit			
bit 5	1 = DAC volta	Voltage Output E ige level is also a ige level is discor	n output on the	•			
bit 4	Unimplemente	ed: Read as '0'					
bit 3-2	DACPSS<1:0> 00 =V DD 01 =V REF+ pi 10 = FVR Buf 11 = Reserve	ffer2 output	ource Select bi	ts			
bit 1	Unimplemente	ed: Read as '0'					
bit 0	DACNSS: DAC 1 =V REF- 0 =V SS	C Negative Sourc	e Select bits				

REGISTER 17-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 17-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	138
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS1	DACPSS0	_	DACNSS	156
DACCON1	_	_	_	DACR4	DACR3	DACR2	DACR1	DACR0	156

Legend: — = unimplemented, read as '0'. Shaded cells are unused with the DAC module.

18.0 SR LATCH

The module consists of a single SR Latch with multiple Set and Reset inputs as well as separate latch outputs. The SR Latch module includes the following features:

- Programmable input selection
- SR Latch output is available externally
- Separate Q and \overline{Q} outputs
- · Firmware Set and Reset

The SR Latch can be used in a variety of analog applications, in cluding oscillator ci rcuits, on e-shot cir cuit, hysteretic controllers, and analog timing applications.

18.1 Latch Operation

The latch is a Set-Reset Latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by:

- Software control (SRPS and SRPR bits)
- Comparator C1 output (SYNCC1OUT)
- Comparator C2 output (SYNCC2OUT)
- •S RI pin
- Programmable clock (SRCLK)

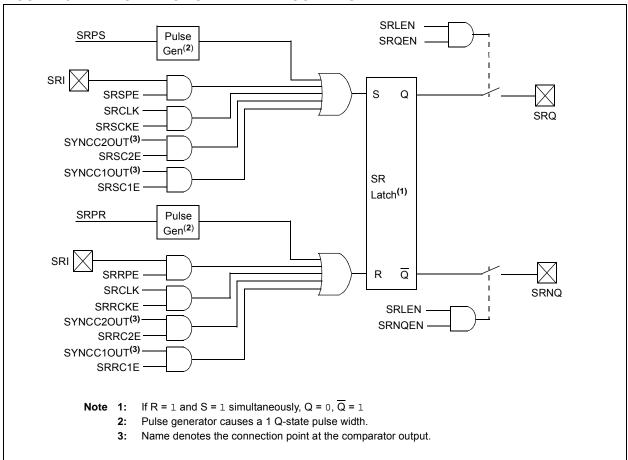
The SRPS and the SRPR bits of the SRCON0 register may be used to set or reset the SR Latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs a re high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR Latch. The output of either comparator can be synchronized to the Timer1 clock s ource. S ee Section 19.0 "Com parator M odule" and Section 21.0 "Timer1 M odule w ith Gate Control" for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR Latch.

An internal clock source is available that can periodically set or reset the SR Latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to set or reset the SR Latch, respectively.

Note: Enabling both the Set and Reset inputs from any on e s ource at the s ame time may result in indeterminate operation, as the Reset dominance cannot be assured.


18.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and \overline{Q} latch outputs. Both of the SR Latch outputs may be directly output to an I/O pin at the same time.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

18.3 Effects of a Reset

Upon any device Reset, the SR Latch output is not initialized to a kn own s tate. The us er's f irmware i s responsible f or i nitializing th e I atch o utput b efore enabling the output pins.

FIGURE 18-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

SRCLK	Divider	Fosc = 32 MHz	Fosc = 20 MHz	Fosc = 16 MHz	Fosc = 4 MHz	Fosc = 1 MHz
111	512	62.5 kHz	39.0 kHz	31.3 kHz	7.81 kHz	1.95 kHz
110	256	125 kHz	78.1 kHz	62.5 kHz	15.6 kHz	3.90 kHz
101	128	250 kHz	156 kHz	125 kHz	31.25 kHz	7.81 kHz
100	64	500 kHz	313 kHz	250 kHz	62.5 kHz	15.6 kHz
011	32	1 MHz	625 kHz	500 kHz	125 kHz	31.3 kHz
010	16	2 MHz	1.25 MHz	1 MHz	250 kHz	62.5 kHz
001	8	4 MHz	2.5 MHz	2 MHz	500 kHz	125 kHz
000	4	8 MHz	5 MHz	4 MHz	1 MHz	250 kHz

TABLE 18-1: SRCLK FREQUENCY TABLE

REGISTER 18-1: SRCON0: SR LATCH CONTROL 0 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	S = Bit is set only

bit 7	SRLEN: SR Latch Enable bit 1 = SR Latch is enabled 0 = SR Latch is disabled				
bit 6-4	SRCLK<2:0>: SR Latch Clock Divider bits 000 = Generates a 1 Fosc wide pulse every 4th Fosc cycle clock 001 = Generates a 1 Fosc wide pulse every 8th Fosc cycle clock 010 = Generates a 1 Fosc wide pulse every 16th Fosc cycle clock 011 = Generates a 1 Fosc wide pulse every 32nd Fosc cycle clock 100 = Generates a 1 Fosc wide pulse every 64th Fosc cycle clock 101 = Generates a 1 Fosc wide pulse every 128th Fosc cycle clock 110 = Generates a 1 Fosc wide pulse every 256th Fosc cycle clock 111 = Generates a 1 Fosc wide pulse every 512th Fosc cycle clock				
bit 3	<pre>SRQEN: SR Latch Q Output Enable bit If SRLEN = 1: 1 = Q is present on the SRQ pin 0 = External Q output is disabled If SRLEN = 0: SR Latch is disabled</pre>				
bit 2	<pre>SRNQEN: SR Latch Q Output Enable bit If SRLEN = 1: 1 = Q is present on the SRnQ pin 0 = External Q output is disabled If SRLEN = 0: SR Latch is disabled</pre>				
bit 1	 SRPS: Pulse Set Input of the SR Latch bit⁽¹⁾ 1 = Pulse set input for 1 Q-clock period 0 = No effect on set input. 				
bit 0	 SRPR: Pulse Reset Input of the SR Latch bit⁽¹⁾ 1 = Pulse reset input for 1 Q-clock period 0 = No effect on reset input. 				
Note 1: Se	t only, always reads back '0'.				

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	
bit 7	SRSCKE	SRSUZE	SRSUIE	SKKPE	SRRUKE	SRRUZE	bit 0	
							DILU	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set	-	'0' = Bit is cle	ared					
bit 7	SRSPE: SR	Latch Peripher	al Set Enable b	oit				
		n is set when th						
	0 = SRI pin I	has no effect or	n the set input	of the SR Latc	h			
bit 6		R Latch Set Clo						
	•	t of SR Latch is	•		L			
5.4 F		has no effect of	•	of the SR Latc	n			
bit 5		R Latch C2 Set		stor output io b	iah			
		n is set when th parator output l			of the SR Latch	ı		
bit 4	-	R Latch C1 Set						
	1 = SR Latch	n is set when th	e C1 Compara	ator output is h	igh			
					of the SR Latch	ı		
bit 3	SRRPE: SR	Latch Peripher	al Reset Enabl	le bit				
		n is reset when						
	•	nas no effect or	•		tch			
bit 2	SRRCKE: SR Latch Reset Clock Enable bit							
	 1 = Reset input of SR Latch is pulsed with SRCLK 0 = SRCLK has no effect on the reset input of the SR Latch 							
bit 1	SRC2E: SR Latch C2 Reset Enable bit							
bit i	1 = SR Latch is reset when the C2 Comparator output is high							
	0 = C2 Comparator output has no effect on the reset input of the SR Latch							
bit 0	SRRC1E: SR Latch C1 Reset Enable bit							
		n is reset when		•	•			
	0 = C1 Com	parator output	nas no effect o	n the reset inp	ut of the SR Lat	ch		

REGISTER 18-2: SRCON1: SR LATCH CONTROL 1 REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA				ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	159
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	160
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122

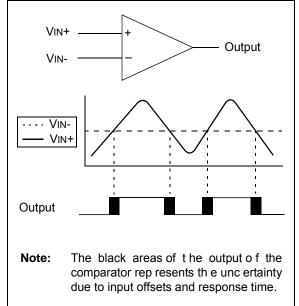
TABLE 18-2: SUMMARY OF REGISTERS ASSOCIATED WITH SR LATCH MODULE

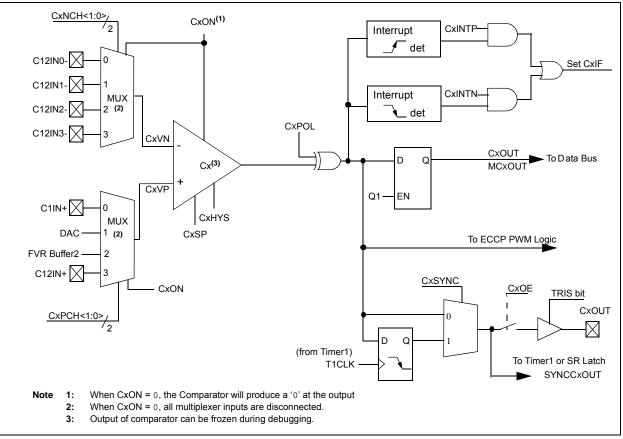
Legend: — = unimplemented, read as '0'. Shaded cells are unused by the SR latch module.

NOTES:

19.0 COMPARATOR MODULE

Comparators are used to inter face analog circuits to a digital circuit by comp aring two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:


- · Independent comparator control
- Programmable input selection
- Comparator output is available internally/externally
- · Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- •P WM shutdown
- · Programmable and fixed voltage reference


19.1 Comparator Overview

A single comparator is shown in Figure 19-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at V IN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at V IN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.


FIGURE 19-1:

SINGLE COMPARATOR

FIGURE 19-2: COMPARATOR 1 MODULE SIMPLIFIED BLOCK DIAGRAM

FIGURE 19-3: COMPARATOR 2 MODULE SIMPLIFIED BLOCK DIAGRAM

19.2 Comparator Control

Each comparator has 2 control registers: CMxCON0 and CMxCON1.

The C MxCON0 registers (see Register 19-1) c ontain Control and Status bits for the following:

- Enable
- •O utput selection
- Output polarity
- · Speed/Power selection
- · Hysteresis enable
- · Output synchronization

The C MxCON1 registers (see Register 19-2) c ontain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

19.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

19.2.2 COMPARATOR OUTPUT SELECTION

The o utput of the c omparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- · CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- · CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the POR T dat a la tch. Setti ng
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with eac h ins truction cy cle. Unless ot herwise specified, ex ternal outputs are not latched.

19.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to s wapping the comparator i nputs. The polarity of the comparator ou tput can be inverted by setting the C xPOL bit of the C MxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 19-1 sh ows the output st ate ve rsus input conditions, including polarity control.

TABLE 19-1:COMPARATOR OUTPUT
STATE VS. INPUT
CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	00	
CxVN < CxVP	01	
CxVN > CxVP	11	
CxVN < CxVP	1	0

19.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off be tween s peed or power c an be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

19.3 Comparator Hysteresis

A sel ectable a mount of s eparation v oltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 29.0** " **Electrical S pecifications**" for more information.

19.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of T imer1. See **Section 21.6 " Timer1 Gate"** for m ore information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

19.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from either comparator, C1 or C2, can be synchronized with Timer1 by setting the CxSYNC bit of the CMxCON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clo ck source and T imer1 i ncrements on the rising edge of its clock source. See the C omparator Block Diagrams (Figure 19-2 and Figure 19-3) and the Timer1 Block D iagram (Figure 21-1) f or more information.

19.5 Comparator Interrupt

An interrupt can be generated up on a c hange in the output value of the comparator for each comparator, a rising edge detector and a F alling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corre sponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be deared in software. If another edge is detected while this flag is being deared, the flag will still be set at the end of the sequence.

Note: Although a c omparator i s d isabled, an interrupt ca n be gen erated by changing the output polarity with the CxPOL bit of the C MxCON0 reg ister, o r by s witching the comparator on or off with the CxON bit of the CMxCON0 register.

19.6 Comparator Positive Input Selection

Configuring the C xPCH<1:0> bits of the C MxCON1 register d irects an in ternal v oltage reference or an analog pin to the non-inverting input of the comparator:

• C1IN+ or C2IN+ analog pin

•D AC

• FVR (Fixed Voltage Reference)

•V ss (Ground)

See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information on the Fixed Voltage Reference module.

See Section 17.0 "Digi tal-to-Analog Conv erter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

19.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four a nalog pins to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog
	input, the appropriate bits must be s et in
	the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

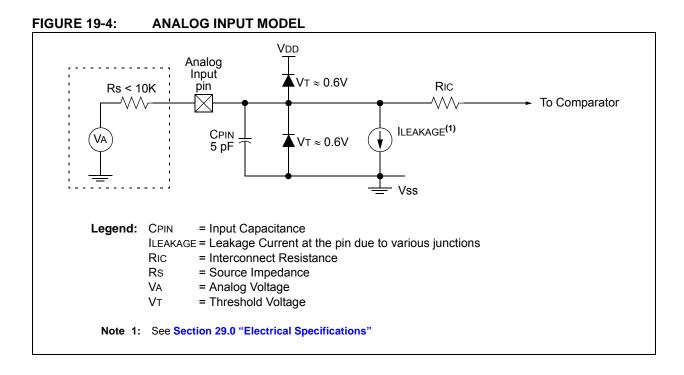
19.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, bothof these times must be considered when determining the tot al response time to a c omparator input change. See the Comparator and Voltage Reference Specifications in Section 29.0 "Electrical Specifications" for more details.

19.9 Interaction with ECCP Logic

The C1 and C2 comparators can be used as general purpose comparators. Their outputs can be brought out to the C1OUT and C2OUT pins. When the ECCP Auto-Shutdown is a ctive it c an us e o ne o r bo th comparator signals. If auto-restart is also enabled, the comparators can be c onfigured as a clo sed loo p analog feedback to the ECCP, thereby, creating a n analog controlled PWM.

Note: When the comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with o ther peripheral features, such as the EC CP Auto-Shutdown mode.


19.10 Analog Input Connection Considerations

A simplified c ircuit for an a nalog input is shown in Figure 19-4. Since the analog input pins share their connection w ith a di gital in put, they have reverse biased E SD p rotection dio des to V DD and V ss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \, \Omega$ is recommended for the ana log sources. Also, any exter nal component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

2: Analog le vels on an y pin de fined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0				
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC				
bit 7							bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'					
u = Bit is unc	hanged	x = Bit is unkr	nown	•	at POR and BC		other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	CxON: Com	parator Enable	bit								
		-	ator is enabled and consumes no active power								
		ator is disabled			-						
bit 6	CxOUT: Cor	mparator Output	bit								
		(inverted polar	<u>ity):</u>								
	1 = CxVP < 0 = CxVP >	-									
) (non-inverted p	olarity):								
	1 = CxVP >		, ,_								
	0 = CxVP <	CxVN									
bit 5		parator Output I									
				Requires that	the associated T	RIS bit be clea	red to actuall				
		e pin. Not affect is internal only									
bit 4		nparator Output	Polarity Selec	ct bit							
		ator output is inv	-								
		ator output is no									
bit 3	Unimpleme	nted: Read as '	0'								
bit 2	CxSP: Com	parator Speed/F	ower Select b	it							
		ator operates in									
	-	ator operates in	-	-	9						
bit 1		CxHYS: Comparator Hysteresis Enable bit									
	•	ator hysteresis ator hysteresis									
bit 0	•	omparator Outp		ıs Mode hit							
			•		ronous to c hang	nes on Timer1	clock source				
		updated on the f									
			annig cuyc or		000100.						

REGISTER 19-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0		
CxINTP	CxINTN CxPCH<1:0>			— CxNCH		H<1:0>			
bit 7							bit 0		
• • • • •									
Legend:									
R = Readable		W = Writable			mented bit, read				
u = Bit is unch	0	x = Bit is unkr		-n/n = Value	at POR and BC	R/Value at all	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	1 = The CxIF		vill be set upo	n a positive go	nable bits ing edge of the of the CxOUT I				
bit 6	1 = The CxIF	CxINTN: Comparator Interrupt on Negative Going Edge Enable bits 1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit 0 = No interrupt flag will be set on a negative going edge of the CxOUT bit							
bit 5-4	00 = CxVP c 01 = CxVP c 10 = CxVP c For C1: 11 = CxVP c For C2:	CxPCH<1:0>: Comparator Positive Input Channel Select bits 00 = CxVP connects to CxIN+ pin 01 = CxVP connects to DAC Voltage Reference 10 = CxVP connects to FVR Voltage Reference For C1: 11 = CxVP connects to C12IN+ pin							
bit 3-2	Unimplemen	ted: Read as '	0'						
bit 1-0	CxNCH<1:0>: Comparator Negative Input Channel Select bits 00 = CxVN connects to C12IN0- pin 01 = CxVN connects to C12IN1- pin 10 = CxVN connects to C12IN2- pin 11 = CxVN connects to C12IN3- pin								

REGISTER 19-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 19-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
_	_	_	—	_	_	MC2OUT	MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2	Unimplemented: Read as '0'
bit 1	MC2OUT: Mirror Copy of C2OUT bit
bit 0	MC10UT: Mirror Copy of C10UT bit

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	—	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
CMxCON0	CxON	CxOUT	CxOE	CxPOL	—	CxSP	CxHYS	CxSYNC	170
CMxCON1	CxNTP	CxINTN	CxPCH1	CxPCH0	—	—	CxNCH1	CxNCH0	171
CMOUT	_	_	_	—	—	—	MC2OUT	MC1OUT	171
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS1	DACPSS0	_	DACNSS	156
DACCON1	_	—	_	DACR4	DACR3	DACR2	DACR1	DACR0	156
FVRCON	FVREN	FVRRDY	Reserved	Reserved	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
LATA	LATA7	LATA6	_	LATA4	LATA3	LATA2	LATA1	LATA0	122
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	—	_	CCP2IE ⁽¹⁾	88
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	_	CCP2IF ⁽¹⁾	92
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	122
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122

TABLE 19-2: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PIC16(L)F1827 only.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- · Programmable internal or external clock source
- · Programmable external clock edge selection
- · Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

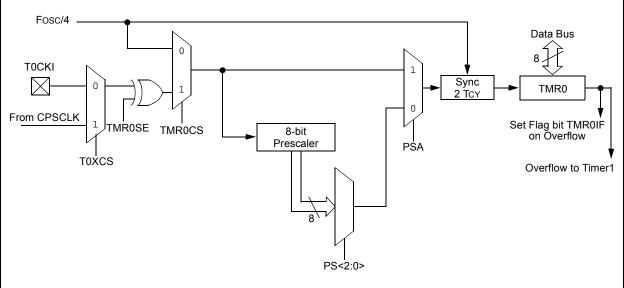
20.1.1 8-BIT TIMER MODE

The T imer0 mo dule will inc rement every instruction cycle, if used without a prescaler. 8-Bit Timer mode is selected by c learing th e TMR0CS bit of the OPTION REG register.

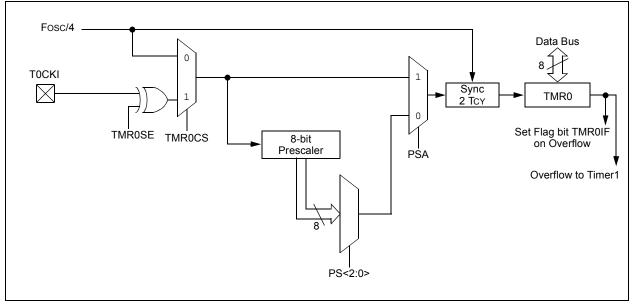
When TM R0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The v alue w ritten to the TM R0 re gister can be a djusted, in order to ac count for the tw o in struction cy cle del ay when TMR0 is written.

20.1.2 8-BIT COUNTER MODE


In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and resetting the T0XCS bit in the OPSCON0 register to '0'.


8-Bit C ounter mode using the C apacitive S ensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION_REG register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION_REG register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

20.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A so ftware pr ogrammable pr escaler is available f or exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are 8 prescaler options for the T imer0 module ranging from 1:2 to 1:25 6. The pr escale v alues a re selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

20.1.4 TIMER0 INTERRUPT

Timer0 w ill generate an interrupt when the TM R0 register overflows f rom F Fh t o 0 0h. T he T MR0IF interrupt flag bit of the INTCO N register is set every time t he TM R0 r egister overflows, regardless of whether or n ot the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TM R0IE b it of the IN TCON register.

Note:	The T imer0 i nterrupt ca nnot w ake the					
	processor from Sleep since the timer is					
	frozen during Sleep.					

20.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. S ynchronization can be a ccomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source mu st me et the timing requirements as s hown in Section 29.0 "Ele ctrical Specifications".

20.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TM R0 register will remain unchanged while the processor is in Sleep mode.

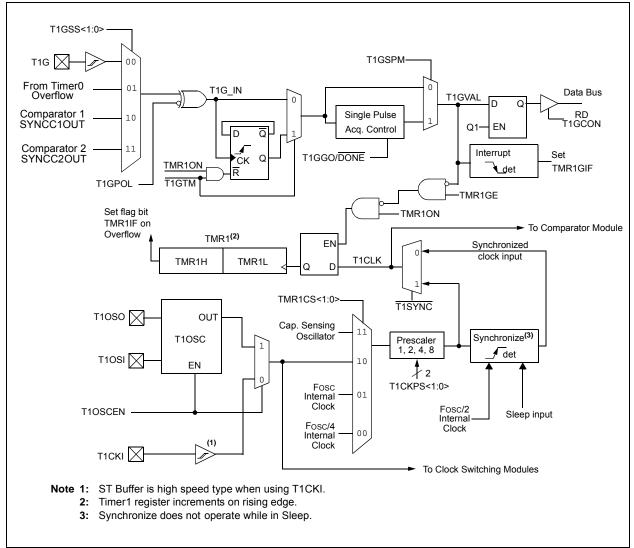
20.2 Option and Timer0 Control Register

REGISTER 20-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>	
bit 7							bit
Legend:							
R = Readable		W = Writab		•	mented bit, rea		
u = Bit is unch	anged	x = Bit is ur		-n/n = Value	at POR and BC	OR/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is c	cleared				
bit 7	WPUEN: W	/eak Pull-up Er	nable bit				
	1 = All wea	k pull-ups are o	disabled (except	MCLR, if it is	enabled)		
	•	•	abled by individu	al WPUx latcl	n values		
bit 6		nterrupt Edge S					
		ot on rising edg ot on falling edg					
bit 5		0	ource Select bit				
	1 = Transiti	on on T0CKI p	in				
	0 = Internal	l instruction cyc	cle clock (Fosc/4	4)			
bit 4			Edge Select bit				
			ow transition on igh transition on				
bit 3	PSA: Preso	caler Assignme	ent bit	·			
			ned to the Timer to the Timer0 m				
bit 2-0		Prescaler Rate					
	В	Bit Value Time	r0 Rate				
	_	000 1	: 2				
			4				
			: 8 : 16				
			: 32				
			64				
			: 128				
		111 1	: 256				
FABLE 20-1 :	SUMMA	RY OF REGI	STERS ASSO	CIATED WI	TH TIMER0		
	Bit 7	Bit 6 B	it 5 Bit 4	Bit 3	Bit 2	Bit 1 Bit 0	Registe

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	318
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	177
TMR0 Timer0 Module Register								173*	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the Timer0 module.


* Page provides register information.

21.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- Programmable internal or external clock source
- · 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Time base for the Capture/Compare function
- Special Event Trigger (with CCP/ECCP)
- · Selectable Gate Source Polarity

- Gate Toggle mode
- Gate Single-pulse mode
- Gate Value Status
- Gate Event Interrupt
- Figure 21-1 is a block diagram of the Timer1 module.

FIGURE 21-1: TIMER1 BLOCK DIAGRAM

21.1 Timer1 Operation

The Timer1 module is a 16- bit in crementing co unter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly up date the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cy cle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is en abled by con figuring the TM R1ON and TMR1GE bits in the T1C ON and T1GCON registers, respectively. Table 21-1 di splays t he T imer1 en able selections.

TABLE 21-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
00		Off
01		Off
10		Always On
11		Count Enabled

21.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 21-2 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock so urce is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. T o utiliz e the full resol ution of T imer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a courter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1C KI or the capacitive sen sing o scillator signa I. Either of these external clock s ources can be synchronized to the microcontroller s ystem clock or they can run asynchronously.

When use d as a t imer w ith a c lock osc illator, a n external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

- Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - · Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS1	TMR1CS0	T1OSCEN	Clock Source
0	0	x	Instruction Clock (Fosc/4)
01		x	System Clock (Fosc)
10		0	External Clocking on T1CKI Pin
10		0	External Clocking on T1CKI Pin
11		x	Capacitive Sensing Oscillator

TABLE 21-2: CLOCK SOURCE SELECTIONS

21.3 Timer1 Prescaler

Timer1 has four pres caler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1C KPS bits of the T1CON register control the prescale counter. The prescale c ounter is not direc tly readable or w ritable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

21.4 Timer1 Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in be tween p ins T 1OSI (i nput) and T1 OSO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal.

The oscillator cir cuit is ena bled b y s etting th e T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The o scillator r equires a s tart-up and stabilization t ime b efore us e. T hus, T1OSCEN should be set and a sui table delay ob served prior to using Timer1. A suitable del ay similar to the O ST delay can be i mplemented in s oftware by clearing the T MR1IF bit then p resetting the TM R1H:TMR1L regi ster p air to FC00h. The TMR1IF flag will be set when 1024 clock cycles have elapsed, thereby indicating that the oscillator is running and reasonably stable.

21.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously t o the internal phase clocks. If the external clock source is selected then the timer w ill c ontinue to run dur ing Sleep and can generate an interrupt on overflow, which will wake-up the processor . H owever, special precautions in software are nee ded to read/ write the timer (see Section 21.5.1 "Reading and W riting Timer1 in Asynchronous Counter Mode").

Note: When sw itching from sy nchronous to asynchronous operation, it is possible to skip a n i ncrement. When s witching from asynchronous to s ynchronous operation, it is possible to produce an ad ditional increment.

21.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in h ardware). Ho wever, the us er should keep in mind that reading the 16-bit timer in two 8-bit values itself, p oses certain p roblems, s ince the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the tim er and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

21.6 Timer1 Gate

Timer1 can be configured to count freely or the count can b e e nabled and di sabled us ing T imer1 ga te circuitry. This is also referred to as Timer1 gate enable.

Timer1 gate can also be driven by multiple selectable sources.

21.6.1 TIMER1 GATE ENABLE

The Timer1 G ate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 G ate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 G ate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no in crementing will oc cur an d Timer1 will hol d th e current count. See Figure 21-3 for timing details.

TABLE 21-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	10		Holds Count
\uparrow	11		Counts

21.6.2 TIMER1 GATE SOURCE SELECTION

The Timer1 gate source can be selected from one of four different sources. Source selection is controlled by the T1GSS bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T 1GPOL bit of the T1GCON register.

TABLE 21-4: TIMER1 GATE SOURCES

T1GSS	Timer1 Gate Source	
00	Timer1 Gate Pin	
01	Overflow of Timer0 (TMR0 increments from FFh to 00h)	
10	Comparator 1 Output SYNCC1OUT (optionally Timer1 synchronized output)	
11	Comparator 2 Output SYNCC2OUT (optionally Timer1 synchronized output)	

21.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

21.6.2.2 Timer0 Overflow Gate Operation

When T imer0 i ncrements fro m FF h to 00h , a low-to-high pulse will automatically be g enerated and internally supplied to the Timer1 gate circuitry.

21.6.2.3 Comparator C1 Gate Operation

The output resulting from a Comparator 1 operation can be selected as a source for Timer1 gate c ontrol. The Comparator 1 output (S YNCC1OUT) c an be synchronized to the Timer1 clock or left asynchronous. For more information see Section 19.4.1 "Comparator Output Synchronization".

21.6.2.4 Comparator C2 Gate Operation

The output resulting from a C omparator 2 operation can be selected as a source for T imer1 gate control. The Co mparator 2 o utput (SYNCC2OUT) can b e synchronized to the Timer1 clock or left asynchronous. For more information see Section 19.4.1 "Comparator Output Synchronization".

21.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as op posed to the duration of a s ingle le vel pulse.

The Timer1 gate source is routed through a flip-flop that changes s tate o n ev ery i ncrementing edg e o f th e signal. See Figure 21-4 for timing details.

Timer1 Ga te Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is ne cessary in o rder to c ontrol w hich edg e i s measured.

Note:	Enabling Toggle mode at the same time		
	as changing the gate polarity may result in		
	indeterminate operation.		

21.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1 GCON register. Ne xt, th e T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing e dge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is on ce ag ain s et in s oftware. Se e Figure 21-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously w ill p ermit b oth s ections t o w ork together. This allows the cycle times on the Timer1 gate source t o be m easured. Se e Figure 21-6 for tim ing details.

21.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR10N bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- · GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit sho uld be cleared be fore enabling interrupts.

21.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or c lock source can be used to in crement the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- · PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an ov erflow and execute the next i nstructions. If the G IE bit of the INT CON register is set, the device will call the Interrupt Service Routine.

Timer1 os cillator <u>w ill c ontinue</u> to ope rate in Slee p regardless of the T1SYNC bit setting.

21.9 ECCP/CCP Capture/Compare Time Base

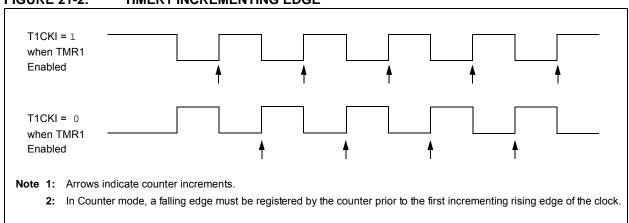
The C CP modules u se the TMR1H:TMR1L register pair as the time base when operating in C apture or Compare mode.

In C apture m ode, t he v alue in t he T MR1H:TMR1L register p air is copied into the CCPR1H:CCPR1L register pair on a configured event.

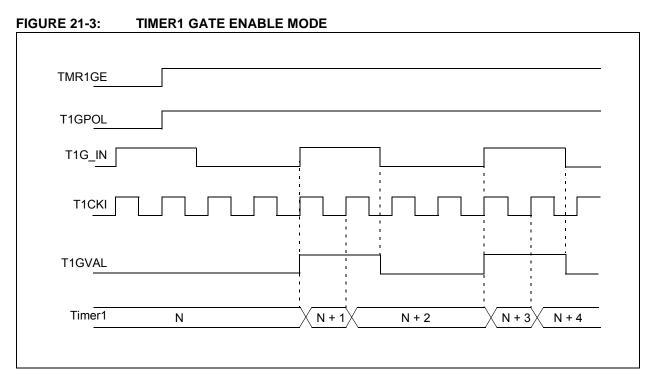
In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Special Event Trigger.

For m ore i nformation, s ee Section 24.0 "Capture/Compare/PWM Modules".

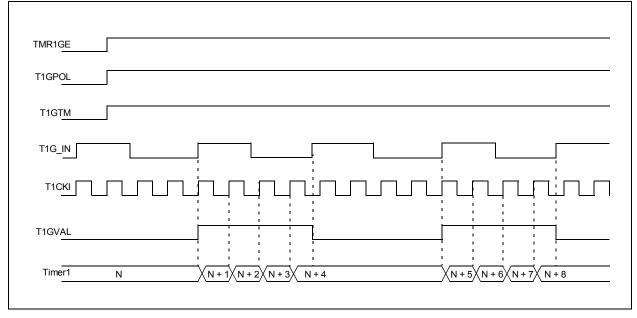
21.10 ECCP/CCP Special Event Trigger


When any of the CCP's are configured to trigger a special event, the trigger will clear the TMR1H:TMR1L register pair. This special event does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the C CPR1H:CCPR1L register pair becomes the period register for Timer1.


Timer1 should be synchronized and FOSC/4 should be selected as the clock source in order to utilize the Special Event Trigger. Asynchronous operation of Timer1 can cause a Special Event Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Special Event Trigger from the CCP, the write will take precedence.


For m ore i nformation, see **Section 16.2.5** " **Special Event Trigger**".

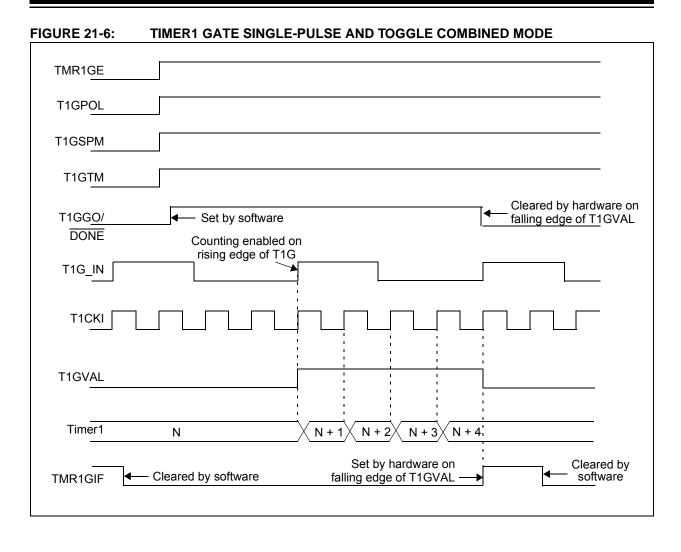

FIGURE 21-2: TIMER1 INCREMENTING EDGE

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

FIGURE 21-5:	TIMER1 GATE SINGLE-PULSE MODE
TMR1GE	
T1GPOL	
T1GSPM	
T1GG <u>O/</u> DONE	← Set by software Cleared by hardware on falling edge of T1GVAL
T1G_IN	rising edge of TIG
Т1СКІ	
T1GVAL	
Timer1	N N + 1 N + 2
TMR1GIF	 Cleared by software Set by hardware on falling edge of T1GVAL

21.11 Timer1 Control Register

The Timer1 Con trol re gister (T 1CON), s hown i n Register 21-1, is used to control Timer1 and select the various features of the Timer1 module.

REGISTER 21-1: T1CON: TIMER1 CONTROL REGISTER

V-0/u
R10N
bit (
lesets
2

bit 7-6	<pre>TMR1CS<1:0>: Timer1 Clock Source Select bits 11 = Timer1 clock source is Capacitive Sensing Oscillator (CAPOSC) 10 = Timer1 clock source is pin or oscillator: <u>If T1OSCEN = 0</u>: External clock from T1CKI pin (on the rising edge) <u>If T1OSCEN = 1</u>: Crystal oscillator on T1OSI/T1OSO pins 01 = Timer1 clock source is system clock (Fosc) 00 = Timer1 clock source is instruction clock (Fosc/4)</pre>
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	 T1OSCEN: LP Oscillator Enable Control bit 1 = Dedicated Timer1 oscillator circuit enabled 0 = Dedicated Timer1 oscillator circuit disabled
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bitTMR1CS<1:0> = 1x:1 = Do not synchronize external clock input0 = Synchronize external clock input with system clock (Fosc)TMR1CS<1:0> = 0x:
	This bit is ignored.
bit 1	Unimplemented: Read as '0'
bit 0	TMR10N: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1 Clears Timer1 gate flip-flop

21.12 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 21-2, is used to control Timer1 gate.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u	
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GS	S<1:0>	
bit 7		÷					bit	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'		
u = Bit is uncl	hanged	x = Bit is unk	nown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	HC = Bit is cle	ared by hardw	vare		
bit 7	If TMR1ON = This bit is igr If TMR1ON = 1 = Timer1 o	nored <u>= 1</u> :	rolled by the T	ïmer1 gate func ate function	tion			
bit 6	T1GPOL: Tir 1 = Timer1 g	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)						
bit 5	T1GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge.							
bit 4	1 = Timer1 g	T1GSPM: Timer1 Gate Single-Pulse Mode bit 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled						
bit 3	T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started							
bit 2	T1GVAL: Timer1 Gate Current State bit Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).							
bit 1-0	<pre>T1GSS<1:0>: Timer1 Gate Enable (TWICGE). 00 = Timer1 gate pin 01 = Timer0 overflow output 10 = Comparator 1 optionally synchronized output (SYNCC1OUT) 11 = Comparator 2 optionally synchronized output (SYNCC2OUT)</pre>							

REGISTER 21-2: T1GCON: TIMER1 GATE CONTROL REGISTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
CCP1CON	PxM1	PxM0	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	127
TMR1H	Holding Reg	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register						177*	
TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register					177*		
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS1	T1GSS0	186

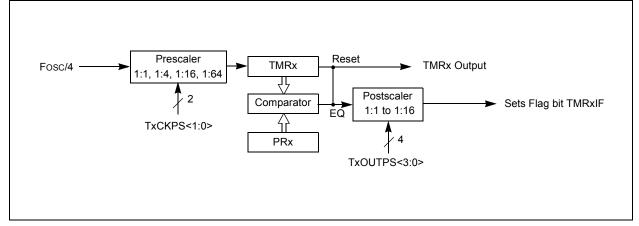
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

* Page provides register information.

NOTES:

22.0 TIMER2/4/6 MODULES

There are up to three i dentical Timer2-type modules available. To maintain pre-existing naming conventions, the Timers are called Timer2, Timer4 and Timer6 (also Timer2/4/6).


Note:	The 'x' va riable used in this section is
	used to de signate Timer2, Timer4, or
	Timer6. For example, TxCON references
	T2CON, T4CON, or T6 CON. PRx refer-
	ences PR2, PR4, or PR6.

The T imer2/4/6 m odules in corporate the foll owing features:

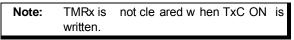
- 8-bit Timer and Period registers (TMRx and PRx, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMRx match with PRx, respectively
- Optional use as the shift clock for the MSSPx modules (Timer2 only)

See Figure 22-1 for a block diagram of Timer2/4/6.

22.1 Timer2/4/6 Operation

The c lock in put to the T imer2/4/6 m odules is the system instruction clock (Fosc/4).

TMRx increments from 00h on each clock edge.


A 4-bit counter/prescaler on the clock input alows direct input, divid e-by-4 and divide-by-16 pres cale o ptions. These options are selected by the prescaler control bits, TxCKPS<1:0> of the Tx CON register. The v alue of TMRx is compared to that of the Period register, PRx, on each cloc k cy cle. When the t wo v alues m atch, the comparator generates a match signal as the timer output. This signal also resets the value of TMRx to 00h on the nex t cycle and drives the output counter/postscaler (see Section 22.2 "T imer2/4/6 Interrupt").

The TMRx and PRx registers are both directly readable and w ritable. The TMRx register is cle ared on an y device R eset, w hereas the PR x register initializes to FFh. Both the pr escaler and postscaler counters are cleared on the following events:

- · a write to the TMRx register
- · a write to the TxCON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)

•M CLR Reset

- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

22.2 Timer2/4/6 Interrupt

Timer2/4/6 can als o generate an op tional dev ice interrupt. The Timer2/4/6 output signal (TMRx-to-PRx match) provides the input f or the 4-bit counter/postscaler. This counter generates the TMR x match interrupt flag which is latched in TMR xIF of the PIRx register. The in terrupt is enabled by setting the TMRx Match Interrupt Enable bit, TMRxIE of the PIEx register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, TxOUTPS<3:0>, of the TxCON register.

22.3 Timer2/4/6 Output

The unscaled output of TMRx is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the M SSPx modules op erating in SPI m ode. Additional i nformation i s p rovided i n Section 25.1 "Master SSPx (M SSPx) M odule O verview" Timer2/4/6 Operation During Sleep

The Timer2/4/6 timers cannot be op erated while the processor is in Sleep mode. The contents of the TMRx and PR x reg isters will remain un changed while the processor is in Sleep mode.

22.4 Timer2 Control Register

REGISTER 22-1:	TXCON: TIMER2/TIMER4/TIMER6 CONTROL REGISTER

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_		TxOUTF	PS<3:0>		TMRxON	TxCKP	S<1:0>		
oit 7							bit (
_egend:									
R = Readab		W = Writable	bit	•	mented bit, read				
u = Bit is un	changed	x = Bit is unkr	iown	-n/n = Value	at POR and BO	R/Value at all	other Resets		
1' = Bit is s	et	'0' = Bit is clea	ared						
oit 7	Unimpleme	ented: Read as '	٥'						
oit 6-3	TxOUTPS<	3:0>: Timerx Ou	tput Postscale	er Select bits					
	0000 = 1:1	Postscaler							
	0001 = 1:2	Postscaler							
	0010 = 1 :3								
		0011 = 1:4 Postscaler							
	0100 = 1:5								
		= 1:6 Postscaler = 1:7 Postscaler							
	0110 = 1.7 0111 = 1:8								
	1000 = 1:9								
) Postscaler							
	1010 = 1:11								
	1011 = 1:12	1 = 1:12 Postscaler							
	1100 = 1:1 3	3 Postscaler							
		1 Postscaler							
		5 Postscaler							
		6 Postscaler							
oit 2	TMRxON: 7	Timerx On bit							
	1 = Timerx 0 = Timerx								
oit 1-0	TxCKPS<1	:0>: Timer2-type	Clock Presca	le Select bits					
	00 = Presca	aler is 1							
	01 = Presca	aler is 4							
	10 = Presca								
	11 = Presca	aler is 64							

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	91
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	92
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	96
PIE3 ⁽¹⁾	_	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	_	94
PIR3 ⁽¹⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	_	98
PR2	Timer2 Module Period Register								189*
PR4	Timer4 Mod	ule Period Re	gister						189*
PR6	Timer6 Mod	ule Period Re	gister						189*
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	191
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Register for the 8-bit TMR2 Time Base							189*	
TMR4	Holding Register for the 8-bit TMR4 Time Base ⁽¹⁾							189*	
TMR6	Holding Reg	ister for the 8	-bit TMR6 Tin	ne Base ⁽¹⁾					189*

TABLE 22-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2/4/6

Legend: — = unimplemented read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

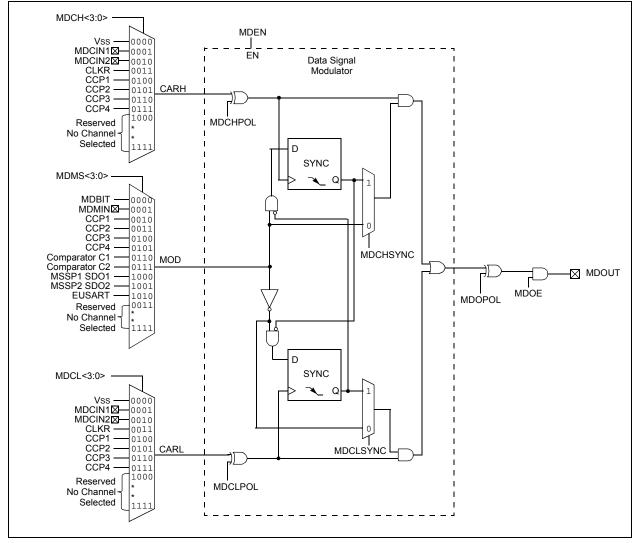
23.0 DATA SIGNAL MODULATOR

The Data Signal Modulator (DSM) is a peripheral which allows the user to mix a data stream, also known as a modulator signal, with a carrier signal to p roduce a modulated output.

Both the carrier and the modulator signals are supplied to the DSM module either internally, from the output of a peripheral, or externally through an input pin.

The modulated output signal is generated by performing a logical "AND" operation of both the carrier and modulator signals and then provided to the MDOUT pin.

The carrier signal is comprised of two distinct and separate signals. A carrier high (CARH) signal and a carrier I ow (CARL) signal. D uring the time in which the modulator (MOD) signal is in a logic high state, the DSM mixes the carrier high signal with the modulator signal. When the modulator signal is in a log ic low state, the DSM mixes the carrier I ow signal with the modulator signal. Using this method, the DSM can generate the following types of Key Modulation schemes:


- Frequency-Shift Keying (FSK)
- Phase-Shift Keying (PSK)
- On-Off Keying (OOK)

Additionally, the following features are provided within the DSM module:

- Carrier Synchronization
- · Carrier Source Polarity Select
- Carrier Source Pin Disable
- Programmable Modulator Data
- Modulator Source Pin Disable
- Modulated Output Polarity Select
- Slew Rate Control

Figure 23-1 shows a Simplified Block Diagram of the Data Signal Modulator peripheral.

23.1 DSM Operation

The DSM module can be enabled by setting the MDEN bit in the MDCON register. Clearing the MDEN bit in the MDCON register, di sables the DSM module by au tomatically switching the carrier high and carrier low signals to the V ss signal so urce. The modulator signal source is also switched to the MDBIT in the MDCON register. This not only assures that the DSM module is inactive, but that it is also consuming the least amount of current.

The values used to select the carrier high, carrier low, and modulator sources held by the Modulation Source, Modulation High Carrier, and Modulation Low Carrier control registers are not affected when the MDEN bit is cleared and the DSM module is disabled. The values inside th ese registers re main unchanged w hile th e DSM is inactive. The sources for the carrier high, carrier low and modulator si gnals will on ce again be selected when the MDEN bit is set and the DSM module is again enabled and active.

The modulated output signal can be disabled without shutting down the DSM module. The DSM module will remain active and continue to mix signals, but the output value will not be sent to the MDOUT pin. During the time that the output is disabled, the MDOUT pin will remain low. The modulated output can be disabled by clearing the MDOE bit in the MDCON register.

23.2 Modulator Signal Sources

The modulator signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- CCP3 Signal
- CCP4 Signal
- MSSP1 SDO1 Signal (SPI Mode Only)
- MSSP2 SDO2 Signal (SPI Mode Only)
- · Comparator C1 Signal
- · Comparator C2 Signal
- EUSART TX Signal
- External Signal on MDMIN1 pin
- · MDBIT bit in the MDCON register

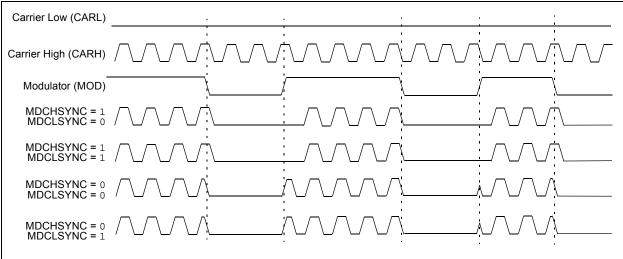
The modulator si gnal is selected by configuring the MDMS <3:0> bits in the MDSRC register.

23.3 Carrier Signal Sources

The carrier high signal and carrier low signal can be supplied from the following sources:

- CCP1 Signal
- CCP2 Signal
- · CCP3 Signal
- CCP4 Signal
- · Reference Clock Module Signal
- External Signal on MDCIN1 pin
- External Signal on MDCIN2 pin
- •V ss

The carrier high signal is selected by configuring the MDCH <3:0> bits in the MDCARH register. The carrier low signal is selected by configuring the MDCL <3:0> bits in the MDCARL register.


23.4 Carrier Synchronization

During the time when the DSM switches between carrier high and carrier low signal sources, the carrier data in the modulated output signal can become truncated. To prevent this, the carrier signal can be synchronized to the m odulator sig nal. Whe n sy nchronization i s enabled, the carrier pulse that is being mixed at th e time of the transition is allowed to transition low before the DSM switches over to the next carrier source.

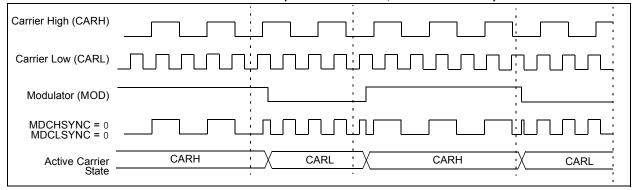

Synchronization is enabled separately for the carrier high and carrier low signal sources. Synchronization for the carrier high signal can be enabled by setting the MDCHSYNC bit in the MDCARH register. Synchronization for the carrier low signal can be enabled by setting the MDCLSYNC bit in the MDCARL register.

Figure 23-1 through Figure 23-5 show timing diagrams of using various synchronization methods.

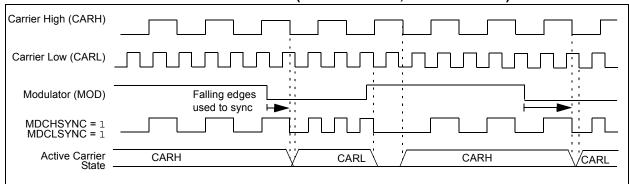

EXAMPLE 23-1: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 23-3: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	CARH / both CARL CARH / both CARL

FIGURE 23-4:	CARRIER LOW SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 1)
Carrier High (CARH)	
Carrier Low (CARL)	
Modulator (MOD)	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State -	
FIGURE 23-5:	FULL SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 1)

23.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high so urce is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

23.6 Carrier Source Pin Disable

Some peripherals assert control over their corresponding output pin when they are enabled. For ex ample, when the CCP1 module is enabled, the output of CCP1 is connected to the CCP1 pin.

This default connection to a pin can be disabled by setting the MDCHODIS bit in the MDCARH register for the carrier hig h sou rce and the MDCLODIS bit in the MDCARL register for the carrier low source.

23.7 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

23.8 Modulator Source Pin Disable

The modulator source default connection to a pin can be d isabled by s etting th e M DMSODIS bit in the MDSRC register.

23.9 Modulated Output Polarity

The modulated output signal provided on the MDOUT pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

23.10 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the MDSLR bit in the MDCON register.

23.11 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

23.12 Effects of a Reset

Upon any dev ice R eset, the data signal m odulator module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

R/W-0/0	R/W-0/0	R/W-1/1	R/W-0/0	R-0/0	U-0	U-0	R/W-0/0					
MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—		MDBIT					
bit 7							bit 0					
Legend:	1- 1-14		L :4			(0)						
R = Readab		W = Writable		•	mented bit, read							
u = Bit is un	•	x = Bit is unk		-n/n = Value	at POR and BOF	R/Value at all	other Resets					
'1' = Bit is s	et	'0' = Bit is cle	ared									
bit 7		ulator Module F	nablo bit									
		or module is er		ing input sign:	ale							
		or module is di		0 1 0	213							
bit 6	MDOE: Mod	ulator Module F	Pin Output Ena	ible bit								
		MDOE: Modulator Module Pin Output Enable bit 1 = Modulator pin output enabled										
		0 = Modulator pin output disabled										
bit 5	MDSLR: MD	MDOUT Pin Slew Rate Limiting bit										
	1 = MDOUT	pin slew rate l	miting enabled	ł								
	0 = MDOUT	pin slew rate l	miting disable	d								
bit 4	MDOPOL: N	MDOPOL: Modulator Output Polarity Select bit										
		1 = Modulator output signal is inverted										
		or output signa		d								
bit 3		dulator Output			. (1)							
		current output		odulator modu	ile. ⁽¹⁾							
bit 2-1	-	nted: Read as				(a)						
bit 0	MDBIT: Allow	ws software to	manually set m	odulation sou	rce input to mod	ule ⁽²⁾						
		or uses High C										
	0 = Modulat	or uses Low Ca	arrier source									
	he modulated ou						ates this					
r	egister bit, the bit	t value may not	be valid for hi	gher speed me	odulator or carrie	er signals.						

REGISTER 23-1: MDCON: MODULATION CONTROL REGISTER

2: MDBIT must be selected as the modulation source in the MDSRC register for this operation.

R/W-x/u	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDMSODIS	—	—	_		MDMS	\$<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'				
u = Bit is unch	anged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	MDMSODIS:	Modulation So	urce Output I	Disable bit						
	1 = Output s	ignal driving the	e peripheral c	output pin (selec	ted by MDMS<	3:0>) is disable	ed			
	0 = Output s	ignal driving the	e peripheral c	output pin (selec	ted by MDMS<	3:0>) is enable	ed			
bit 6-4	Unimplemen	ted: Read as '	כ'							
bit 3-0	MDMS<3:0> Modulation Source Selection bits									
	1111 = Res	1111 = Reserved. No channel connected.								
	1110 = Res	1110 = Reserved. No channel connected.								
	1101 = Res	erved. No char	nnel connecte	ed.						
	1100 = Res	erved. No char	nnel connecte	ed.						
		erved. No char		ed.						
		SART TX output								
		SP2 SDOx outp								
		SP1 SDOx outp								
		nparator2 outpu								
		nparator1 outpu								
		P4 output (PWN								
		P3 output (PWN								
		P2 output (PWN								
		P1 output (PWN	1 Output mod	le only)						
	0001 = MDN									
	0000 = MDE	BIT bit of MDCC	ON register is	modulation sou	urce					

REGISTER 23-2: MDSRC: MODULATION SOURCE CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDCHODIS	MDCHPOL	MDCHSYNC	C — MDCH<3:0>							
bit 7							bit 0			
Legend:										
R = Readable		W = Writable bi	•	•	nented bit, read					
u = Bit is unch	anged	x = Bit is unkno		-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7	MDCHODIS:	Modulator High	Carrier Out	out Disable bit						
	MDCHODIS: Modulator High Carrier Output Disable bit 1 = Output signal driving the peripheral output pin (selected by MDCH<3:0>) is disabled									
		ignal driving the								
bit 6	MDCHPOL: Modulator High Carrier Polarity Select bit									
	1 = Selected high carrier signal is inverted									
	0 = Selected									
bit 5	MDCHSYNC: Modulator High Carrier Synchronization Enable bit									
	1 = Modulator waits for a falling edge on the high time carrier signal before allowing a switch to the low time carrier									
	0 = Modulate	ator Output is not synchronized to the high time carrier signal ⁽¹⁾								
bit 4	Unimplemer	nted: Read as '0'								
bit 3-0	MDCH<3:0>	Modulator Data I	High Carrie	Selection bits	(1)					
	MDCH<3:0> Modulator Data High Carrier Selection bits ⁽¹⁾ 1111 = Reserved. No channel connected.									
	•									
	•									
	1000 = Res	erved. No chann	el connecte	be						
		P4 output (PWM (
		P3 output (PWM (
		P2 output (PWM								
		P1 output (PWM (erence Clock mod		le only)						
		CIN2 port pin	uie signal							
	0001 = MD									
	0000 =V ss									

REGISTER 23-3: MDCARH: MODULATION HIGH CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
MDCLODIS	MDCLPOL	MDCLSYNC	_		MDCL	_<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable bi	t	U = Unimpler	nented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7	1 = Output s is disabl 0 = Output s	ignal driving the p	peripheral	output pin (selec	-		c ,			
bit 6	MDCLPOL: 1 = Selected	 is enabled MDCLPOL: Modulator Low Carrier Polarity Select bit 1 = Selected low carrier signal is inverted 0 = Selected low carrier signal is not inverted 								
bit 5	1 = Modulate time car	: Modulator Low or waits for a fallir rier or Output is not s	ng edge on	the low time carr	ier signal before		itch to the high			
bit 4		nted: Read as '0'								
bit 3-0		Modulator Data F erved. No chanr			1)					
	0111 = CCF 0110 = CCF 0101 = CCF 0100 = CCF 0011 = Refe	erved. No chann P4 output (PWM P3 output (PWM P2 output (PWM P1 output (PWM erence Clock mod CIN2 port pin CIN1 port pin	Output mo Output mo Output mo Output mo	de only) de only) de only) de only)						

REGISTER 23-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
MDCARH	MDCHODIS	MDCHPOL	MDCHSYNC	—		200			
MDCARL	MDCLODIS	MDCLPOL	MDCLSYNC	_		201			
MDCON	MDEN	MDOE	MDSLR	MDOPOL	MDOUT	—	_	MDBIT	198
MDSRC	MDMSODIS	_	—	—	MDMS<3:0>				199

Legend: — = unimplemented, read as '0'. Shaded cells are not used in the Data Signal Modulator mode.

NOTES:

24.0 CAPTURE/COMPARE/PWM MODULES

The C apture/Compare/PWM module is a p eripheral which al lows the us er to tim e and c ontrol d ifferent events, and to ge nerate Puls e-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a pre determined a mount of time has e xpired. Th e PWM m ode can gen erate Puls e-Width Mo dulated signals of varying frequency and duty cycle.

This f amily of d evices contains two Enhanced Capture/Compare/PWM modules (E CCP1 and ECCP2) and two st andard C apture/Compare/PWM modules (CCP3 and CCP4).

The Capture and Compare functions are identical for all four CCP m odules (E CCP1, EC CP2, C CP3 and CCP4). The only differences between CCP modules are in the Pulse-Width Modulation (PWM) function. The standard PWM function is identical in modules, CCP3 and CCP4. In CCP modules ECCP1 and ECCP2, the Enhanced PWM function has slight variations from one another. Ful I-Bridge EC CP modules have fo ur available I/O pi ns w hile H alf-Bridge EC CP modules only have two available I/O pi ns. Se e Table 24-1 for more information.

- Note 1: In d evices with m ore th an one CCP module, it is very important to pay close attention to the register names u sed. A number placed after the module acronym is used to distinguish between separate modules. For example, th e C CP1CON and C CP2CON control the sam e operational as pects of two c ompletely different CCP modules.
 - 2: Throughout this s ection, generic references to a CCP module in any of its operating modes may be interpreted as being equally applic able to EC CP1, ECCP2, C CP3 and C CP4. R egister names, module signals, I/O pins, and bit names may use the generic designator 'x' to i ndicate the use of a nu meral to distinguish a p articular modul e, when required.

TABLE 24-1:PWM RESOURCES

Device Name	ECCP1	ECCP2	CCP3	CCP4
PIC16(L)F1826	Enhanced PWM Full-Bridge	Not Available	Not Available	Not Available
PIC16(L)F1827	Enhanced PWM Full-Bridge	Enhanced PWM Half-Bridge	Standard PWM	Standard PWM

24.1 Capture Mode

The Capture mode function described in this section is available and id entical fo r C CP mo dules EC CP1, ECCP2, CCP3 and CCP4.

Capture mo de m akes use of th e 16 -bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit C CPRxH:CCPRxL r egister pa ir c aptures a nd stores the 16-bit value of the TMR1H:TMR1L register pair, res pectively. An event is d efined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, the old captured value is overwritten by the new captured value.

Figure 24-1 shows a simplified diagram of the Capture operation.

24.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the C CPx pi n fun ction can be moved to alternative pins using the APFCON0 register. Refer to **Section 12.1 "Alte rnate Pin Fun ction"** for m ore details.

Note: If the CCPx pin is configured as an output, a write to the p ort c an c ause a c apture condition.

FIGURE 24-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

24.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

24.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid f alse interrupts. Add itionally, the us er should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

24.1.4 CCP PRESCALER

There are fo ur pr escaler s ettings sp ecified b y th e CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the C CPxCON re gister bef ore ch anging th e prescaler. Equation 24-1 demonstrates t he co de t o perform this function.

EXAMPLE 24-1: CHANGING BETWEEN CAPTURE PRESCALERS

bits to point
ON
module off
W reg with
prescaler
ie and CCP ON
CON with this

24.1.5 CAPTURE DURING SLEEP

Capture mode depends upon the T imer1 module for proper ope ration. The re are two options for driving the Timer1 module in Capture mode. It can be driven by the instruction clock (FOSC/4), or by an external clock source.

When Timer1 is clocked by FOSC/4, Timer1 will not increment during Sleep. When the device wakes from Sleep, Timer1 will continue from its previous state.

Capture mode will operate during Sleep when Timer1 is clocked by an external clock source.

24.1.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFC ON0 and APFCON1. To de termine which pins can be moved and what their default locations are upon a res et, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPRxL	Capture/Cor	mpare/PWM	Register x Lo	ow Byte (LSE	3)				204*
CCPRxH	Capture/Cor	mpare/PWM	Register x H	igh Byte (MS	B)				204*
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	170
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCH1	C1NCH0	171
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	170
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NCH1	C2NCH0	171
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE		—	CCP2IE ⁽²⁾	88
PIE3 ⁽²⁾	_	_	CCP4IE	CCP3IE	TMR6IE	_	TMR4IE	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF		—	CCP2IF ⁽²⁾	92
PIR3 ⁽²⁾	—	—	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	93
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	—	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS1	T1GSS0	186
TMR1L	Holding Reg	gister for the	Least Signific	cant Byte of t	he 16-bit TMR1 F	Register			177*
TMR1H	Holding Reg	ister for the	Most Signific	ant Byte of th	ne 16-bit TMR1 R	Register			177*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPTURE

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by Capture mode.

* Page provides register information.

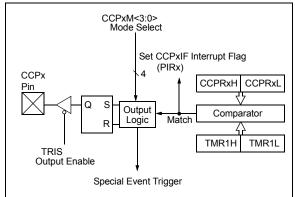
Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.2 Compare Mode

The Compare mode function described in this section is a vailable and id entical for C CP modules EC CP1, ECCP2, CCP3 and CCP4.

Compare mode m akes u se o f the 16-bit T imer1 resource. The 16-bit v alue of the CCPRx H:CCPRxL register pair is constantly compared against the 16-bit value of the TM R1H:TMR1L register pair. When a match occurs, one of the following events can occur:


- Toggle the CCPx output
- Set the CCPx output
- · Clear the CCPx output
- · Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCPxM<3:0> control bits of the CCPxCON register. At the same time, the interrupt flag CCPxIF bit is set.

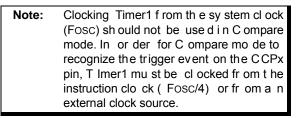
All Compare modes can generate an interrupt.

Figure 24-2 s hows a s implified d iagram of the Compare operation.

FIGURE 24-2: COMPARE MODE OPERATION BLOCK DIAGRAM

24.2.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the associated TRIS bit.


Also, the C CPx pi n fun ction can be moved to alternative pins using the APFCON0 register. Refer to **Section 12.1 "Alte rnate Pin Fun ction"** for m ore details.

Note:	Clearing the CCPxCON register will force
	the CCPx c ompare output la tch to the
	default low level. This is not the PORT I/O
	data latch.

24.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer 1 must be running in either Timer mode or Synch ronized C ounter mode. T he comp are operation may not work in Asynchronous Counter mode.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

24.2.3 SOFTWARE INTERRUPT MODE

When Generate S oftware I nterrupt m ode is c hosen (CCPxM<3:0> = 1010), th e C CPx m odule d oes n ot assert c ontrol of the C CPx pin (s ee the C CPxCON register).

24.2.4 SPECIAL EVENT TRIGGER

When S pecial Ev ent T rigger m ode i s chosen (CCPxM<3:0> = 1011), th e C CPx m odule d oes th e following:

- Resets Timer1
- Starts an ADC conversion if ADC is enabled

The CCPx module does not assert control of the CCPx pin in this mode.

The Special Event Trigger output of the CCP occurs immediately upon a match betw een the TMR1H, TMR1L re gister p air a nd th e CCPRx H, CCPRxL register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D mo dule is enabled). This all ows the CCPRxH, CCPRxL register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 24-3: SPECIAL EVENT TRIGGER

Device	CCPx/ECCPx
PIC16(L)F1826	ECCP1
PIC16(L)F1827	CCP4

Refer to Section 16.2.5 "Special Event Trigger" for more information.

- Note 1: The Special Event Trigger from the CCP module d oes not s et i nterrupt f lag b it TMR1IF of the PIR1 register.
 - 2: Removing the ematch condition by changing the contents of the C CPRxH and C CPRxL register pair, between the clock edge that generates the S pecial Event T rigger and the clock edge that generates the T imer1 Res et, will preclude the Reset from occurring.

24.2.5 COMPARE DURING SLEEP

The C ompare mo de is de pendent upon the system clock (Fosc) for proper operation. Since Fosc is shut down during Sleep mode, the Compare mode will not function properly during Sleep.

24.2.6 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFC ON0 and APFCON1. To de termine which pins can be moved and what their default locations are upon a res et, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPRxL	Capture/Cor	mpare/PWM	Register x L	ow Byte (LSE	3)				204*
CCPRxH	Capture/Cor	mpare/PWM	Register x H	igh Byte (MS	B)				204*
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	170
CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NCH1	C1NCH0	171
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	170
CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	—		C2NCH1	C2NCH0	171
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE		—	CCP2IE ⁽²⁾	88
PIE3 ⁽²⁾	_	_	CCP4IE	CCP3IE	TMR6IE		TMR4IE	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	_	—	CCP2IF ⁽²⁾	92
PIR3 ⁽²⁾	_	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	93
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	—	TMR10N	185
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL	T1GSS1	T1GSS0	186
TMR1L	Holding Reg	gister for the	Least Signifi	cant Byte of t	he 16-bit TMR1 F	Register	1		177*
TMR1H	Holding Reg	jister for the	Most Signific	ant Byte of th	ne 16-bit TMR1 R	legister			177*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-4: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARE

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by Compare mode.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.3 PWM Overview

Pulse-Width Mo dulation (PWM) is a scheme that provides power to a load by switching quickly between fully on and fully off states. The PWM signal resembles a square wave where the high portion of the signal is considered the on state and the low portion of the signal is considered the off state. The high portion, also known as the pulse width, can vary in time and is defined in steps. A la rger n umber of st eps ap plied, w hich lengthens the pulse width, also supplies more power to the load. Lowering the number of steps applied, which shortens the pulse w idth, su pplies le ss po wer. The PWM period is defined as the duration of one complete cycle or the total amount of on and off time combined.

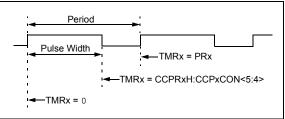
PWM resolution defines the maximum number of steps that can be present in a single PWM period. A higher resolution allows for more precise control of the pulse width time and in turn the power that is applied to the load.

The term duty cycle describes the proportion of the on time to the off time and is expressed in percentages, where 0% is fully off and 100% is fully on. A lower duty cycle corresponds to less power applied and a higher duty cycle corresponds to more power applied.

Figure 24-3 shows a typical waveform of the P WM signal.

24.3.1 STANDARD PWM OPERATION

The standard PWM function described in this section is available a nd id entical for C CP mo dules EC CP1, ECCP2, CCP3 and CCP4.


The st andard PW M m ode ge nerates a Pu lse-Width Modulation (PWM) signal on the CCPx pin with up to 10 bits of resolution. The period, duty cycle, and resolution are controlled by the following registers:

- •P Rx registers
- •T xCON registers
- CCPRxL registers
- · CCPxCON registers

Figure 24-4 shows a simplified block diagram of PWM operation.

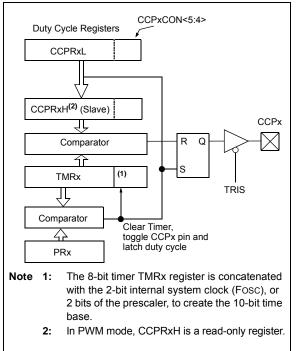

- Note 1: The corresponding TR IS bit must be cleared to enable the PWM output on the CCPx pin.
 - **2:** Clearing the C CPxCON register will relinquish control of the CCPx pin.

FIGURE 24-3: CCP PWM OUTPUT SIGNAL

SIMPLIFIED PWM BLOCK DIAGRAM

24.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for standard PWM operation:

- 1. Disable the CCPx pin output driver by setting the associated TRIS bit.
- 2. Load t he P Rx r egister with the P WM pe riod value.
- Configure the CCP module for the PWM mode by lo ading th e C CPxCON regi ster w ith th e appropriate values.
- 4. Load the CCPRxL register and the DCxBx bits of the C CPxCON register, with the PWM duty cycle value.
- 5. Configure and start Timer2/4/6:
 - •Select the Timer2/4/6 resource to be used for PWM generation by setting the CxTSEL<1:0> bits in the CCPTMRS register.
 - •Clear the TMRxIF interrupt flag bit of the PIRx register. See Note below.
 - •Configure the TxCKPS bits of the TxCON register with the Timer prescale value.
 - •Enable the Timer by setting the TMRxON bit of the TxCON register.
- 6. Enable PWM output pin:
 - •Wait until the Timer overflows and the TMRxIF bit of the PIRx register is set. See Note below.
 - •Enable the CCPx pin output driver by clearing the associated TRIS bit.
- Note: In order to send a complete duty cycle and period on the first PWM output, the above steps m ust be i ncluded i n the s etup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

24.3.3 TIMER2/4/6 TIMER RESOURCE

The PWM standard mode makes use of one of the 8-bit Timer2/4/6 timer resources to specify the PWM period.

Configuring the C xTSEL<1:0> b its in the C CPTMRS register selects which Timer2/4/6 timer is used.

24.3.4 PWM PERIOD

The PWM period is specified by the PRx register of Timer2/4/6. The PWM period can be calculated using the formula of Equation 24-1.

EQUATION 24-1: PWM PERIOD

 $PWM Period = [(PRx) + 1] \bullet 4 \bullet Tosc \bullet$ (TMRx Prescale Value)

Note 1: Tosc = 1/Fosc

When TMRx is equal to PRx, the following three events occur on the next increment cycle:

- TMRx is cleared
- The CCPx pin is set. (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM duty cycle is latched from CCPRxL into CCPRxH.

Note: The T imer post scaler (see Section 22.1 "Timer2/4/6 Operation") is not used in the determination of the PWM frequency.

24.3.5 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: C CPRxL register and DCxB<1:0> bit s of the C CPxCON register. The e CCPRxL contains the eight MSbs and the DCxB<1:0> bits of the C CPxCON register contain the two LSbs. CCPRxL and DCxB<1:0> b its of the e CCPx CON register can be written to at any time. The duty cycle value is not latched into CCPRxH until after the period completes (i.e., a m atch between PRx and TMRx registers occurs). While using the PWM, the CCPRxH register is read-only.

Equation 24-2 is us ed to c alculate the PWM pulse width.

Equation 24-3 is used to calculate the PWM duty cycle ratio.

EQUATION 24-2: PULSE WIDTH

Pulse Width = (CCPRxL:CCPxCON < 5:4>) •

TOSC • (TMRx Prescale Value)

EQUATION 24-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4)}{4(PRx + 1)}$

The C CPRxH reg ister and a 2-bit i nternal I atch a re used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR register is concatenated with either the 2-bit internal system clock (Fosc), or 2 bits of the prescaler, to create the 1 0-bit time base. The system clock is used if the Timer2/4/6 prescaler is set to 1:1.

When the 10-bit time base matches the CCPRxH and 2-bit latch, th en the C CPx pi n is cl eared (see Figure 24-4).

24.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is 10 bits when PRx is 255. The resolution is a function of the PRx register value as shown by Equation 24-4.

EQUATION 24-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PRx+1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the as signed PWM pin (s) w ill remain unchanged.

TABLE 24-5: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 32 MHz)

PWM Frequency	1.95 kHz	7.81 kHz	31.25 kHz	125 kHz	250 kHz	333.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-6: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 24-7: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PRx Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

24.3.7 OPERATION IN SLEEP MODE

In S leep mode, the TM Rx register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMRx will continue from its previous state.

24.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will re sult in ch anges to the PWM freq uency. Se e Section 5.0 "O scillator Module (W ith Fail-Safe Clock Monitor)" for additional details.

24.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3.10 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFC ON0 and APFCON1. To de termine which pins can be moved and what their default locations are upon a res et, see Section 12.1 "Alternate Pin Function" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM1 ⁽¹⁾	PxM0 ⁽¹⁾	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0	226
CCPxAS	CCPxASE	CCPxAS2	CCPxAS1	CCPxAS0	PSSxAC1	PSSxAC0	PSSxBD1	PSSxBD0	228
CCPTMRS	C4TSEL1	C4TSEL0	C3TSEL1	C3TSEL0	C2TSEL1	C2TSEL0	C1TSEL1	C1TSEL0	227
INTCON	GIE P	EIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PR2	Timer2 Peric	d Register							189*
PR4	Timer4 Modu	ule Period Re	gister						189*
PR6	Timer6 Module Period Register					189*			
PSTRxCON	_	—	_	STRxSYNC	STRxD	STRxC	STRxB	STRxA	230
PWMxCON	PxRSEN	PxDC6	PxDC5	PxDC4	PxDC3	PxDC2	PxDC1	PxDC0	229
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR4ON	T4CKPS1	T4CKPS0	191
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Reg	ister for the 8-	-bit TMR2 Tin	ne Base					189*
TMR4	Holding Reg	ister for the 8-	-bit TMR4 Tin	ne Base ⁽¹⁾					189*
TMR6	Holding Reg	ister for the 8	-bit TMR6 Tin	ne Base ⁽¹⁾					189*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.4 PWM (Enhanced Mode)

The enhanced PWM function described in this section is available for CCP modules ECCP1 and ECCP2, with any differences between modules noted.

The enhanced PWM mode generates a P ulse-Width Modulation (PWM) signal on up to four different output pins with up to 10 bits of resolution. The period, duty cycle, and resolution are con trolled by the following registers:

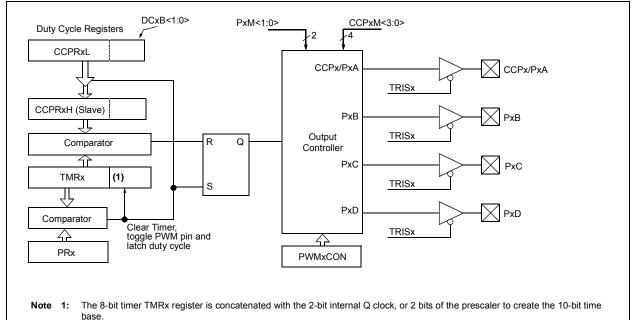
- •P Rx registers
- •T xCON registers
- · CCPRxL registers
- CCPxCON registers

The ECCP modules have the following additional PWM registers w hich control Auto-shutdown, Auto-rest art, Dead-band Delay and PWM Steering modes:

- · CCPxAS registers
- PSTRxCON registers
- PWMxCON registers

The enhanced PWM module can generate the following five PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward Mode
- Full-Bridge PWM, Reverse Mode
- Single PWM with PWM Steering Mode


To select an Enhanced PWM Output mode, the PxM bits of the CCPxCON register must be configured appropriately.

The PWM outputs are multiplexed with I/O pins and are designated PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately

Figure 24-5 s hows an example of a simplified block diagram of the Enhanced PWM module.

Figure 24-9 show s the pin assignments for various Enhanced PWM modes.

- Note 1: The c orresponding TR IS bit m ust be cleared to enable the PWM output on the CCPx pin.
 - 2: Clearing th e CC PxCON register will relinquish control of the CCPx pin.
 - **3:** Any pin not used in the enhanced PWM mode is available for al ternate pin functions, if applicable.
 - 4: To p revent the gen eration of an incomplete waveform when the PWM is first e nabled, the EC CP mo dule w aits until th e start o f a ne w PW M period before generating a PWM signal.

FIGURE 24-5: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

					520
ECCP Mode	PxM<1:0>	CCPx/PxA	PxB	PxC	PxD
Single	00	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

TABLE 24-9: **EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES**

Note 1: PWM Steering enables outputs in Single mode.

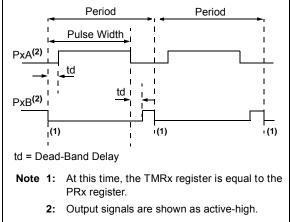
EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH **FIGURE 24-6:** STATE)

PxM<1:0>	Signal	0 <mark> </mark>	PRX+1	
		4	Period	
00 (Single Output)	PxA Modulated		Delaý	
	PxA Modulated	Delay		
10 (Half-Bridge)	PxB Modulated	- I 		
	PxA Active			
(Full-Bridge,	PxB Inactive	· · ·	1 I 1 I T 1	
⁰¹ Forward)	PxC Inactive	- I - I		
	PxD Modulated			
	PxA Inactive			
(Full-Bridge,	PxB Modulated			
Reverse)	PxC Active	· · · · · · · · · · · · · · · · · · ·		
	PxD Inactive	. ! 		

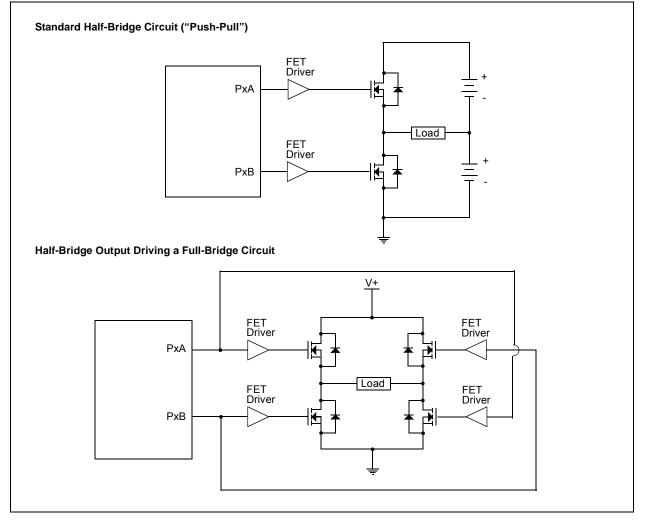
Period = 4 * Tosc * (PRx + 1) * (TMRx Prescale Value)
Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
Delay = 4 * Tosc * (PWMxCON<6:0>)

			-	Width	Period	
00	(Single Output)	PxA Modulated				
		PxA Modulated	Dela		⊲ → Delay	i
10 (H	(Half-Bridge)	PxB Modulated		iy		
		PxA Active	- ;			
01	(Full-Bridge, Forward)	PxB Inactive			 	
	i olwalu)	PxC Inactive	- :		1	i
		PxD Modulated				
		PxA Inactive	- ' - '		 	
11	(Full-Bridge,	PxB Modulated				i
	Reverse)	PxC Active	- ;		- - - - -	
		PxD Inactive	- !		 	

FIGURE 24-7: EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)


Pulse Width = Tosc * (CCPRxL<7:0>:CCPxCON<5:4>) * (TMRx Prescale Value)
 Delay = 4 * Tosc * (PWMxCON<6:0>)

24.4.1 HALF-BRIDGE MODE

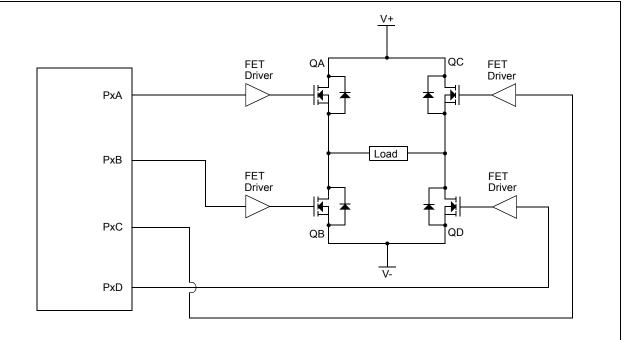

In Half-Bridge mode, two pins are used as outputs to drive push-pull loads. The PWM output signal is output on the CCPx/PxA pin, while the complementary PWM output si gnal i s o utput o n t he Px B pin (see Figure 24-9). This mode can be used for H alf-Bridge applications, as shown in Figure 24-9, or for Full-Bridge applications, w here four po wer s witches a re b eing modulated with two PWM signals.

In Half-Bridge mode, the programmable deadband delay can be used to preven t shoot -through curr ent in Half-Bridge power devices. The value of the PDC<6:0> bits of the PW MxCON r egister set s th e number of instruction cycles before the output is driven active. If the value is greater than the duty cycle, the corresponding output r emains inactive during the e ntire cycle. S ee Section 24.4.5 "Pr ogrammable Dead-Band D elay Mode" fo r more details of the dead- band de lay operations. Since the PxA and PxB outputs are multiplexed with the PORT data latches, the associated TRIS bits must be cleared to configure PxA and PxB as outputs.

FIGURE 24-8: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 24-9: EXAMPLE OF HALF-BRIDGE APPLICATIONS

24.4.2 FULL-BRIDGE MODE


In Full-Bridge mode, all four pins are used as outputs. An ex ample of Full-Bridge application is shown in Figure 24-10.

In the Forward mode, pin CCPx/PxA is driven to its active state, pin PxD is modulated, while PxB and PxC will be driven to their inactive state as shown in Figure 24-11.

In the Reverse mode, PxCis driven toits active state, pin PxB is modulated, while PxA and PxD will be driven to their inactive state as shown Figure 24-11.

PxA, PxB, PxC and PxD outputs are multiplexed with the PORT data latches. The associated TRIS bits must be cle ared to co nfigure the PxA, PxB, PxC and PxD pins as outputs.

FIGURE 24-10: EXAMPLE OF FULL-BRIDGE APPLICATION

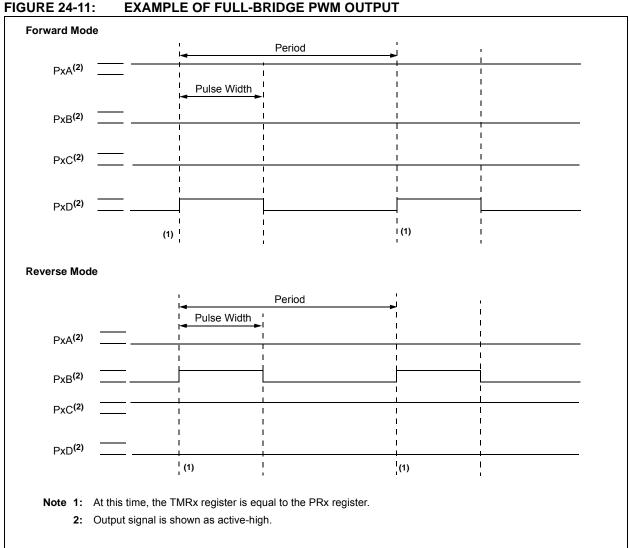


FIGURE 24-11: **EXAMPLE OF FULL-BRIDGE PWM OUTPUT**

24.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the PxM1 bit in the CCPxCON register allows users to cont rol t he f orward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

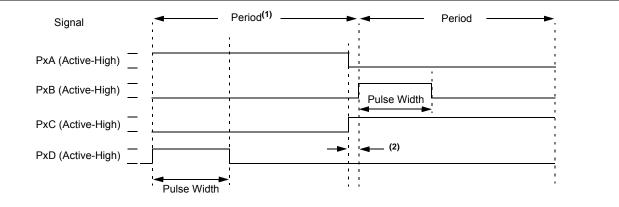
A direction change is initiated in software by changing the PxM1 bit of the CCPxCON register. The following sequence occurs four Timer cycles prior to the end of the current PWM period:

- The modulated outputs (PxB and PxD) are placed in their inactive state.
- The associated unmodulated outputs (PxA and PxC) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 24-12 for an illustration of this sequence.

The Fu II-Bridge m ode do es not prov ide d ead-band delay. As one output is modulated at a time, dead-band delay is generally n ot r equired. There is a situation where de ad-band del ay is required. This s ituation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power d evice and driver circuit, is g reater than the turn on time.


Figure 24-13 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output PxA and PxD b ecome in active, w hile ou tput Px C be comes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will f low t hrough p ower devices QC and QD (see Figure 24-10) fo r t he du ration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

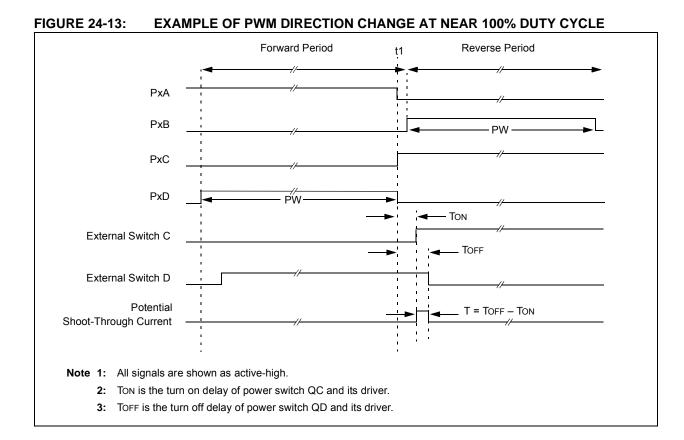

Other opt ions to prev ent sh oot-through cu rrent ma y exist.

FIGURE 24-12: EXAMPLE OF PWM DIRECTION CHANGE

Note 1: The direction bit PxM1 of the CCPxCON register is written any time during the PWM cycle.

2: When changing directions, the PxA and PxC signals switch before the end of the current PWM cycle. The modulated PxB and PxD signals are inactive at this time. The length of this time is four Timer counts.

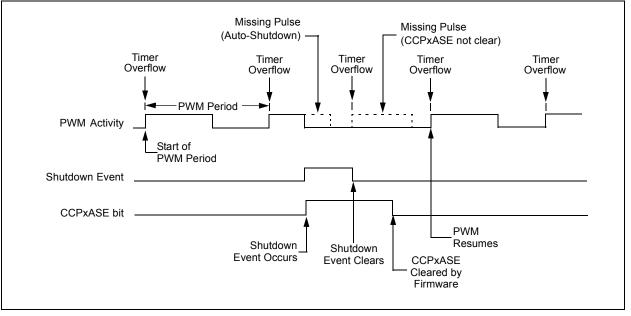
24.4.3 ENHANCED PWM AUTO-SHUTDOWN MODE

The PWM mode supports an Auto-Shutdown mode that will di sable the PWM output s w hen an external shutdown event occurs. Auto-Shutdown mo de places the PWM output pins into a prede termined state. This mode is used to help prevent the PWM from damaging the application.

The auto-shutdown sources are s elected usin g the CCPxAS<2:0> bits of the CCPxAS register. A shutdown event may be generated by:

- •A logic '0' on the INT pin
- •A logic '1' on a Comparator (Cx) output

A sh utdown co ndition is in dicated by the C CPxASE (Auto-Shutdown Ev ent S tatus) bit of the CCPxAS register. If the bit is a '0', the PWM pins are operating normally. If the bit is a '1', the PWM outputs are in the shutdown state.


When a shutdown event occurs, two things happen:

The C CPxASE bit is set to '1'. The CCPx ASE will remain set until cleared in firm ware or an auto-restart occurs (see Section 24.4.4 "Auto-Restart Mode").

The enabled PWM pins are as ynchronously placed in their s hutdown st ates. The PWM ou tput pins are grouped into pairs [PxA/PxC] and [PxB/PxD]. The state of eac h pin p air is determined by the PS SxAC and PSSxBD bits of the CCPxAS register. Each pin pair may be placed into one of three states:

- •D rive logic '1'
- •D rive logic '0'
- Tri-state (high-impedance)

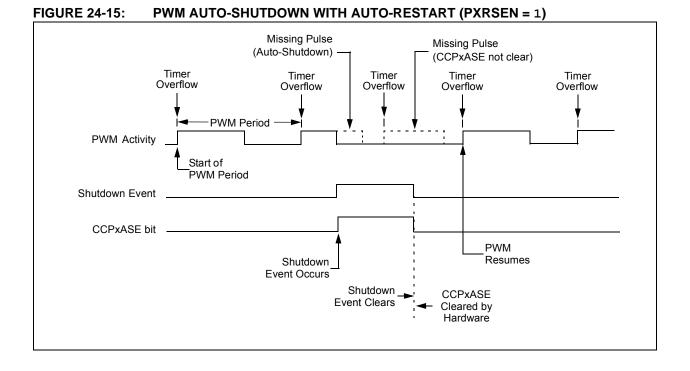
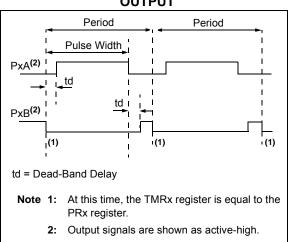

- Note 1: The auto-shutdown c ondition i s a level-based si gnal, no t an ed ge-based signal. As long as the level is present, the auto-shutdown will persist.
 - 2: Writing to the CCPx ASE bit of the CCPxAS register is disabled w hile an auto-shutdown condition persists.
 - 3: Once the a uto-shutdown condition h as been removed and the PW M restarted (either through firmware or a uto-restart) the PWM signal will always restart at the beginning of the next PWM period.
 - 4: Prior to an auto-shutdown event caused by a comparator output or INT pin event, a software shutdown can be triggered in firmware by setting the CCPxASE bit of the CCPxAS r egister t o' 1'. T he Auto-Restart fe ature t racks the active status of a sh utdown ca used b y a comparator output or INT pin event only. If it is en abled at t his t ime, it w ill immediately clear this bit and restart the ECCP mo dule at the be ginning of t he next PWM period.

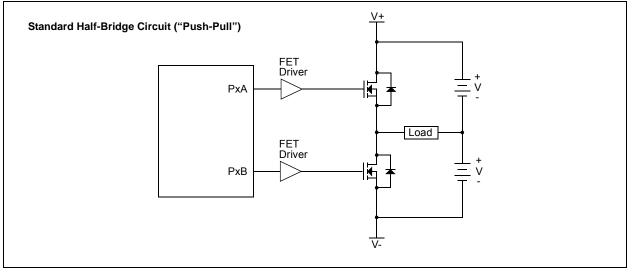
FIGURE 24-14: PWM AUTO-SHUTDOWN WITH FIRMWARE RESTART (PXRSEN = 0)

24.4.4 AUTO-RESTART MODE

The Enhanced PWM can be configured to a utomatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PxRSEN bit in the PWMxCON register. If auto-restart is enabled, the CCPxASE bit will remain set as long as the auto-shutdown condition is active. When the a uto-shutdown c ondition is re moved, th e CCPxASE bit will be cleared via hardware and normal operation will resume.



24.4.5 PROGRAMMABLE DEAD-BAND DELAY MODE


In H alf-Bridge a pplications where all p ower switches are m odulated at the PW M frequency, the po wer switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turn s off. During thi s bri ef i nterval, a v ery hi gh c urrent (*shoot-through c urrent*) will flow th rough both po wer switches, sh orting t he b ridge su pply. To avoid t his potentially de structive s hoot-through c urrent from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

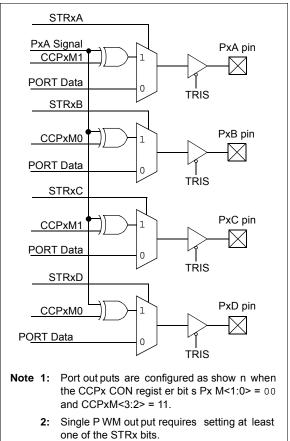
In Half-Bridge mode, a di gitally pro grammable dead-band d elay is a vailable to a void s hoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to th e ac tive s tate. See Figure 24-16 for illustration. Th e I ower s even b its of th e a ssociated PWMxCON re gister (Register 24-4) s ets th e d elay period in t erms of m icrocontroller instruction cycles (TcY or 4 Tosc).

FIGURE 24-16: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 24-17: EXAMPLE OF HALF-BRIDGE APPLICATIONS

24.4.6 PWM STEERING MODE

In Single Output mode, PWM steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.


Once the Si ngle O utput m ode is s elected (CCPxM<3:2> = 11 and PxM<1:0> = 00 of the CCPxCON register), the us er firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STRx<D:A> bits of the PSTRxCON register, as shown in Register 24-5.

Note: The associated TRIS bits must be set to output ('0') to enable the pin output driver in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCPxM<1:0> bits of the CCPxCON register select the PWM output polarity for the Px<D:A> pins.

The PWM auto-shutdown ope ration al so applies to PWM Steering mode as described in Section 24.4.3 "Enhanced PWM Auto-shutdown mo de". An auto-shutdown ev ent will on ly aff ect pi ns t hat have PWM outputs enabled.

FIGURE 24-18: SIMPLIFIED STEERING BLOCK DIAGRAM

24.4.6.1 Steering Synchronization

The STRxSYNC bit of the PSTRxCON register gives the user two selections of when the steering event will happen. When the STRxSYNC bit is '0', the steering event will happen at the e nd of the in struction th at writes to the PSTRxCON register. In th is case, the output s ignal at the P x<D:A> p ins m ay be a n incomplete PWM waveform. This operation is useful when the user firmware needs to immediately remove a PWM signal from the pin.

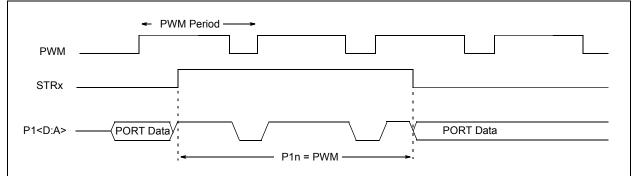
When the ST RxSYNC bit is '1', the effective steering update will happen at the beginning of the next PWM period. In this case, steering on/off the PWM output will always produce a complete PWM waveform.

Figures 24-19 and 24-20 illustrate the timing diagrams of the PWM steering depending on the STRxSYNC setting.

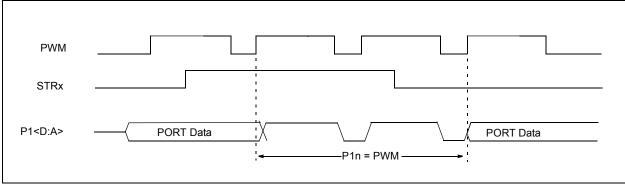
24.4.7 START-UP CONSIDERATIONS

When any PWM mode is us ed, the a pplication hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

The CCPxM<1:0> bits of the CCPxCON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (Px A/PxC a nd Px B/PxD). T he PW M o utput polarities must be selected before the PWM pin output drivers are en abled. Changing t he polarity configuration w hile the PWM pin ou tput drivers a re enable is n ot re commended since it may re sult in damage to the application circuits.


The PxA, PxB, PxC and PxD output latches may not be in the prop er s tates w hen th e PWM mo dule i s initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is i ndicated by th e T MRxIF b it of the PIRx register being set as the second PWM period begins.

Note: When the microcontroller is released from Reset, a II of the I/O p ins are in the high-impedance state. The e xternal c ircuits must keep the power switch devices in the Off s tate un til the m icrocontroller drives the I/O pins with the proper signal levels or activates the PWM output(s).


24.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFC ON0 and APFCON1. To de termine which pins can be moved and what their default locations are upon a res et, see Section 12.1 "Alternate Pin Function" for more information.

FIGURE 24-19: EXAMPLE OF STEERING EVENT AT END OF INSTRUCTION (STRxSYNC = 0)

FIGURE 24-20: EXAMPLE OF STEERING EVENT AT BEGINNING OF INSTRUCTION (STRxSYNC = 1)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽²⁾	CCP2SEL ⁽²⁾	P1DSEL	P1CSEL	CCP1SEL	119
CCPxCON	PxM<	1:0> (1)	DCxB	<1:0>		CCPx	/<3:0>		226
CCPxAS	CCPxASE	(CCPxAS<2:0>	>	PSSxA	C<1:0>	PSSxB	D<1:0>	228
CCPTMRS	C4TSE	:L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	227
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	_	_	CCP2IE	88
PIE3 ⁽²⁾	—	—	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	89
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	_	_	CCP2IF	92
PIR3 ⁽²⁾	—	_	CCP4IF	CCP3IF	TMR6IF	_	TMR4IF	—	93
PR2	Timer2 Peric	d Register							189*
PR4	Timer4 Modu	ule Period Re	gister						189*
PR6	Timer6 Modu	ule Period Re	gister						189*
PSTRxCON	—	_	_	STRxSYNC	STRxD	STRxC	STRxB	STRxA	230
PWMxCON	PxRSEN				PxDC<6:0>				229
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	191
T4CON	—	T4OUTPS3	T4OUTPS2	T4OUTPS1	T4OUTPS0	TMR40N	T4CKPS1	T4CKPS0	191
T6CON	—	T6OUTPS3	T6OUTPS2	T6OUTPS1	T6OUTPS0	TMR6ON	T6CKPS1	T6CKPS0	191
TMR2	Holding Register for the 8-bit TMR2 Time Base								189*
TMR4	Holding Register for the 8-bit TMR4 Time Base ⁽¹⁾							189*	
TMR6	Holding Reg	ister for the 8-	-bit TMR6 Tin	ne Base ⁽¹⁾					189*
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 24-10: SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: Applies to ECCP modules only.

2: PIC16(L)F1827 only.

24.5 CCP Control Registers

REGISTER 24-1: CCPxCON: CCPx CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0 R/	W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxM<	:1:0> (1)	DCxB	<1:0>		CCPxN	//<3:0>			
bit 7							bit 0		
Legend:	•4					(O)			
R = Readable b		W = Writable bit			nted bit, read as		Deset		
u = Bit is uncha '1' = Bit is set	ngea	x = Bit is unknov '0' = Bit is cleare		-n/n = value at	POR and BOR/V	alue at all other	Reset		
I = BILIS SEL		0 = Bit is cleare	eu						
bit 7-6	PxM<1:0>: En	hanced PWM Out	put Configuratio	on bits ⁽¹⁾					
	Capture mode:		,						
	Unused	-							
	Compare mode	<u>e:</u>							
	Unused								
	If CCPxM<3:2>	<u>> = 00, 01, 10:</u> ned as Capture/C	omparo input: [ssigned as port r	aine			
	If CCPxM<3:2>		ompare input, r	-xd, FxC, FxD a	ssigned as port p	0115			
		tput; PxA modulat	ed; PxB, PxC, F	xD assigned as	port pins				
	01 = Full-Bridg	e output forward;	PxD modulated	; PxA active; PxE	8, PxC inactive				
		e output; PxA, Px e output reverse;				ssigned as port p	ins		
bit 5-4	0	WM Duty Cycle L		-	.,				
	Capture mode:	, ,							
	Unused								
	Compare mode Unused	<u>e:</u>							
	<u>PWM mode:</u> These bits are	the two LSbs of th	ne PWM duty cy	cle. The eight M	Sbs are found in	CCPRxL.			
bit 3-0	CCPxM<3:0>:	ECCPx Mode Se	lect bits						
	0000 =Capture	e/Compare/PWM	off (resets ECCI	^D x module)					
	0001 =Reserve								
	0010 =Compa 0011 =Reserv	re mode: toggle o ed	utput on match						
		cu .							
		e mode: every fall							
		e mode: every risi e mode: every 4th							
		e mode: every 401							
	·	,	0 0						
		re mode: initialize	•		•	,			
		re mode: initialize re mode: generate			•	· ,			
	1010 =Compare mode: generate software interrupt only; ECCPx pin reverts to I/O state 1011 =Compare mode: Special Event Trigger (ECCPx resets Timer, sets CCPxIF bit, starts A/D conversion if A/I								
	modu	le is enabled) ⁽¹⁾							
	CCP Modules								
	11xx =PWM m								
	ECCP Modules		otivo high: DyD	DvD active high					
		node: PxA, PxC a node: PxA, PxC a	-	-					
		node: PxA, PxC a							
	1111 = PWM m	node: PxA, PxC a	ctive-low; PxB, I	PxD active-low					

Note 1: These bits are not implemented on CCP<4:3>.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
C4TSEL<1:0>		C3TSEL<1:0>		C2TSEL<1:0>		C1TSEL<1:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unkn	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	C4TSEL<1:0	>: CCP4 Timer	Selection				
		based off Time					
		based off Time					
	10 =CCP4 is 11 =Reserve	based off Time	r 6 in Pvvivi ivi	ode			
bit 5-4		∽ >: CCP3 Timer	Selection				
		based off Time		ode			
		based off Time					
		based off Time	r 6 in PWM M	ode			
	11 =Reserve	-					
bit 3-2		>: CCP2 Timer					
	00 00 1 10	based off Time		0.0			
01 =CCP2 is based off Timer 4 in PWM Mode 10 =CCP2 is based off Timer 6 in PWM Mode							
11 =Reserved							
bit 1-0	C1TSEL<1:0>: CCP1 Timer Selection						
00 =CCP1 is based off Timer 2 in PWM Mode							
	01 =CCP1 is	based off Time	r 4 in PWM M	ode			
10 =CCP1 is based off Timer 6 in PWM Mode							
	11 =Reserve	d					

REGISTER 24-2: CCPTMRS: PWM TIMER SELECTION CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
CCPxASE		CCPxAS<2:0>		PSSxAC<1:0> PSSxBD<1:0>					
bit 7							bit		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets		
'1' = Bit is se	t	'0' = Bit is clea	ared						
bit 7	CCPxASE	: CCPx Auto-Shu	tdown Event S	Status bit					
		down event has o		x outputs are in	shutdown state	9			
		outputs are opera	•	.					
bit 6-4		2:0>: CCPx Auto-		urce Select bits					
		p-shutdown is disa nparator C1 outpu							
		nparator C2 output							
		er Comparator C1							
	100 =V IL C	•	5						
		on INT pin or Com							
		on INT pin or Com			(1)				
		n INT pin or Com		•	0				
bit 3-2		1:0>: Pins PxA ar		own State Contr	ol bits				
		pins PxA and Px							
	 01 = Drive pins PxA and PxC to '1' 1x = Pins PxA and PxC tri-state it 1-0 PSSxBD<1:0>: Pins PxB and PxD Shutdown State Control bits 								
bit 1-0				own State Contr	oi dits				
	00 = Drive pins PxB and PxD to '0' 01 = Drive pins PxB and PxD to '1'								
		•							

REGISTER 24-3: CCPxAS: CCPx AUTO-SHUTDOWN CONTROL REGISTER

Note 1: If CxSYNC is enabled, the shutdown will be delayed by Timer1.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PxRSEN			PxDC<6:0>						
bit 7	it 7								
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'			
u = Bit is und	= Bit is unchanged x = Bit is unknown				t POR and BC	R/Value at all	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7	PxRSEN: P	WM Restart Ena	able bit						
	1 = Upon a	uto-shutdown, th	e CCPxASE I	bit clears automa	atically once the	e shutdown eve	ent goes away;		
	the PW	M restarts auton	natically						
	0 = Upon a	0 = Upon auto-shutdown, CCPxASE must be cleared in software to restart the PWM							
bit 6-0	PxDC<6:0>: PWM Delay Count bits								
PxDCx =Number of Fosc/4 (4 * Tosc) cycles between the scheduled time when a PWM signal should transition active and the actual time it transitions active							signal should		

REGISTER 24-4: PWMxCON: ENHANCED PWM CONTROL REGISTER

Note 1: Bit resets to '0' with Two-Speed Start-up and LP, XT or HS selected as the Oscillator mode or Fail-Safe mode is enabled.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0 R/	W-0/0	R/W-1/1		
_	—	_	STRxSYNC	STRxD	STRxC	STRxB	STRxA		
bit 7							bit C		
Legend:									
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value	at POR and BOI	R/Value at all	other Resets		
'1' = Bit is s	et	'0' = Bit is cle	ared						
			(- 1						
bit 7-5	-	ted: Read as							
bit 4		Steering Sync							
		0 1	occurs on next		instruction such				
	•	•		eginning of the	e instruction cycl	e boundary			
bit 3		ring Enable bi							
				olarity control	from CCPxM<1	:0>			
	•	s assigned to	•						
bit 2		ring Enable bi							
			•	olarity control	from CCPxM<1	:0>			
	-	s assigned to p	-						
bit 1		ring Enable bi							
		1 = PxB pin has the PWM waveform with polarity control from CCPxM<1:0>							
	0 = PxB pin is	0 = PxB pin is assigned to port pin							
bit 0	STRxA: Steering Enable bit A								
	•			olarity control	from CCPxM<1	:0>			
	0 = PxA pin is	s assigned to p	port pin						
Note 1:	The PWM Steering	a mode is avai	ilable only wher	the CCPxCO	N register hits (`CPvM<3.2> =	= 11 and		

REGISTER 24-5: PSTRxCON: PWM STEERING CONTROL REGISTER⁽¹⁾

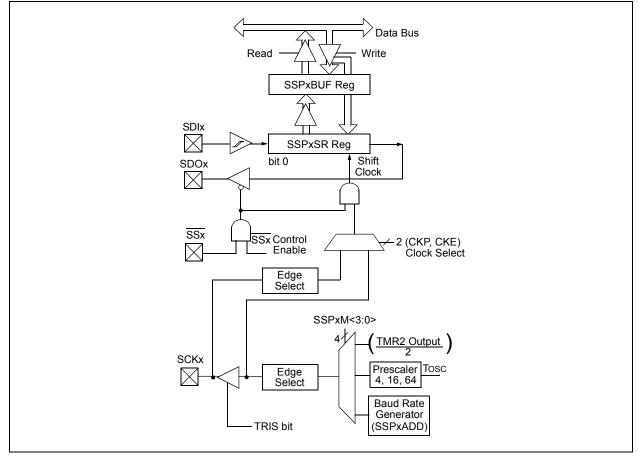
Note 1: The PWM Steering mode is available only when the CCPxCON register bits CCPxM<3:2> = 11 and PxM<1:0> = 00.

25.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

25.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])


The SPI i nterface supports the following modes and features:

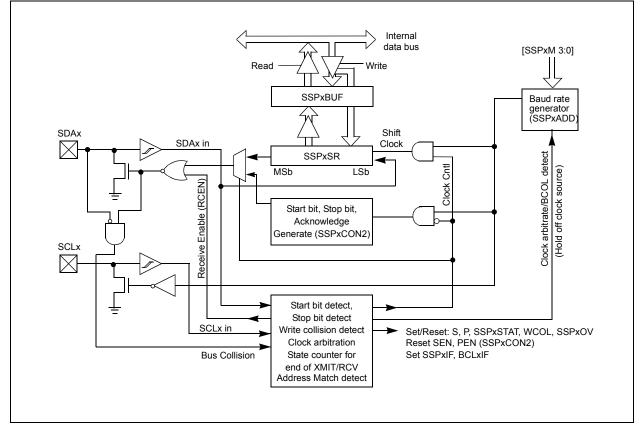
•M aster mode

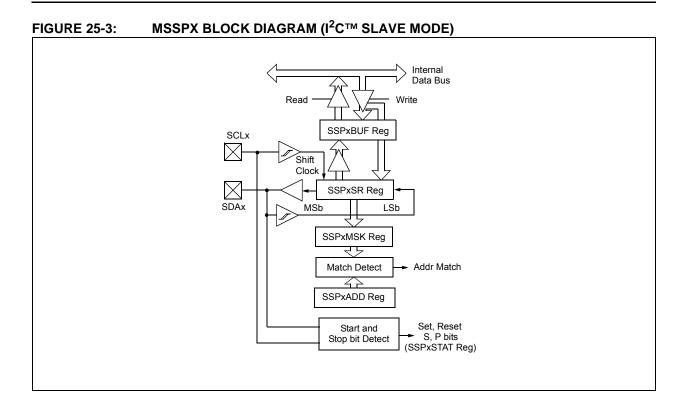
- · Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 25-1 is a block diagram of the SPI interface module.

FIGURE 25-1: MSSPX BLOCK DIAGRAM (SPI MODE)

The I 2 C interface s upports the following modes and features:


- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- Limited Multi-master support
- 7-bit and 10-bit addressing
- Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- •A ddress masking
- · Address Hold and Data Hold modes
- Selectable SDAx hold times


Figure 25-2 is a bl ock dia gram of the I^2C i nterface module in Master mode. Figure 25-3 is a diagram of the I^2C interface module in Slave mode.

The PIC16F1827 has two MSSP modules, MSSP1 and MSSP2, each m odule op erating in dependently from the other.

- Note 1: In de vices w ith m ore than on e M SSP module, it is very important to pay close attention to SS PxCONx register names. SSP1CON1 an d SSP 1CON2 re gisters control d ifferent op erational asp ects of the same module, while SSP1CON1 and SSP2CON1 control the same features for two different modules.
 - 2: Throughout thi s se ction, generic ref erences to an M SSP module in any of it s operating modes may be interpreted as being eq ually ap plicable to M SSP1 or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to in dicate the us e of a numeral to distinguish a particular module when required.

FIGURE 25-2: MSSPX BLOCK DIAGRAM (I²C[™] MASTER MODE)

25.2 SPI Mode Overview

The S erial Pe ripheral I nterface (SPI) bus is a synchronous s erial data c ommunication b us that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave de vice is controlled thro ugh a C hip Select known a s S lave Select.

The SPI bus specifies four signal connections:

- · Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 25-1 shows the block diagram of the MSSPx module when operating in SPI Mode.

The SPI bus operates with a single master device and one or mo re sl ave dev ices. When multiple s lave devices are used, an independent Slave Select connection is re quired from the master device to each slave device.

Figure 25-4 s hows a t ypical c onnection be tween a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state ou tputs s o their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out fi rst. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 25-5 shows a ty pical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

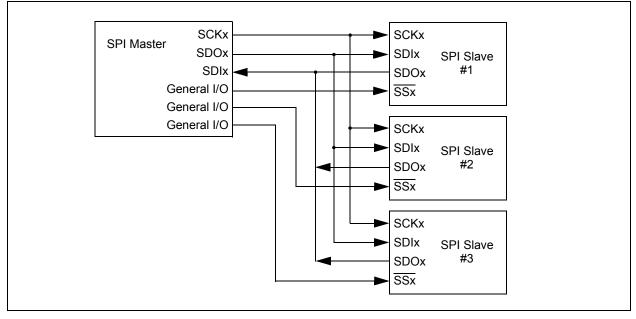
The master de vice tra nsmits information out on it s SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Bo th the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each S PI cl ock cycle, a f ull-duplex d ata transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDOx pin) and the slave device is reading this bit and s aving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and s aving it as the LSb of its shift register.

After 8 bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.


Whether the data is meaningful or n ot (dummy data), depends on the app lication sof tware. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may in volve any num ber of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

25.2.1 SPI MODE REGISTERS

The MSSPx module has five registers for SPI m ode operation. These are:

- MSSPx STATUS register (SSPxSTAT)
- MSSPx Control Register 1 (SSPxCON1)
- MSSPx Control Register 3 (SSPxCON3)
- MSSPx Data Buffer register (SSPxBUF)
- MSSPx Address register (SSPxADD)
- MSSPx Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STA-TUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower 6 bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In one SPI m aster mode, SSPx ADD c an b e lo aded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in Section 25.7 "Baud Rate Generator".

SSPxSR is the s hift register used for s hifting data in and out. SSPx BUF provides in direct access to the SSPxSR register. SSPx BUF is the buffer register to which d ata by tes a re written, and from which data bytes are read.

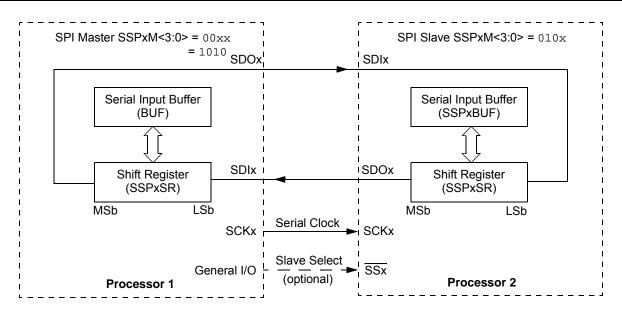
In re ceive o perations, S SPxSR and SSPx BUF together c reate a buf fered rec eiver. Whe n SSPx SR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPx BUF will write to b oth SSPx BUF and SSPxSR.

25.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPxCON1<5:0> and SSPxSTAT<7:6>). These control bits allow the following to be specified:

- · Master mode (SCKx is the clock output)
- · Slave mode (SCKx is the clock input)
- Clock Polarity (Idle state of SCKx)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCKx)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)


To enable the serial port, SSPx Enable bit, SSPxEN of the SSPxCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPxEN bit, re-initialize the SSPxCONx registers and then set the SSPx EN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDIx must have corresponding TRIS bit set
- · SDOx must have corresponding TRIS bit cleared
- SCKx (Master mode) must have corresponding TRIS bit cleared
- SCKx (Slave mode) must have corresponding
 TRIS bit set
- SSx must have corresponding TRIS bit set

Any serial port f unction t hat is n ot desired m ay be overridden by programming the corresponding dat a direction (TRIS) register to the opposite value.

The MSSPx consists of a transmit/receive shift register (SSPxSR) and a buf fer reg ister (SSPx BUF). The SSPxSR shifts the data in and out of the device, MSb first. The SSPxBUF holds the data that was written to the SSPxSR until the received data is ready. Once the 8 bits of data have been received, that byte is moved to the SSPxBUF register. Then, the Buffer Full Detect bit, BF of the SSPxSTAT register, and the interrupt flag bit, SSPxIF, are set. This double-buffering of the received data (SSPxBUF) allows the next byte to start reception before reading the data that was just received. Any write to t he SSPx BUF reg ister d urina transmission/reception of data will be ignored and the write c ollision d etect bit WC OL o f th e S SPxCON1 register, will be set. U ser software must c lear the WCOL b it t o al low t he f ollowing w rite(s) to the SSPxBUF register to complete successfully.

When the application software is expecting to receive valid dat a, the SSPx BUF s hould be read before the next byte of data to transfer is written to the SSPxBUF. The Buf fer Ful I bit, BF of the SSPx STAT register, indicates when SSPx BUF has been loaded with the received da ta (transmission is c omplete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the M SSPx i nterrupt is u sed to d etermine when the transmission/reception has completed. If the interrupt method is not going to be us ed, then software polling can be done to ensure that a write collision does not occur.

FIGURE 25-5: SPI MASTER/SLAVE CONNECTION

25.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because i t co ntrols the SC Kx I ine. The master determines when the slave (Processor 2, Figure 25-5) is to broadcast data by the software protocol.

In Ma ster mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the p rogrammed cl ock rate. As each by te is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The c lock p olarity is s elected by ap propriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would g ive w aveforms for S PI communication as shown in Figure 25-6, Figure 25-8 and Figure 25-9, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- •F osc/4 (or Tcy)
- •F osc/16 (or 4 * Tcy)
- •F osc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPxADD + 1))

Figure 25-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.

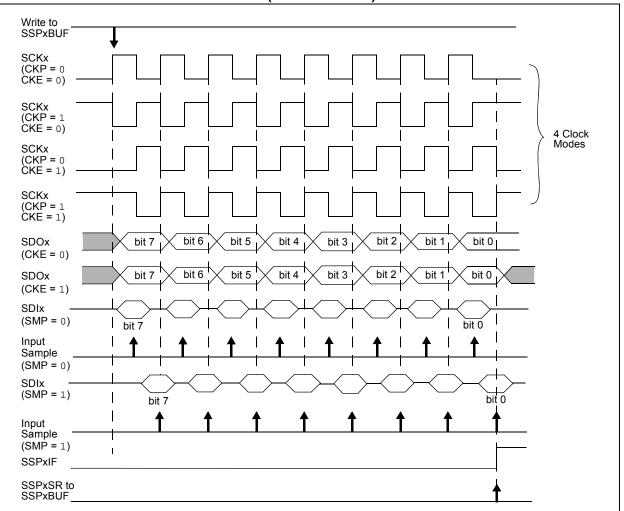


FIGURE 25-6: SPI MODE WAVEFORM (MASTER MODE)

25.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module inSPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sle ep mode, the s lave can tran smit/receive data. The shift register is clocked from the SCKx pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

25.2.4.1 Daisy-Chain Configuration

The SPI bu s c an s ometimes be c onnected in a daisy-chain configuration. The first slave output is connected to the sec ond s lave in put, the sec ond s lave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of c lock pulses. The whole chain acts as one large c ommunication s hift re gister. Th e daisy-chain feature only requires a single Slave Select line from the master device.

Figure 25-7 shows t he block di agram of a ty pical daisy-chain connection when operating in SPI Mode.

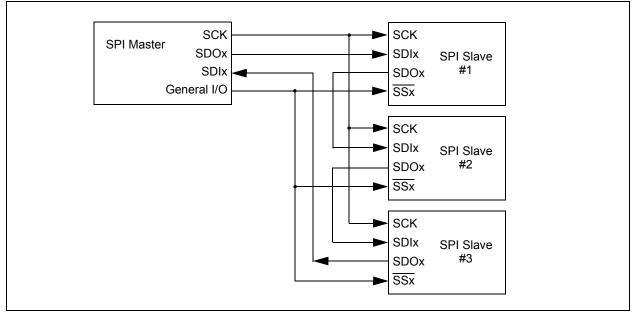
In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

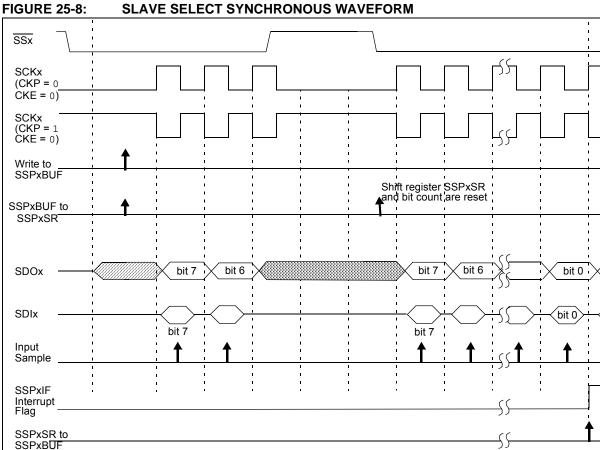
25.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master dev ice is read y to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then re ady to re ceive a ne w tran smission w hen th e Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to al ign th emselves at the be ginning of each transmission.

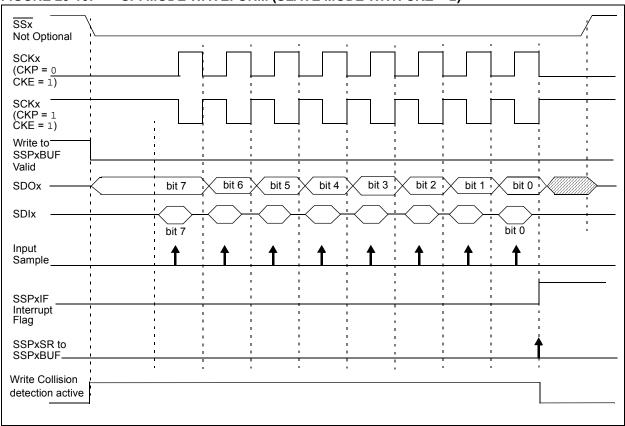
The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100).


When the \overline{SSx} pin is low, transmission and reception are enabled and the SDOx pin is driven.


When the \overline{SSx} pin goes high, the SDOx pin is no boger driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When the SPI is in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SSx} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable SSx pin control.
3:	While o perated in SPI SI ave mode the SMP bit of the SSPx STAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPxEN bit.



1

FIGURE 23-9.	JELL		AVEFU				H CKE	= 0)		
SSx Optional	\									
ORL = 0	1 1 1 1 1								· .	
SCKx (CKP = 1 CKE = 0)	I I I I									
Write to SSPxBUF Valid	1 1 1 1	1	1 1 1 1	1 1 1 1 1	1 1 1 1	 	1 1 1 1	1 1 1 1		
SDOx		bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	
SDIx ———	1 1 1 1	bit 7	\sim	\leftarrow	\leftarrow	\sim	\rightarrow	\leftarrow	bit 0	
Input Sample	1 1 1 1	<u> </u>	1	1	1	Ť	1	1	†	
SSPxIF Interrupt Flag	1 1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1			1 1 1 1 1			
SSDVSD to	ı 1	ı ı ⊷	1 1	, ,	ı ı ı	ı	ı ı	-	<u>↑</u>	
	•	' 	•	•						i
Write Collision										
detection active										

FIGURE 25-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

FIGURE 25-9: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 0)

25.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in full power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the us er when the MSSPx clock is much faster than the system clock.

In Slave mode, when MSSPx interrupts are enabled, after the master completes sending data, an MSSPx interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSPx interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all m odule c locks are ha lted and the tra nsmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI T ransmit/Receive Shift register operates asy nchronously to the device. This allows the device to be placed in Sleep mode and data to b e s hifted i nto th e S PI T ransmit/Receive Shift register. Whe n al I 8 bits have be en received, the MSSPx interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
ANSELA	—	-	-	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	—	128
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
SSPxBUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				235*
SSPxCON1	WCOL	SSPxOV	SSPxEN	CKP	SSPxM3	SSPxM2	SSPxM1	SSPxM0	280
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	282
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	279
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSPx in SPI mode.

* Page provides register information.

Note 1: PIC16(L)F1827 only.

25.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I²C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment w here the m aster devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- · Serial Clock (SCLx)
- Serial Data (SDAx)

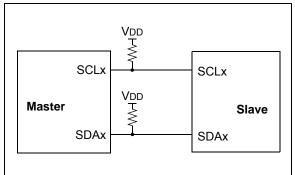
Figure 25-11 shows the block diagram of the MSSPx module when operating in I^2C Mode.

Both the SCLx and SDAx connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 25-11 shows a typical connection between two processors configured as master and slave devices.

The I²C bus can op erate with one or mo re master devices and one or more slave devices.

There are four potential modes of operation for a given device:


- Master Transmit mode
 (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- •S lave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, ei ther in Receive mode or T ransmit mode, respectively.

A Start bit is indicated by a high-to-low transition of the SDAx line while the SCLx line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 25-11: I²C MASTER/ SLAVE CONNECTION

The Ack nowledge bit $(\overline{AC \ K})$ is an active-low signal, which holds the SDAx line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a d ata bit is always performed while the SCLx line is held low. Transitions that occur while the SCLx line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overrightarrow{ACK} bit. In this example, the master dev ice is in Master Transmit mo de and the slave is in Slave Receive mode.

If the master in tends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an ACK bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last by te of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in R eceive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDAx line while the SCLx line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical z ero, or holding the line low, the first device c an detect that the line is not a logical one. This detection, when used on the SCLx line, is called clock stretching. Clock stretching gives slave devices a me chanism to control the flow of data. When this detection is used on the SD Ax lin e, i t is ca lled a rbitration. A rbitration ensures that there is only one master device communicating at any single time.

25.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of C lock S tretching. An add ressed s lave device may hold the SCLx clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCLx line in order to transfer the next bit, but will detect that the clock line has not yet been rele ased. Because the SC Lx con nection i s open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

25.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the proc ess of arbitration beg ins. Eac h tran smitter checks the level of the SDAx data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels don't match, loses arbitration, and must stop transmitting on the SDAx line.

For example, if one transmitter holds the SDAx line to a l ogical o ne (l ets it f loat) and a s econd tran smitter holds it to a logical zero (pulls it low), the result is that the SD Ax li ne will be low. The first t ransmitter the n observes th at th e le vel of th e li ne i s d ifferent tha n expected and co ncludes that another transmitter i s communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDAx line. If this transmitter is also a master device, it also must stop driving the SCLx line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the oth er device that has not noticed any difference between the expected and actual levels on the SDAx line continues with it's original transmission. It can do so without any complications, b ecause s o far, the tran smission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave a ddress, and addresses can so metimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

25.4 I²C MODE OPERATION

All M SSPx I 2 C communication is byte o riented and shifted out MSb first. Six SFR registers and 2 interrupt flags i nterface the module with the PI C[®] m icrocontroller and user software. Two pins, SDAx and SCLx, are exercised by the module to communicate with other external I²C devices.

25.4.1 BYTE FORMAT

All communication in I^2C is done in 9-bit segments. A byte is sent from a Master to a Slave or vice-versa, followed by an Acknowledge bit sent back. After the 8th falling ed ge of the SCLx line, the d evice ou tputting data on the SDAx changes that p in to an in put and reads in an ac knowledge value on the next clock pulse.

The c lock s ignal, SC Lx, i s p rovided b y the master. Data is valid to change while the SC Lx signal is low, and sampled on the rising edge of the clock. Changes on the SD Ax line w hile the SC Lx line is high d efine special conditions on the bus, explained below.

25.4.2 DEFINITION OF I²C TERMINOLOGY

There is language and terminology in the description of I²C communication that have definitions specific to I²C. That word us age is defined below and may be used in the rest of this document without explanation. This t able w as ad apted from the Phi lips I 2 C specification.

25.4.3 SDAX AND SCLX PINS

Selection of a ny I^2C mode with the SSPxEN bit s et, forces the SC Lx and SD Ax pi ns to be op en-drain. These pins should be set by the user to inputs by setting the appropriate TRIS bits.

Note: Data is t ied to output zero w hen a n I ²C mode is enabled.

25.4.4 SDAX HOLD TIME

The hold time of the SD Ax pin is s elected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDAx is held valid after the falling edge of SCLx. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on bus es with larg e capacitance.

TABLE 25-2: I²C BUS TERMS

TADLE 29-2:	
TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the mas- ter.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDAx and SCLx lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/W bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCLx low to stall communication.
Bus Collision	Any time the SDAx line is sampled low by the module while it is out- putting and expected high state.

25.4.5 START CONDITION

The I²C spe cification defines a Start condition as a transition of S DAx f rom a h igh t o a I ow state w hile SCLx line is high. A S tart condition is always generated by the master and signifies the transition of the bus f rom an Id le to an Ac tive s tate. Figure 25-10 shows wave forms for Start and Stop conditions.

A b us collision c an oc cur on a Start c ondition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

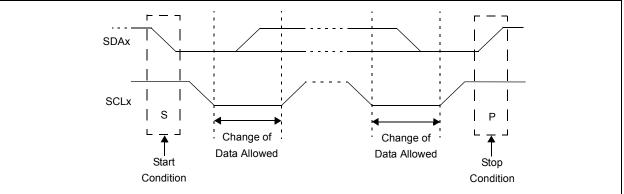
25.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from low-to-high state while the SCLx line is high.

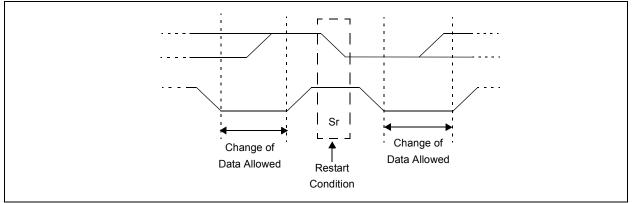
Note: At I east o ne SC Lx I ow time mu st a ppear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line st ays h igh, o nly th e S tart co ndition i s detected.

25.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can is sue a R estart if it wishes to hold the bus after term inating the current tran sfer. A Restart has the same effect on the slave that a S tart would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave.


In 10-bit Addressing Slave mode a Restart is required for the ma ster to cl ock dat a out of the add ressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a R estart and the high address by te with the R/\overline{W} bit s et. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a h igh address with R/\overline{W} clear, or high address match fails.


25.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an in terrupt in Slave modes that do not typically support this function. Slave modes where interrupt on S tart and S top d etect a re already enabled, these bits will have no effect.

25.4.9 ACKNOWLEDGE SEQUENCE

The 9th SCLx pulse for any transferred byte in I^2C is dedicated as a n Ac knowledge. It a llows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the d evice h as rec eived th e transmitted d ata and i s ready to receive more.

The result of an ACK is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an ACK will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPxOV bit of the SSPxCON1 register are set when a byte is received.

When the module is ad dressed, after the 8th falling edge of SC Lx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

25.5 I²C SLAVE MODE OPERATION

The MSSPx SI ave m ode o perates i n one o f fo ur modes selected in the SSPxM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10- bit Add ressing m odes op erate the same as 7-bit with some a dditional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operated the same as the other modes with SSPxIF add itionally getting set upon detection of a Start, Restart, or Stop condition.

25.5.1 SLAVE MODE ADDRESSES

The SSPx ADD reg ister (Register 25-6) c ontains t he Slave mode a ddress. The first by te received after a Start or R estart con dition is compared aga inst th e value stored in this register. If the by te matches, the value is loaded into the SSPx BUF register and an interrupt is generated. If the value does not match, the module goes Idle and no indication is given to the software that anything happened.

The SSPx M ask register (Register 25-5) a ffects the address m atching process. Se e **Section 25.5.9 "SSPx Mask Register**" for more information.

25.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

25.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-b it Ad dressing mode, the f irst received by te is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two M Sb of the 10-bit ad dress and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all 8 bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held I ow until SSPxADD is updated to receive a high by te ag ain. When SSPxADD is updated the UA bit is cleared. This ensures the m odule is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by is suing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

25.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPx STAT register is cleared. The received address is loaded into the SSPx-BUF register and acknowledged.

When t he ov erflow condition ex ists for a r eceived address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPxOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this ope ration. For more in formation se e Register 25-4.

An MSSPx interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPx CON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the C KP bit of the SSPx CON1 register, except sometimes in 10-bit mode. See Section 25.2.3 "SPI Master Mode" for more detail.

25.5.2.1 7-bit Addressing Reception

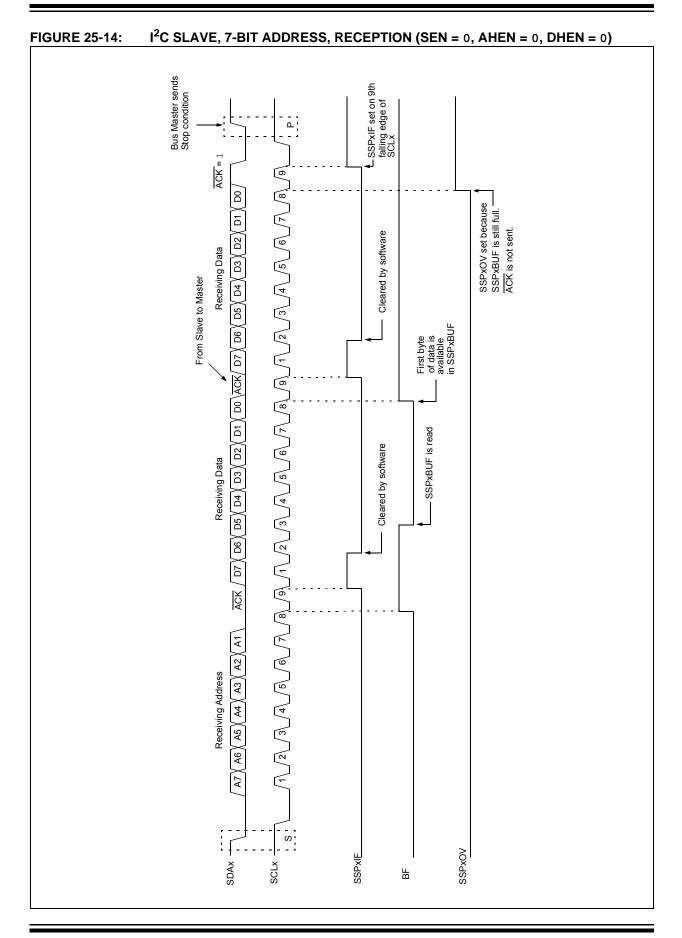
This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 7-bit Add ressing mode. All decisions made by hardware o r s oftware a nd their e ffect on rec eption. Figure 25-13 a nd Figure 25-14 is used as a vi sual reference for this description.

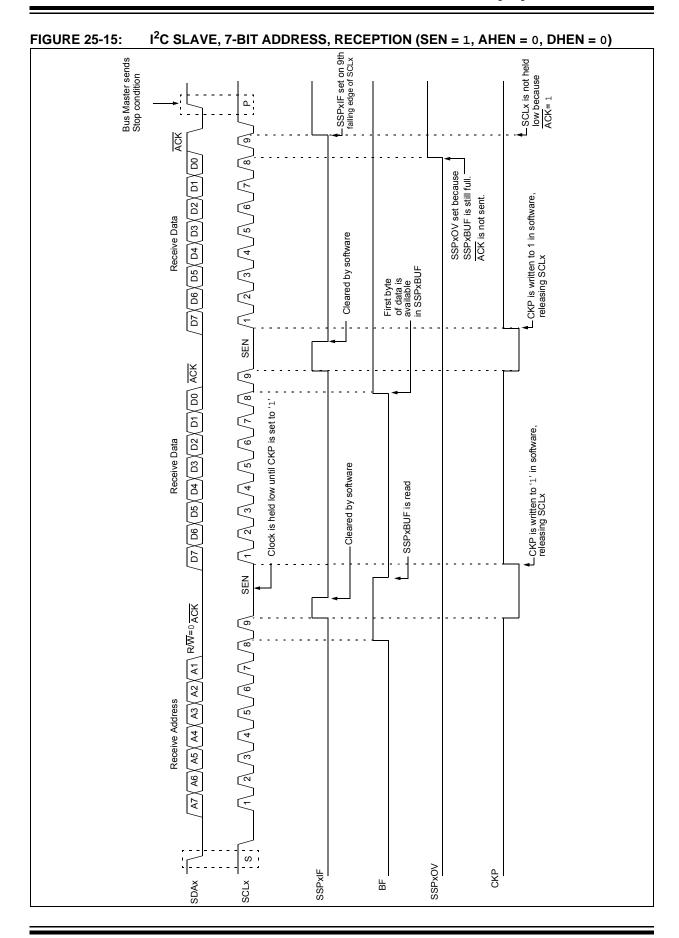
This is a step by step process of what typically must be done to accomplish I^2C communication.

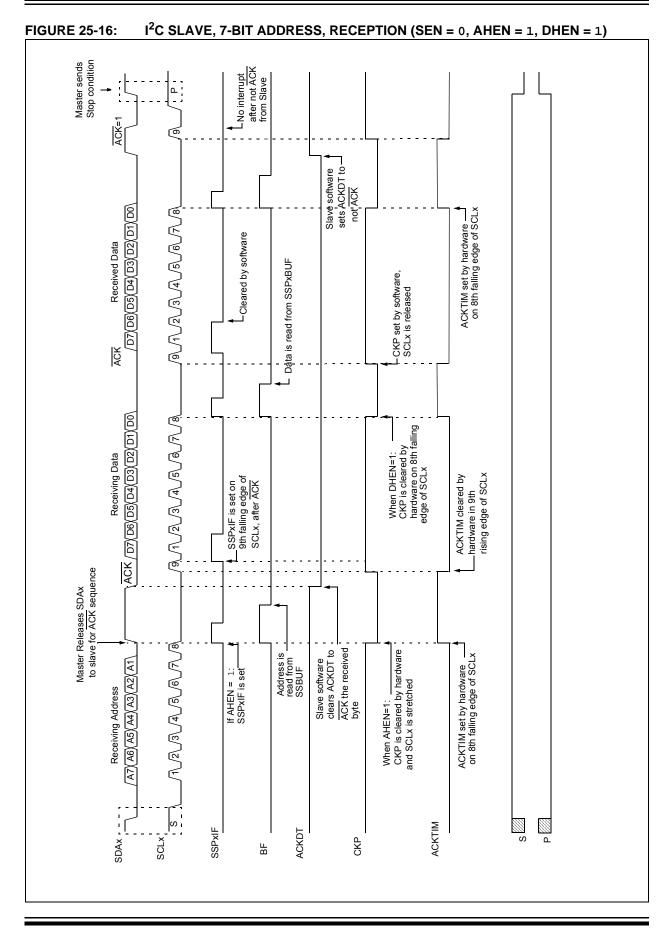
- 1. Start bit detected.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 5. Software clears the SSPxIF bit.
- 6. Software re ads received a ddress from SS Px-BUF clearing the BF flag.
- 7. If SEN = 1; S lave s oftware se ts C KP bit to release the SCLx line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDAx low sending an ACK to the master, and sets SSPxIF bit.
- 10. Software clears SSPxIF.
- 11. Software r eads the r eceived by te from S SPx-BUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the Master.
- 13. Master sends S top c ondition, s etting P b it of SSPxSTAT, and the bus goes Idle.

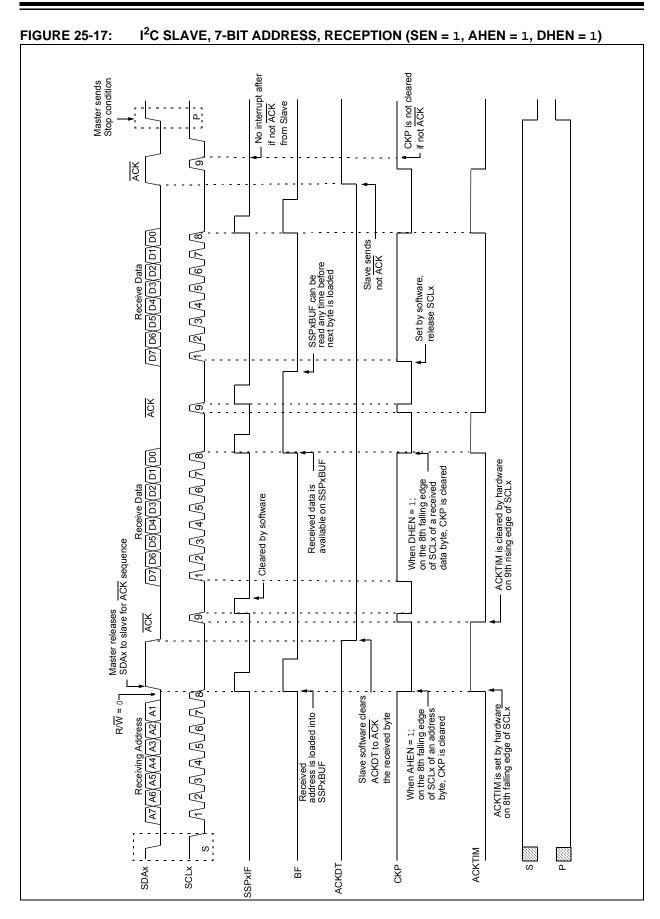
25.5.2.2 7-bit Reception with AHEN and DHEN

Slave dev ice rec eption with AH EN and DHEN s et operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCLx. These additional interrupts allow the slave software to d ecide whether it wants to ACK the receive a ddress or data byte, ra ther th an the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.


This list describes the steps that need to be taken by slave software to use these options for I^2C communcation. Figure 25-15 d isplays a module us ing both address and data holding. Figure 25-16 in cludes the operation with the SEN bit of the SSPxCON2 register set.


- 1. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSPxIF is set and CKP cleared after the 8th falling edge of SCLx.
- 3. Slave clears the SSPxIF.
- Slave can look at the AC KTIM bit of the SSPxCON3 register to determine if the SSPxIF was after or before the ACK.
- 5. Slave reads the address value from SSPxBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSPxIF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the s lave h ardware will st retch the clock after the ACK.


10. Slave clears SSPxIF.


Note: SSPxIF is still set after the 9th falling edge of SCLx even if there is no clock stretching and BF has been cleared. Only if NACK is sent to Master is SSPxIF not set

- 11. SSPxIF s et and CKP c leared after 8th falling edge of SCLx for a received data byte.
- 12. Slave loo ks at ACKTIM bit of SSPxCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPxBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by eit her th e sl ave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

25.5.3 SLAVE TRANSMISSION

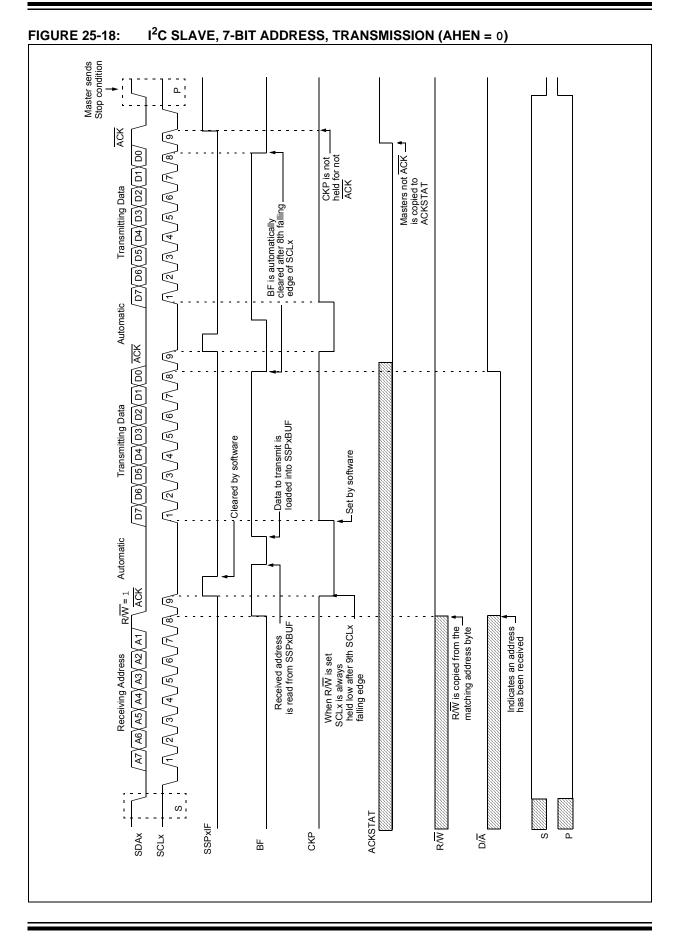
When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and t he S CLx pin is he ld I ow (s ee Section 25.5.6 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse un til the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPx CON1 register. The eight dat a bits a re shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If A CKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes I dle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next tr ansmit data must be loaded into the SS PxBUF register. A gain, the S CLx pin must be released by setting bit CKP.

An MSSPx interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.


25.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes Idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

25.5.3.2 7-bit Transmission

A ma ster dev ice can tran smit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to ac complish a st andard transmission. Figure 25-17 can be used as a reference to this list.

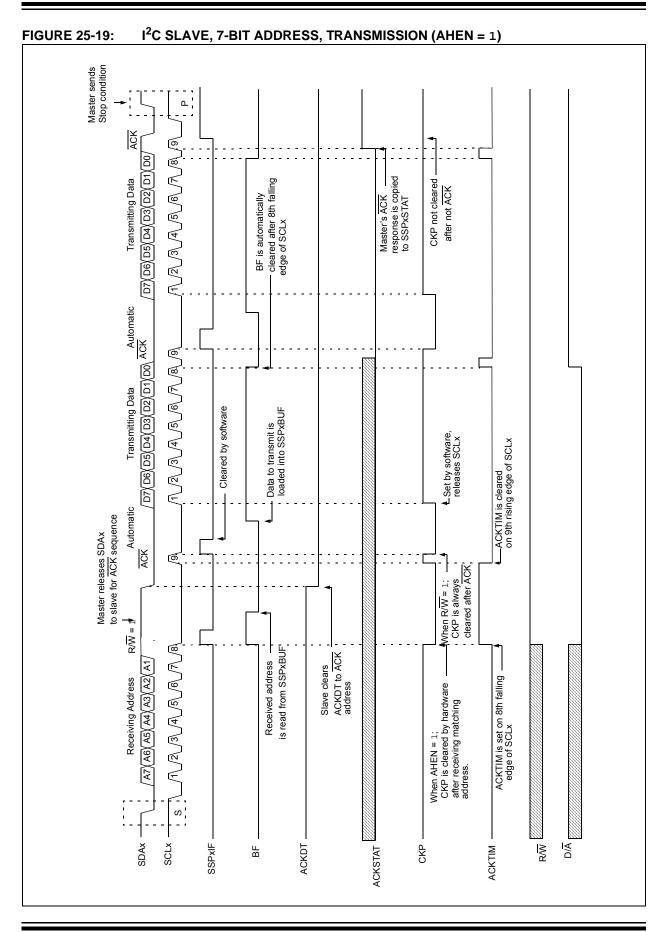
- 1. Master s ends a Start c ondition on SD Ax and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit set is received by the Slave setting SSPxIF bit.
- 4. Slave h ardware generates an ACK an d s ets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software read s t he re ceived a ddress from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.
 - Note 1: If the master ACKs the clock will be stretched.
 - ACKSTAT is the only bit updated on the rising edge of SCLx (9th) rather than the falling.
- 13. Steps 9-13 are repeated for eac h trans mitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

© 2011 Microchip Technology Inc.

25.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPx CON3 register enables additional clock stretching and interrupt generation after the 8th falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 25-18 displays a standard waveform of a 7-b it Address Slave Transmission with AHEN enabled.


- 1. Bus starts Idle.
- 2. Master sends Start condition; the S bit of SSPx-STAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master s ends matching add ress with R/W bit set. After the 8th falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPx STAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPx-BUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: <u>SSPxBUF</u> cannot be loaded until after the ACK.

13. Slave sets CKP bit releasing the clock.

- 14. Master clocks out the data from the slave and sends an ACK value on the 9th SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If t he ma ster se nds a not \overline{ACK} the s lave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

© 2011 Microchip Technology Inc.

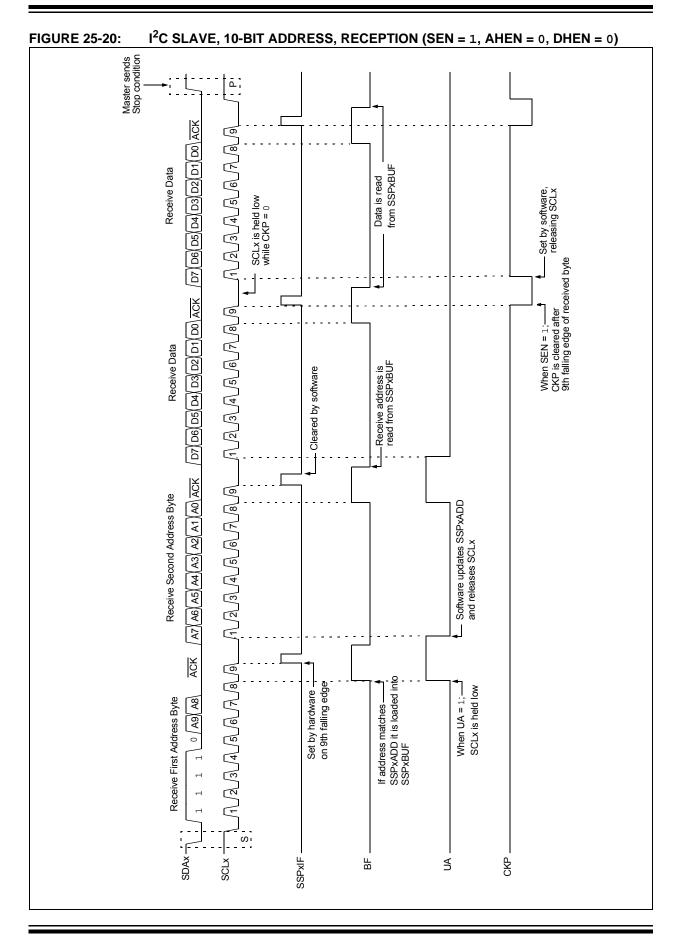
25.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

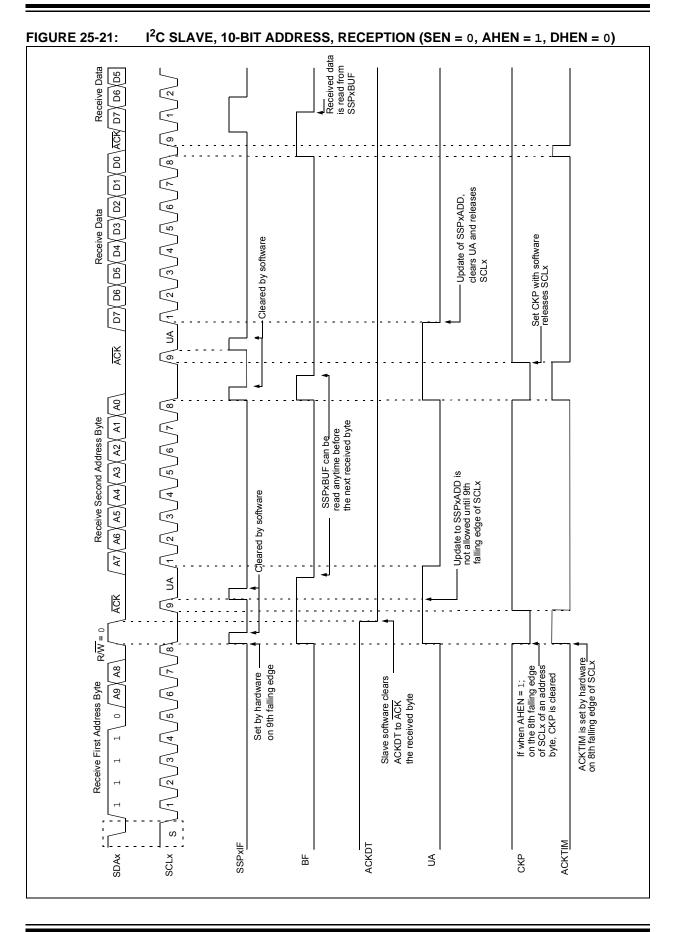
This section describes a standard sequence of events for the MSSPx module configured as an I^2C Slave in 10-bit Addressing mode.

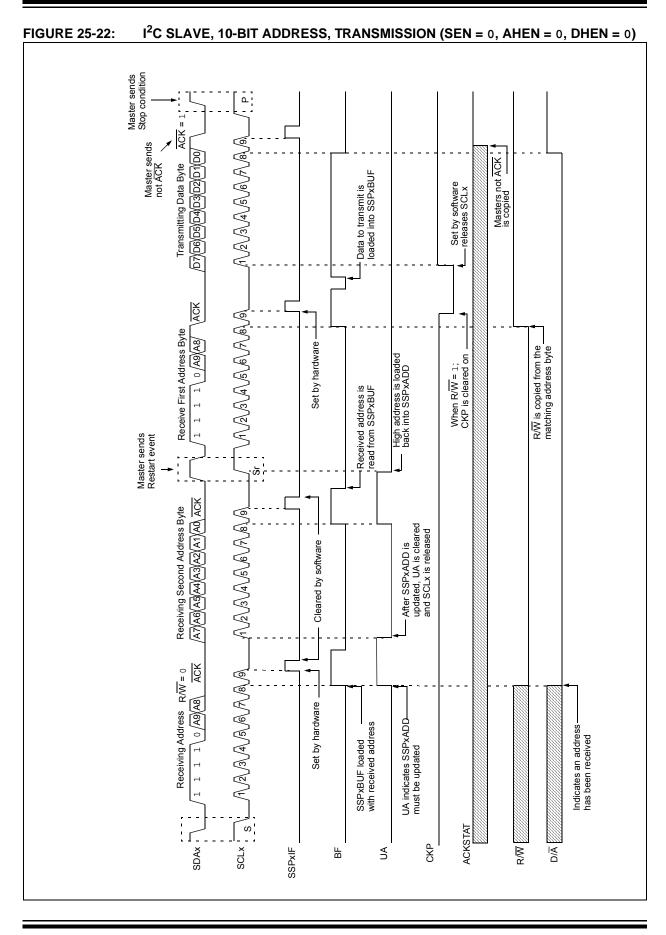
Figure 25-19 is us ed as a v isual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I²C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching high address with R/W bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software re ads received a ddress from SS Px-BUF clearing the BF flag.
- 7. Slave loads low add ress int o SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the Slave; UA bit is set.


Note: Updates to the SSPx ADD register are n ot allowed until after the ACK sequence.


- 9. Slave sends ACK and SSPxIF is set.
- Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPx ADD back to the high address. BF is not set because there is no match. CKP is unaffected.
- 10. Slave clears SSPxIF.
- 11. Slave re ads t he received m atching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- Master c locks a dat a by te t o th e sl ave an d clocks out the sl aves AC K on th e 9t h SC Lx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.


25.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception us ing 10 -bit ad dressing w ith AH EN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are th e same. Figure 25-20 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 25-21 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

25.5.6 CLOCK STRETCHING

Clock stretching oc curs w hen a dev ice on the bus holds the SCLx line low effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master de vice. A ma ster de vice is not concerned w ith stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching don e by a slave is invisible to the master software and handled by the hardware that generates SCLx.

The CKP bit of the SSPxCON1 register is used to control s tretching in s oftware. Any time the CKP bit is cleared, the module will wait for the SCLx line to go low and the n hold it. Se tting CKP will release SCLx and allow more communication.

25.5.6.1 Normal Clock Stretching

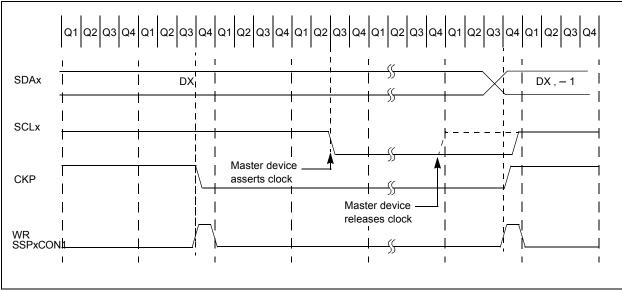
Following an ACK if the R/W bit of SSPxSTAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSPxBUF with data to transfer to the master. If the SEN bit of SSPxCON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

- Note 1: The BF bit has no effect on if the clock will be stretched or not. This is different than previous v ersions of the module that would not stretch the clock, clear CKP, if SSPxBUF was read before the 9th falling edge of SCLx.
 - 2: Previous versions of the module did not stretch th e c lock f or a transmission if SSPxBUF was loaded before the 9th falling edge of SCLx. It is now always cleared for read requests.

25.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set, the clock is al ways st retched. This is the only time the SCLx is stretched without CKP being cleared. SCLx is released immediately after a write to SSPxADD.

Note:	Previous ve rsions of the module did not							
	stretch the clock if the second address byte							
	did not match.							


25.5.6.3 Byte NACKing

When AHEN bit of SSPxCON3 is set; CKP is cleared by hard ware after the 8t h falling edge of SCLx for a received matching ad dress by te. Wh en D HEN bit of SSPxCON3 is set; CKP is cleared after the 8th falling edge of SCLx for received data.

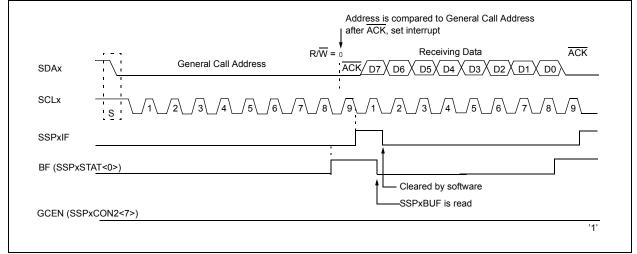
Stretching after the 8th falling edge of SCLx allows the slave to look at the received ad dress o r d ata and decide if it wants to ACK the received data.

25.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the C KP bit is cleared, the module will wait for the SCLx line to go low and then hold it. However, clearing the CKP bit will not a ssert the SCLx output low un til the SC Lx out put is already s ampled low. Therefore, the CKP bit will not a ssert the SC Lx line until an e xternal I 2 C m aster d evice has already asserted the SC Lx line. The SCLx output will remain low until the CKP bit is set and all other devices on the I²C bus have released SCLx. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCLx (see Figure 25-22).

FIGURE 25-23: CLOCK SYNCHRONIZATION TIMING

25.5.8 GENERAL CALL ADDRESS SUPPORT


The addressing procedure for the I^2C bus is such that the first by te after the Start condition usually determines which device will be the slave addressed by the master d evice. The ex ception is t he g eneral c all address w hich can ad dress all devices. W hen this address is used, all devices should, in theory, respond with an acknowledge.

The general call address is a reserved address in the I^2C pro tocol, defined as a ddress 0x0 0. Wh en th e GCEN bit of the SSPx CON2 register is set, the slave module will automatically \overline{AC} K t he reception of this address regardless of the v alue stored in SSPxADD. After the slave clocks in an ad dress of all zeros with the R/W bit clear, an interrupt is generated and slave software c an rea d SSPx BUF a nd respond. Figure 25-23 shows a ge neral ca II re ception sequence.

In 10-bit Address mode, the UA bit will not be set on the reception of the general call address. The slave will prepare to receive the second byte as data, just as it would in 7-bit mode.

If the AHEN bit of the SSPxCON3 register is set, just as with any other add ress reception, the slave hardware will stretch the clock after the 8th falling edge of SCLx. The slave must then set its ACKDT value and release the clock with communication progressing as it would normally.

25.5.9 SSPX MASK REGISTER

An SSPx Mask (SSPxMSK) register (Register 25-5) is available in I²C Slave mode as a mask for the v alue held in the SSPx SR reg ister d uring an address comparison operation. A zero ('0') bit in the SSPxMSK register has the effect of making the corresponding bit of the received address a "don't care".

This register is res et to al l ' 1's up on an y R eset condition a nd, therefore, has no ef fect on st andard SSPx operation until written with a mask value.

The SSPx Mask register is active during:

- 7-bit Address mode: address compare of A<7:1>.
- 10-bit Address mode: address compare of A<7:0> only. The SSPx mask has no effect during the reception of the first (high) byte of the address.

25.6 I²C MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPxM bits in the SSPxCON1 register and by setting the SSPxEN bit. In Master mode, the SDAx and SC Kx pi ns must be configured as inputs. The MSSP p eripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master m ode of ope ration is su pported by in terrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware C ontrolled Ma ster mode, us er cod e conducts al I I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is don e by the us er s oftware directly manipulating the SDAx and SCLx lines.

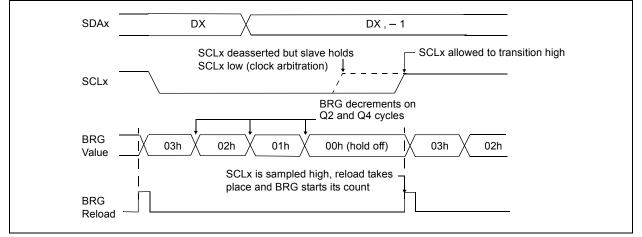
The following events will cause the SSPx Interrupt Flag bit, SSPxIF, to be set (SSPx interrupt, if enabled):

- · Start condition detected
- Stop condition detected
- Data transfer byte transmitted/received
- · Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSPx module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to ini tiate a Start condition and immediately write the SSPxBUF register to ini tiate transmission before the S tart condition is c omplete. In this c ase, th e SSPxBUF will not be writte n to and the WCOL bit wi II b e s et, i ndicating that a write to the SSPxBUF did not occur
 - 2: When in Master mode, Start/Stop detection is masked and an interrupt is generated when the SEN/PEN bit is cleared and the generation is complete.

25.6.1 I²C MASTER MODE OPERATION

The m aster de vice generates al l o f th e s erial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or w ith a R epeated Start condition. Since the R epeated Start condition is a lso the beginning of the next serial transfer, the l^2C bus will not be released.

In Master T ransmitter mo de, serial da ta is output through SDAx, while SCLx outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an A cknowledge bit is received. S tart and S top conditions are output to indicate the beginning and the end of a serial transfer.


In Master Receive mode, the first byte transmitted contains the s lave add ress of the t ransmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to ind icate the receive bit. Serial data is received via SDAx, while SCLx outputs the serial clock. Serial data is received 8 bits at a time. After ea ch by te i s re ceived, an Ac knowledge bit i s transmitted. S tart an d S top c onditions in dicate th e beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency ou tput on SC Lx. S ee Section 25.7 " Baud Rate Generator" for more detail.

25.6.2 CLOCK ARBITRATION

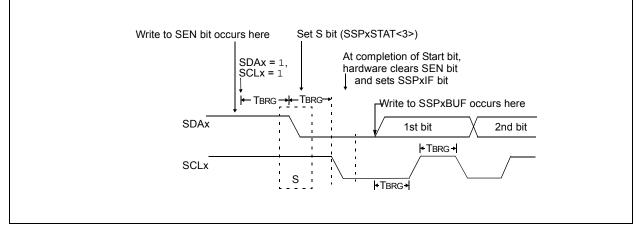
Clock arbitration occurs when the master, during any receive, t ransmit or R epeated Start/Stop c ondition, releases the SCLx pin (SCLx allowed to float high). When the SCLx pin is allowed to float high, the Baud Rate Gen erator (BRG) is s uspended from c ounting until the SCLx pin is actually sampled high. When the SCLx pin is sampled high, the Baud Rate Generator is reloaded with t he c ontents of SSPx ADD<7:0> and begins counting. This ensures that the SCLx high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 25-25).

FIGURE 25-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

25.6.3 WCOL STATUS FLAG

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is s et an d the c ontents of the bu ffer a re unchanged (the write d oes not oc cur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not Idle.

Note:	Because queueing of ev ents is not
	allowed, writing to the lower 5 b its of
	SSPxCON2 is d isabled until the Start
	condition is complete.

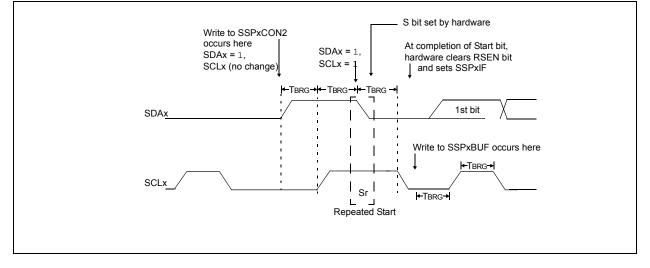

25.6.4 I²C MASTER MODE START CONDITION TIMING

To in itiate a S tart c ondition, the us er se ts th e S tart Enable bit, SEN bit of the SSPxCON2 register. If th e SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded w ith the contents of SSPxADD<7:0> and s tarts it s c ount. If SCL x and SDAx are both s ampled high when the Baud Rate Generator times out (T BRG), the SD Ax pin is driven low. The action of the SD Ax being driven low w hile SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

FIGURE 25-26: FIRST START BIT TIMING

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx li ne is dri ven low, a bus collision occurs, the Bu s Collision Interrupt Flag, BCLxIF, is set, the S tart c ondition is aborted and the I²C module is reset into its Idle state.
 - **2:** The Philips I²C Specification states that a bus collision cannot occur on a Start.



25.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPxCON2 register is programmed high and the Master s tate ma chine is n o longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Ba ud R ate Generator c ount (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SC Lx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted lo w. Following t his, t he R SEN bit of t he SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 25-27: REPEAT START CONDITION WAVEFORM

25.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a d ata by te, a 7 -bit ad dress or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF and allow the Baud Rate Generator to beg in counting and start the next transmission. Each bit of a ddress/data will be shifted out onto the SDAx pin after the falling edge of SC Lx is asserted. SCLx is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCLx is released high. When the SCLx pin is released high, it is held that way for TBRG. The data on the SDAx pin must remain stable for that duration and some hold time after the next falling edge of SCLx. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDAx. This al lows the sl ave de vice be ing addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded in to the SSPx BUF, I eaving SCLx low an d SDAx unchanged (Figure 25-27).

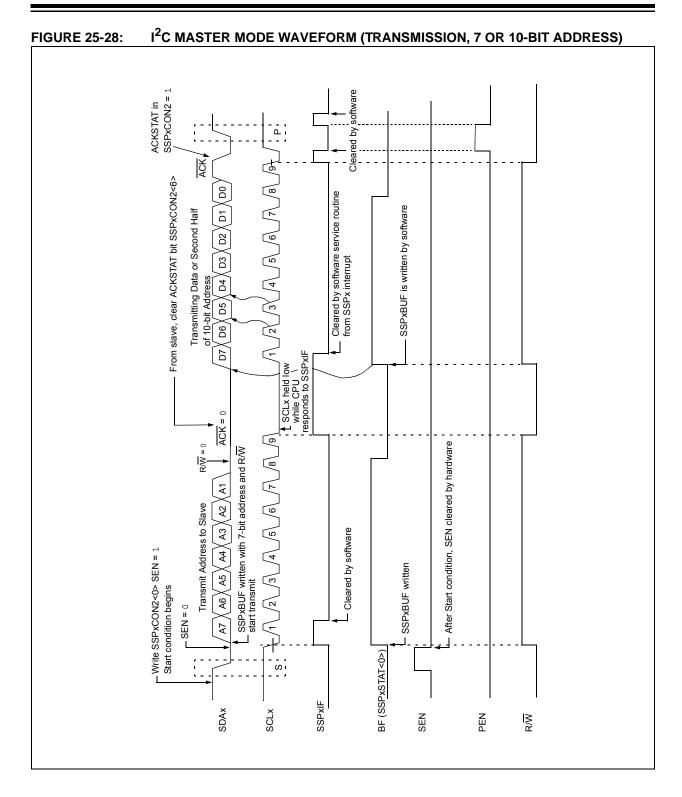
After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCLx until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the m aster will release the SDAx pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDAx pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPxBUF takes place, holding SCLx low and allowing SDAx to float.

25.6.6.1 BF Status Flag

In Transmit mode, the BF bit of the SSPxSTAT register is set when the CPU writes to SSPxBUF and is cleared when all 8 bits are shifted out.

25.6.6.2 WCOL Status Flag

If the us er writes the SSPx BUF when a transmit is already in progress (i.e., SSPxSR is still shifting out a data byte), the WCOL is set and the contents of the buffer are unchanged (the write does not occur).


WCOL must be cleared by software before the next transmission.

25.6.6.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit of the SSPxCON2 register is cleared when the slave has sent an Acknowledge ($\overrightarrow{ACK} = 0$) and is set when the slave does not Acknowledge ($\overrightarrow{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

25.6.6.4 Typical transmit sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. The MSSPx module will wait the required start time before any other operation takes place.
- 5. The us er lo ads the SSPx BUF with the s lave address to transmit.
- Address is shifted out the SDAx pin until all 8 bits are tran smitted. Transmission beg ins as soon as SSPxBUF is written to.
- 7. The MSSPx module shifts in the ACK bit from the slave device and writes its value in to the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 9. The user loads the SSPxBUF with eight bits of data.
- 10. Data is shifted out the SDAx pin until all 8 bits are transmitted.
- 11. The MSSPx module shifts in the ACK bit from the slave device and writes its value in to the ACKSTAT bit of the SSPxCON2 register.
- 12. Steps 8-11 are repeated for all transmitted data bytes.
- 13. The user generates a Stop or Restart condition by s etting the PEN or RSEN b its of the SSPxCON2 register. Interrupt is generated once the Stop/Restart condition is complete.

25.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enab le bit, R CEN b it of the SSPx CON2 register.

Note:	The MSSPx module must be in a n ld le							
	state before the RCEN bit is set or the							
	RCEN bit will be disregarded.							

The Baud Rate Generator begins counting and on each rollover, t he s tate of t he S CLx pi n ch anges (high-to-low/low-to-high) and da ta is sh ifted in to the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

25.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

25.6.7.2 SSPxOV Status Flag

In receive operation, the SSPxOV bit is set when 8 bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

25.6.7.3 WCOL Status Flag

If the u ser writes the SSPxBUF when a receive is already in p rogress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

25.6.7.4 Typical Receive Sequence:

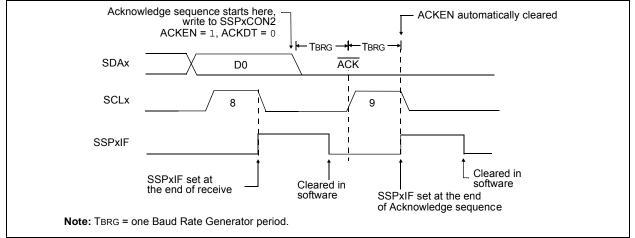
- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all 8 bits are tran smitted. Transmission beg ins as soon as SSPxBUF is written to.
- 6. The MSSPx module shifts in the ACK bit from the slave device and writes its value in to the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSPx module generates a n in terrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the Master clocks in a byte from the slave.
- 9. After the 8th falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPx IF and reads the received byte from SSPxUF, clears BF.
- Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the Slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master s ends a no t ACK or S top to end communication.

25.6.8 ACKNOWLEDGE SEQUENCE TIMING

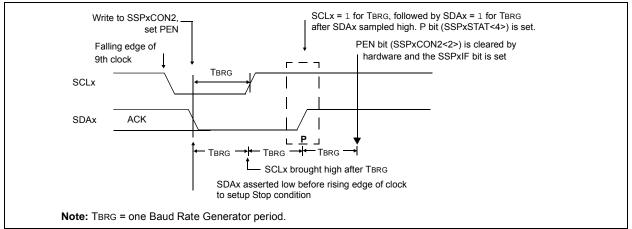
An Acknowledge sequence is e nabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SD Ax pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the AC KDT bit before starting an Ac knowledge sequence. The Baud Rate G enerator then count s for on e rollov er period (TBRG) and the S CLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the M SSPx m odule then goes into Idle m ode (Figure 25-29).

25.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, the n WC OL is set and the contents of the buffer are unchanged (the write does not occur).


25.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, th e SCLx line is h eld low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the S DAx line low. W hen the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and on e T BRG (Baud Rate Generator rol lover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 25-30).


25.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in pro gress, the n th e W COL bit is set and th e contents of the buffer are unchanged (the write does not occur).

FIGURE 25-30: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 25-31: STOP CONDITION RECEIVE OR TRANSMIT MODE

25.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or d ata and w hen an ad dress match or complete by te t ransfer o ccurs, wa ke t he p rocessor from Sleep (if the MSSPx interrupt is enabled).

25.6.11 EFFECTS OF A RESET

A Reset disables the MSSPx module and terminates the current transfer.

25.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions all ows the determination of when the bus is free. The Stop (P) and Start (S) bit s a re cleared from a R eset or when the MSSPx module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSPx interrupt will generate the interrupt when the Stop condition occurs.

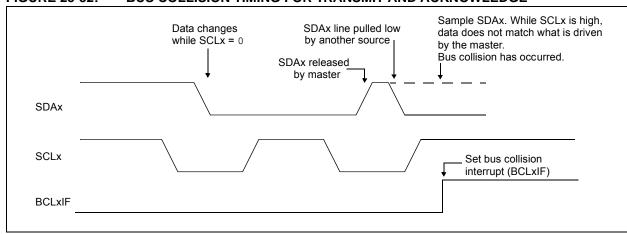
In m ulti-master op eration, the SD Ax li ne must b e monitored for arbitration to see if the signal level is the expected o utput le vel. Th is check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

25.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 25-31).


If a tran smit w as in progress when the bus collision occurred, the transmission is h alted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPx BUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progresswhen the buscollision occurred, the condition is aborted, the SDAx and SOLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop conditon occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first da ta b it, regardless of w here the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 25-32: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

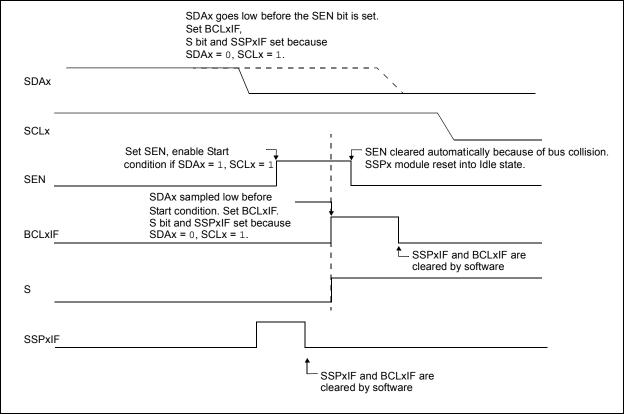
25.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

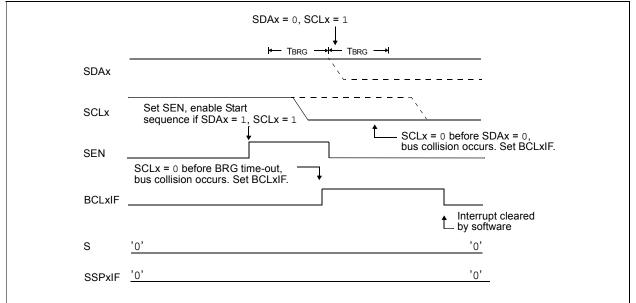
- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 25-32).
- b) SCLx is sampled low before SDAx is asserted low (Figure 25-33).

During a Start condition, both the SDAx and the SCLx pins are monitored.

If t he S DAx pin is al ready I ow, or the S CLx p in is already low, then all of the following occur:


- · the Start condition is aborted,
- the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 25-32).

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision o ccurs b ecause it is as sumed that an other master is attempting to drive a data '1' during the Start condition.


If the SDAx pin is sampled low during this count, the BRG is res et and the SD Ax lin e is a sserted e arly (Figure 25-34). If, ho wever, a '1' is sampled on the SDAx pin, the SDAx pin is asserted low at the end of the BR G c ount. The Baud Rate Ge nerator is the n reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact sa me tim e. The refore, o ne master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to a rbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue in to the data portion, R epeated Start or Stop conditions.

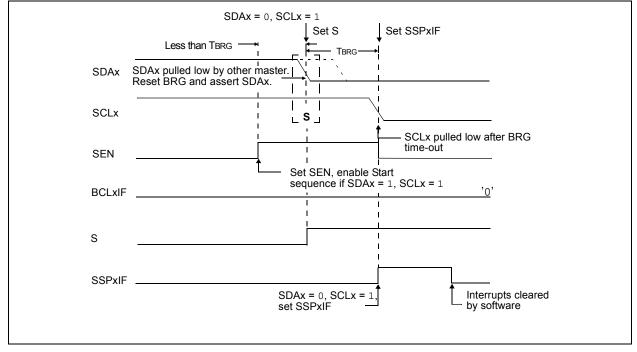
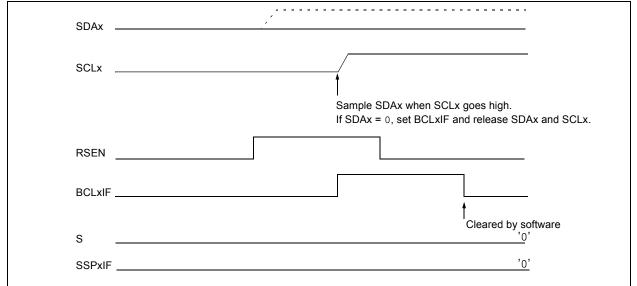


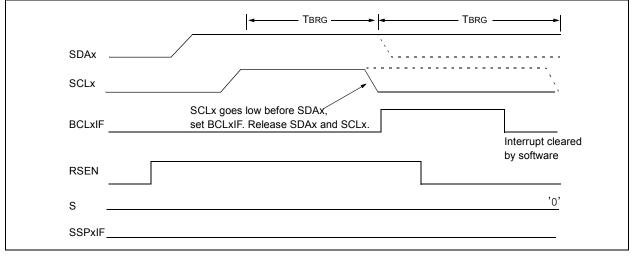
FIGURE 25-35: BRG RESET DUE TO SDA ARBITRATION DURING START CONDITION

25.6.13.2 Bus Collision During a Repeated Start Condition

During a R epeated S tart c ondition, a bus c ollision occurs if:

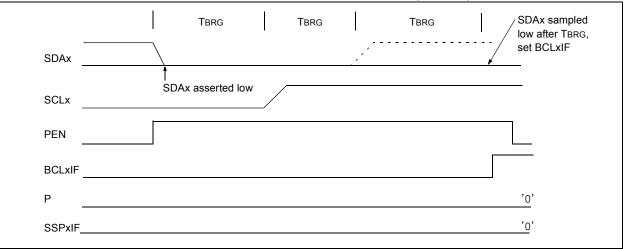

- a) A low lev el is sampled on SDAx when SCLx goes from low level to high level.
- b) SCLx go es lo w be fore S DAx i s as serted lo w, indicating that a nother master is attempting to transmit a data '1'.

When the user releases SDAx and the pin is allowed to float h igh, t he BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 25-35). If SD Ax is sam pled hig h, the BR G is reload ed and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

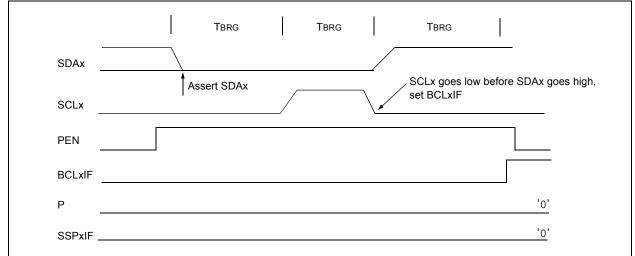

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been as serted, a bus collision oc curs. In this c ase, another ma ster i s attempting to transmit a data '1' during the Repeated Start condition, see Figure 25-36.

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is re loaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven I ow and the R epeated S tart condition is complete.

FIGURE 25-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)


25.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:


- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out.
- b) After t he SCLx pin is d easserted, SC Lx i s sampled low before SDAx goes high.

The S top c ondition b egins with S DAx as serted I ow. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SD Ax is sampled low, a bus collision has occurred. This is due to an other master attempting to drive a d ata ' 0' (Figure 25-37). If the SC Lx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 25-38).

FIGURE 25-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 25-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

TADLE 23	0. 00111						LINATION		
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	_	—	CCP2IE ⁽¹⁾	88
PIE4 ⁽¹⁾	_	_	_	_	_	_	BCL2IE	SSP2IE	90
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	—	—	CCP2IF ⁽¹⁾	92
PIR4 ⁽¹⁾	_	_	_	_	_	_	BCL2IF	SSP2IF	94
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
SSPxADD	ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0	283
SSPxBUF	MSSPx Rec	eive Buffer/Tra	ansmit Registe	er					235*
SSPxCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	280
SSPxCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	281
SSPxCON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	282
SSPxMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	283
SSPxSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	279

Legend: -= unimplemented, read as '0'. Shaded cells are not used by the MSSP module in I²C[™] mode. * Page provides register information.

Note 1: PIC16(L)F1827 only.

25.7 BAUD RATE GENERATOR

The MSSPx module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is pl aced in the SSPx ADD register (Register 25-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 25-39 triggers the value from SSP xADD to b e I oaded i nto the B RG counter. This occurs twice for each oscillation of the

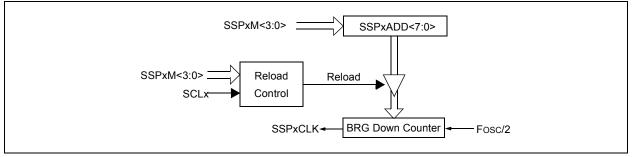

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSPx is being operated in.

Table 25-4 de monstrates cl ock rate s ba sed on instruction c ycles an d t he BR G v alue l oaded in to SSPxADD.

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 25-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPx ADD when u sed as a Ba ud Rate Generator for I²C. This is an implementation limitation.

TABLE 25-4: MSSPX CLOCK RATE W/BRG

Fosc	Fosc Fcy BRG Value		FCLOCK (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: The I²C interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

REGISTER 25-1: SSPxSTAT: SSPx STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0			
SMP	CKE	D/A	Р	S	R/W	UA	BF			
bit 7							bit			
Legend:										
R = Readable b	bit	W = Writable b	it	U = Unimplem	ented bit, read as	'0'				
u = Bit is uncha	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	alue at all other F	Resets			
'1' = Bit is set		'0' = Bit is clear	ed							
bit 7		Input Sample bi	t							
	<u>SPI Master mo</u> 1 = Input data s	<u>de:</u> sampled at end c	of data output ti	me						
		sampled at middl	•							
	SPI Slave mod	•								
		leared when SP	l is used in Slav	/e mode						
	In I ² C Master o				· · · · · · · · · · · · · · · · · · ·					
				eed mode (100 k	Hz and 1 MHz)					
h:+ 0		control enabled f								
bit 6		k Edge Select bi	(SPI mode on	iy)						
	In SPI Master of 1 = Transmit of	ccurs on transitio	n from active to	dle clock state						
		ccurs on transitio								
	<u>In I²C ™ mode</u>	only:								
		•		ompliant with SM	bus™ specificatio	on				
		l bus™ specific i	•							
bit 5		ress bit (I ² C mod								
				smitted was data smitted was add						
h:+ 1		iat the last byte i		sinilleu was auu	1635					
bit 4	P: Stop bit	This hit is clear	ad when the M		dischlad CCDVCN	lic closed)				
				last (this bit is '0	disabled, SSPxEN	is cleared.)				
		s not detected la			on Reset					
bit 3	S: Start bit									
	(I ² C mode only. This bit is cleared when the MSSPx module is disabled, SSPxEN is cleared.)									
				l last (this bit is 'o						
	_	s not detected la								
bit 2		te bit information								
				the last address r	natch. This bit is c	nly valid from the	address matcl			
	In I ² C Slave mo	t bit, Stop bit, or ode:	NOT ACI DIL							
	1 = Read									
	0 = Write									
	In I ² C Master n									
	1 = Transmit i	s in progress s not in progress								
				CEN or ACKEN	will indicate if the I	MSSPx is in Idle	mode.			
bit 1	-	dress bit (10-bit								
					SPxADD register					
	0 = Address do	es not need to b	e updated		-					
bit 0	BF: Buffer Full	Status bit								
	<u>Receive (SPI a</u>									
		mplete, SSPxBL								
		t complete, SSP	xBUF is empty							
	<u>Transmit (I^2Cn</u> 1 = Data transr		loes not include	the \overline{ACK} and St	op bits), SSPxBU	F is full				
					bits), SSPxBUF					

REGISTER 25-2: SSPxCON1: SSPx CONTROL REGISTER 1

R/C/HS-0/	/0 R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPxOV	SSPxEN	CKP		SSPx	M<3:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable bit		•	ted bit, read as '0'		
u = Bit is uncl	hanged	x = Bit is unknow	ו	-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7	0 = No collisior <u>Slave mode:</u>	he SSPxBUF regist າ UF register is written		d while the I ² C condissimiting the previous			to be started
bit 6	SSPxOV: Receiv In SPI mode: 1 = A new byte Overflow ca setting over SSPxBUF r 0 = No overflow In I ² C mode: 1 = A byte is re	ve Overflow Indicato is received while the an only occur in Slav flow. In Master mode register (must be cleive v eccived while the St eared in software).	SSPxBUF registe e mode. In Slave e, the overflow bit ared in software).	er is still holding the pr mode, the user must is not set since each r is still holding the p	read the SSPxBUF, new reception (and t	, even if only transmit ransmission) is initiat	tting data, to avoid ed by writing to th
bit 5	 0 = No overflow SSPxEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: Enables serial port and configures SCKx, SDOx, SDIx and SSx as the source of the series of the s						
bit 4	CKP: Clock Pola <u>In SPI mode:</u> 1 = Idle state for 0 = Idle state for <u>In I²C Slave mod</u> SCLx release co 1 = Enable clock	rity Select bit clock is a high leve clock is a low level <u>le:</u> ntrol ow (clock stretch). (<u>de:</u>					
bit 3-0	0000 = SPI Masi 0001 = SPI Masi 0010 = SPI Masi 0010 = SPI Masi 0100 = SPI Slav 0101 = SPI Slav 0101 = SPI Slav $0111 = I^2C Slave$ $1000 = I^2C Slave$ 1001 = Reserve 1010 = SPI Masi $1011 = I^2C firmw$ 1100 = Reserve 1011 = Reserve 1101 = Reserve $1110 = I^2C Slave$	e mode, 7-bit addre: e mode, 10-bit addr er mode, clock = Fo ter mode, clock = Fo vare controlled Mast d d e mode, 7-bit addre:	DSC/4 DSC/16 DSC/64 MR2 output/2 Kx pin, <u>SSx</u> pin (Kx pin, <u>SSx</u> pin (SS DSC/(4 * (SSPxAI DSC/(4 * (SSPxAI er mode (Slave	control enabled control disabled, SS DD+1)) ⁽⁴⁾ DD+1)) ⁽⁵⁾	nabled	O pin	
Note 1: 2: 3: 4:	In Master mode, the ov When enabled, these p When enabled, the SD/ SSPxADD values of 0,	erflow bit is not set ins must be properl Ax and SCLx pins n	since each new i y configured as i nust be configure	reception (and trans nput or output. d as inputs.		by writing to the SS	PxBUF register.

- 4: SSPxADD values of 0, 1 or 2 are not supported for I²C Mode.
- 5: SSPxADD value of '0' is not supported. Use SSPxM = 0000 instead.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncl	nanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set	
bit 7	1 = Enable in	eral Call Enable iterrupt when a call address dis	general call a	• •	or 00h) is receiv	ed in the SSPx	SR
bit 6	ACKSTAT: A	cknowledge St edge was not re edge was recei	atus bit (in I ² C eceived	mode only)			
bit 5	In Receive m	itted when the owledge	·		le sequence at	the end of a rea	ceive
bit 4	<u>In Master Re</u> 1 = Initiate <i>A</i> Automat	ceive mode:	eq uence on s	·	ter mode only) CLx pi ns, and	l tra nsmit ACI	<dt bit<="" da="" ta="" td=""></dt>
bit 3	RCEN: Rece	ive Enable bit	(in I ² C Master i	mode only)			
	1 = Enables 0 = Receive	Receive mode Idle	for I ² C				
bit 2	PEN: Stop C	ondition Enable	e bit (in I ² C Ma	ster mode only	y)		
	<u>SCKx Releas</u> 1 = Initiate St 0 = Stop cond	top condition o	n SDAx and S0	CLx pins. Auto	matically cleare	d by hardware	
bit 1	1 = Initiate R		condition on SI	-	ster mode only) c pins. Automati	cally cleared by	y hardware.
bit 0	SEN: Start C In Master mo 1 = Initiate St 0 = Start con In Slave mod	ondition Enable ade: tart condition o dition Idle l <u>e:</u> etching is enab	ed bit (in I ² C M n SDAx and S(oled for both sla	CLx pins. Auto	nly) matically cleare nd slave receive	-	

REGISTER 25-3: SSPxCON2: SSPx CONTROL REGISTER 2

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:	L:1		L 14	11 11		1 (0)	
R = Readable		W = Writable		•	nented bit, read		the set Decester
u = Bit is unch	0	x = Bit is unk		-n/n = value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	ACKTIM: Ac	knowledge Tim	e Status bit (I ²	C mode only)	3)		
						ling edge of SC	Lx clock
					edge of SCLx		
bit 6	PCIE: Stop C	Condition Interru	upt Enable bit (I ² C mode only	()		
		terrupt on dete					
	•	ection interrupts			、		
bit 5		Condition Interrunterrunterrupt on dete	•		,		
		ection interrupt			intions		
bit 4		r Overwrite En					
	In SPI Slave	<u>mode:</u> (1)					
						ignoring the BF	
						ready set, SSP	xOV bit of the
		xCON1 registe r mode and SP			updated		
	This bit i	s ignored.		•			
	In I ² C Slave					1	
		of the SSPxO			r a received ad	dress/data byte	e, ignoring the
		xBUF is only u			ar		
bit 3	SDAHT: SDA	Ax Hold Time S	election bit (I ² 0	mode only)			
					g edge of SCL		
					g edge of SCL		
bit 2	SBCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit (I ²	C Slave mode o	only)	
		ng edge of SCL the PIR2 regis			en the module i	s outputting a h	nigh state, the
		lave bus collision inter	•	led			
bit 1	AHEN: Addre	ess Hold Enabl	e bit (I ² C Slave	e mode only)			
	SSPxCC	DN1 register wil	I be cleared an		-	idd ress by te; C	CKP bit of the
		holding is disat	_				
bit 0		Hold Enable bi		• ·		. h	
	of the S	the 8th falling SPxCON1 regis ding is disabled	ster and SCLx		data byte; slave	e hardware clea	rs the CKP bit
	r daisy-chained	SPI operation;	allows the use	-	out the last recei es to write the r	-	

REGISTER 25-4: SSPxCON3: SSPx CONTROL REGISTER 3

2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.

3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
			MSK	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is und	hanged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:								
 1 = The received address bit n is compared to SSPxADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match 									
					address match				
bit 0	0 MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address								

REGISTER 25-5: SSPxMSK: SSPx MASK REGISTER

- I²C Slave mode, 10-bit address (SSPxM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSPxADD<0> to detect I²C address match
 - 0 = The received address bit 0 is not used to detect I²C address match
 - I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 25-6: SSPxADD: MSSPx ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
	ADD<7:0>										
bit 7							bit 0				

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

Master mode:

bit 7-0	ADD<7:0>: Baud Rate Clock Divider bits
	SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address

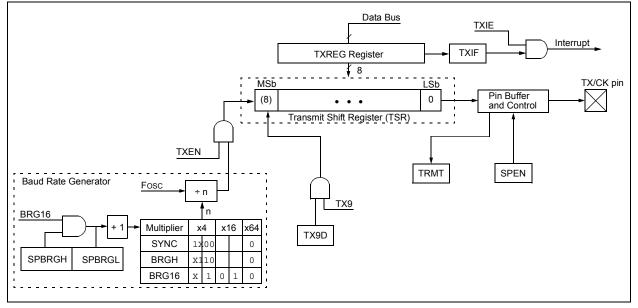
bit 0 Not used: Unused in this mode. Bit state is a "don't care".

NOTES:

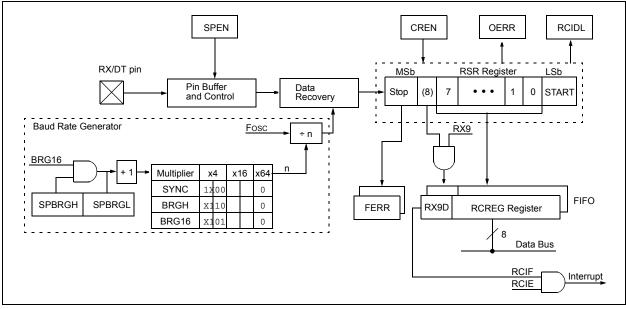
26.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to p erform an in put or o utput se rial da ta t ransfer independent of dev ice p rogram execution. The EUSART, als o kn own as a Seri al C ommunications Interface (SCI), can b e configured as a full-duplex asynchronous s ystem o r ha If-duplex sy nchronous system. Fu Il-Duplex mo de i s u seful for communications with peripheral systems, such as CRT terminals and p ersonal c omputers. H alf-Duplex Synchronous m ode is intended for c ommunications with peripheral devices, such as A/D or D/A integrated circuits, s erial EEPRO Ms or ot her m icrocontrollers. These devices typically do not have internal clocks for baud rate gen eration and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:


- · Full-duplex asynchronous transmit and receive
- Two-character input buffer
- One-character output buffer
- Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- · Input buffer overrun error detection
- Received character framing error detection
- Half-duplex synchronous master
- · Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The E USART module i mplements t he following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:


- · Automatic detection and calibration of the baud rate
- Wake-up on Break reception
- · 13-bit Break character transmit

Block di agrams of the EU SART transmitter an d receiver are shown in Figure 26-1 and Figure 26-2.

FIGURE 26-1: EUSART TRANSMIT BLOCK DIAGRAM

FIGURE 26-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EU SART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These r egisters are de tailed in Register 26-1, Register 26-2 and Register 26-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX p in may be used for general purpose input and output.

26.1 EUSART Asynchronous Mode

The EU SART tran smits and r eceives data using the standard non-r eturn-to-zero (NRZ) f ormat. NRZ is implemented with two levels: a V OH mark state which represents a '1' data bit, and a VOL space state which represents a '0' dat a bit. N RZ refers to t he fact th at consecutively transmitted data bit s of t he same value stay at the output level of that bit without returning to a neutral level betw een each bit t ransmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bit s and is alw ays terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is 8 bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive st andard baud rate frequencies from the system oscillator. See Table 26-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's tran smitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in s oftware and stored as the ninth data bit.

26.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EU SART transmitter block dia gram is shown in Figure 26-1. The heart of the transmitter is the serial Transmit Shift R egister (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

26.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by c onfiguring th e fo llowing th ree co ntrol bits:

- •T XEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TX STA register configures the EUSART for asynchronous operation. Set ting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

26.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character r, or the previous character has be en completely flushed from the TS R, the dat a in t he TXR EG is imm ediately transferred to the TSR register. If the TSR still contains all or p art of a previous chara cter, the new character data is held in the TX REG until the S top bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one T CY immediately f ollowing t he Stop bit stransmission. The transmission of the Sart bit, data bits and S top bit sequence commences imm ediately following the transfer of the data to the TSR from the TXREG.

26.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SC KP bit of the BA UDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit cont rols tr ansmit data polarit y in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See Section 26.4.1.2 "Clock Polarity".

26.1.1.4 Transmit Interrupt Flag

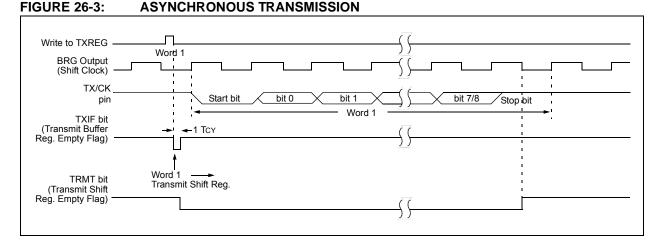
The TXIF interrupt flag bit of the P IR1 register is set whenever the E USART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

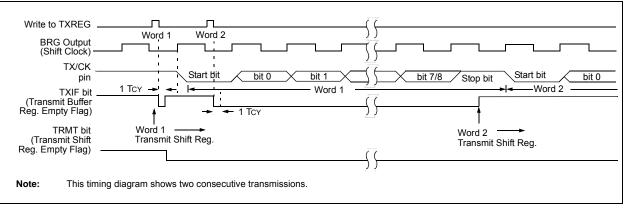
To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

26.1.1.5 TSR Status

The TR MT bit of the TXST A register indicates the status of the TSR register. This is a read-only bit. The TRMT bit is set when the TSR register is empty and is cleared when a c haracter is transferred to the TSR register from the TXREG. The TRMT bit remains clear until all bits have been shifted out of the TSR register. No interrupt logic is tied to this bit, so the user has to poll this bit to determine the TSR status.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

26.1.1.6 Transmitting 9-Bit Characters


The EUSART supports 9-bit character transmissions. When the TX9 bit of th e TXSTA register is set, the EUSART will shift 9 bits out for each character transmitted. The TX9D bit of the TXSTA register is the ninth, and Most Significant, data bit. When transmitting 9-bit data, the TX9D data bit must be written before writing the 8 Least Significant bits into the TXREG. All nine bits of d ata will be transferred t o t he T SR sh ift r egister immediately after the TXREG is written.

A special 9-bit Address mode is available for use with multiple r eceivers. S ee **Section 26.1.2.7** " Address **Detection**" for more information on the address mode.

- 26.1.1.7 Asynchronous Transmission Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud r ate (s ee Section 26.3 "E USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If 9-bit transmission is desired, set the TX9 control bit. A set ninth data bit will indicate that the 8 Least Significant data bits are an address when the receiver is set for address detection.
- 4. Set SCKP bit if inverted transmit is desired.
- 5. Enable the tran smission by setting the TXEN control bit. This will cause the TXIF interrupt bit to be set.
- If interrupts are desired, set the TXIE interrupt enable bit of the PIE1 register. An interrupt will occur im mediately p rovided th at the G IE and PEIE bits of the INTCON register are also set.
- 7. If 9 -bit transmission is selected, the ni nth b it should be loaded into the TX9D data bit.
- 8. Load 8-bit data into the TXR EG register. This will start the transmission.

FIGURE 26-4: ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	—	—	_	_	_	—	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL				BRG	<7:0>				297*
SPBRGH				BRG<	:15:8>				297*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXREG	EUSART Trar	EUSART Transmit Data Register							
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

 — = unimplemented location, read as '0'. Shaded cells are not used for Asynchronous Transmission.
 Page provides register information.
 PIC16(L)F1827 only. Legend:

Note 1:

26.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The rec eiver blo ck di agram is sh own i n Figure 26-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the ba ud rat e, w hereas the s erial R eceive Shi ft Register (RSR) operates at the bit rate. When all 8 or 9 bits of the character have been shifted in, they are immediately tran sferred t o a tw o c haracter First-In-First-Out (FIFO) memory. The FIFO b uffering allows reception of two complete characters and the start of a third character before software must start servicing the EU SART receiver. The FIFO and RSR registers are no t directly ac cessible by software. Access to the received data is via the RCREG register.

26.1.2.1 Enabling the Receiver

The EU SART rec eiver is e nabled for a synchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of t he TX STA r egister configur es the EUSART for asynchronous operation. Set ting the SP EN b it of t he RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the cor responding ANSEL bit must be cleared for the receiver to function.

26.1.2.2 Receiving Data

The receiver d ata r ecovery circuit i nitiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a z ero the n the dat a rec overy ci rcuit a borts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position the n a f raming error is set for this character, otherwise the framing error is cleared for this character. Se e Section 26.1.2.4 "R eceive Fr aming Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, noadditional
	characters will be received until the overrun
	condition is cleared. See Section 26.1.2.5
	"Receive Ov errun Error" f or more
	information on overrun errors.

26.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is s et whenever the EUSART receiver is enabled and there is an un read cha racter in the receive F IFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF int errupts are ena bled by set ting all of the following bits:

- · RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

26.1.2.4 Receive Framing Error

Each ch aracter in the rec eive FIFO b uffer h as a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is ac cessed vi a t he FERR bit t of t he R CSTA register. T he F ERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EU SART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all re ceive cha racters in the rec eive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

26.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error mu st be cl eared by either clearing the C REN bit of the RCSTA register or b y resetting the EUSART by clearing the SPEN bit of the RCSTA register.

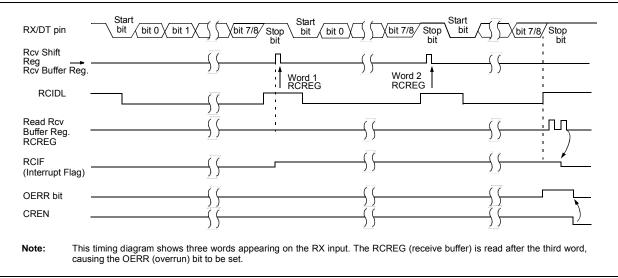
26.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will s hift 9 bit s i nto the RSR for each c haracter received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top u nread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG.

26.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by s etting the AD DEN bit of the R CSTA register.

Address detection requires 9-bit character reception. When a ddress detection is enabled, only characters with the n inth da ta bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.


Upon re ceiving an address c haracter, user s oftware determines if the add ress matches its ow n. U pon address match, u ser so ftware mu st disable a ddress detection by clearing the AD DEN bit before the next Stop bit occurs. When user software detects the end of the mes sage, determined by the me ssage protocol used, so ftware pla ces th e rec eiver b ack in to th e Address Detection mode by setting the ADDEN bit.

- 26.1.2.8 Asynchronous Reception Set-up:
- Initialize the SPBRGH, SPBRGL reg ister p air and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received 8 Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

26.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up a n As ynchronous R eception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL reg ister p air and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ni nth b it set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received 8 L east Si gnificant da ta bits from the receive buffer by reading the RCREG register. Software det ermines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device h as been addressed, clear the ADDEN bit to al low all received data into the receive buffer and generate interrupts.

FIGURE 26-5: ASYNCHRONOUS RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	—	_	—	_	_	_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG			EU	SART Recei	ve Data Regis	ter			290*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL				BRG	<7:0>				297*
SPBRGH			BRG<15:8>						297*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

TABLE 26-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Asynchronous Reception.

* Page provides register information.

26.2 Clock Accuracy with Asynchronous Operation

Г

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The fir st (preferred) method uses the O SCTUNE register to adjust the IN TOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clocksource. See Section 5.2.2 "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. Th is can be d one auto matically with th e Auto-Baud D etect fe ature (s ee Section 26.3.1 "Auto-Baud Detect"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a g radual ch ange in the pe ripheral clock frequency.

REGISTER 26-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-1/1	R/W-0/0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bi	t	U = Unimplem	ented bit, read as '	0'	
u = Bit is uncha		x = Bit is unkno		•	POR and BOR/Va		Resets
'1' = Bit is set	igoa	'0' = Bit is clear					
bit 7	CSRC: Clock	Source Select bit					
	Asynchronous	mode:					
	Don't care						
	Synchronous r	<u>mode</u> :					
		node (clock gener		from BRG)			
	0 = Slave mo	ode (clock from ex	(ternal source)				
bit 6		nsmit Enable bit					
		9-bit transmission					
		B-bit transmission					
bit 5		nit Enable bit ⁽¹⁾					
	1 = Transmit						
	0 = Transmit		.,				
bit 4		RT Mode Select b	it				
	1 = Synchron 0 = Asynchro						
bit 3	SENDB: Send	Break Character	bit				
	Asynchronous	mode:					
			•	leared by hardwa	are upon completio	on)	
	•	ak transmission c	ompleted				
	Synchronous r	node:					
	Don't care						
bit 2	0	Baud Rate Select	bit				
	Asynchronous						
	1 = High spee 0 = Low spee						
	Synchronous r						
	Unused in this						
bit 1		nit Shift Register S	Status bit				
	1 = TSR emp	0					
	0 = TSR full	-					
bit 0	TX9D: Ninth b	it of Transmit Dat	а				
	Can be addres	ss/data bit or a pa	rity bit.				
Note 1: SRI	EN/CREN overrie	des TXEN in Syno	c mode.				

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readable		W = Writable		•	nented bit, read		
u = Bit is unch	•	x = Bit is unki		-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	SPEN. Serial	Port Enable bi	ŧ				
bit i				T and TX/CK p	ins as serial por	t pins)	
		rt disabled (he				(pino)	
bit 6	RX9: 9-bit Re	ceive Enable b	oit				
	1 = Selects 9 0 = Selects 8	-bit reception -bit reception					
bit 5	SREN: Single	e Receive Enal	ole bit				
	Asynchronou:	<u>s mode</u> :					
	Don't care						
	-	mode – Maste	<u>r</u> :				
		single receive single receive					
		ared after rece	ption is compl	ete.			
	<u>Synchronous</u>	mode – Slave					
	Don't care						
bit 4		nuous Receive	Enable bit				
	Asynchronou						
	1 = Enables 0 = Disables						
	Synchronous						
		continuous rec continuous rec		ole bit CREN is	cleared (CREN	l overrides SRI	EN)
bit 3	ADDEN: Add	ress Detect Er	able bit				
	Asynchronou	<u>s mode 9-bit (</u> F	RX9 = 1):				
	1 = Enables	address detect	ion, enable in	terrupt and loa	d the receive bu	Iffer when RSR	<8> is set
			•	are received a	nd ninth bit can	be used as par	rity bit
	Don't care	<u>s mode 8-bit (F</u>	<u>(79 = 0)</u> .				
bit 2	FERR: Frami	ng Error bit					
Dit Z		-	ndated by rea	iding RCREG r	egister and rec	eive next valid	hvte)
	0 = No frami				egiotor una roo		~,,
bit 1	OERR: Overr	un Error bit					
	1 = Overrun 0 = No overr	error (can be c un error	leared by clea	ring bit CREN)		
bit 0	RX9D: Ninth	bit of Received	Data				
		ddress/data bi					

REGISTER 26-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN
bit 7							bit C
Legend:							
R = Readable		W = Writable	e bit	U = Unimplen			
u = Bit is unc	•	x = Bit is unl		-n/n = Value a	at POR and B	OR/Value at all c	other Resets
'1' = Bit is set	t	ʻ0' = Bit is cl	eared				
bit 7		Auto-Baud Dete	ct Overflow bit				
	Asynchrono						
	1 = Auto-ba	ud timer overflo					
		ud timer did no	t overflow				
	<u>Synchronou</u> Don't care	<u>is mode</u> :					
bit 6		eive Idle Flag b	oit				
	Asynchrono	•					
	1 = Receive						
			ived and the red	ceiver is receiv	ing		
	<u>Synchronou</u> Don't care	<u>is mode</u> :					
bit 5		ented: Read as	'0'				
bit 4	-		Polarity Select	bit			
	Asynchrono		-				
			to the TX/CK p data to the TX/0				
	Synchronou						
			ng edge of the o ng edge of the o				
bit 3	BRG16: 16-	bit Baud Rate	Generator bit				
		aud Rate Gene					
1.11.0		ud Rate Gener					
bit 2	-	ented: Read as	0				
bit 1	Asynchrono	e-up Enable bit					
			a falling edge	No character v	vill ha racaiva	d, byte RCIF wil	lhasot WillE
			after RCIF is se			u, byte itch wi	I DE SEL WOL
	0 = Receive	r is operating n					
	<u>Synchronou</u>	<u>is mode</u> :					
	Don't care						
bit 0		to-Baud Detect	t Enable bit				
	$\frac{\text{Asynchrono}}{1 = \text{Auto-Base}}$		de is enabled (c	lears when out	o-baud is con	nlete)	
		aud Detect mot			0-Daug 15 COII	ipiele)	
	<u>Synchronou</u>						
	Don't care						

REGISTER 26-3: BAUDCON: BAUD RATE CONTROL REGISTER

26.3 EUSART Baud Rate Generator (BRG)

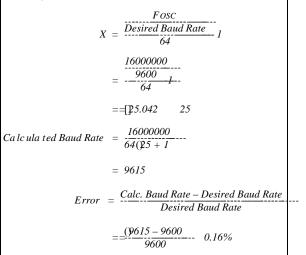
The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and sy nchronous EU SART o peration. By default, the BRG operates in 8-bit mode. Setting the BRG16 b it of t he BAUDCON re gister se lects 16-bit mode.

The SPB RGH, S PBRGL register p air determines the period of the free running baud rate ti mer. In Asynchronous m ode the m ultiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 26-3 contains the formulas for determining the baud rate. Example 26-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical b aud rate s a nd e rror v alues for various asynchronous modes have been computed for yo ur convenience and are shown in Table 26-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.


If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make s ure that the receive operation is IdI e b efore changing the system clock.

EXAMPLE 26-1: CALCULATING BAUD RATE ERROR

For a device with Fosc of 16 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:

Desired Baud Rate = $\frac{FOSC}{64(JSPBRGH:SPBRGL] + 1}$

Solving for SPBRGH:SPBRGL:

TABLE 26-3: BAUD RATE FORMULAS

C	Configuration Bi	ts		Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Rate Formula
00		0	8-bit/Asynchronous	Fosc/[64 (n+1)]
00		1	8-bit/Asynchronous	
01		0	16-bit/Asynchronous	Fosc/[16 (n+1)]
01		1	16-bit/Asynchronous	
10		x	8-bit/Synchronous	Fosc/[4 (n+1)]
11		x	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair

TABLE 26-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	296
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
SPBRGL				BRG	<7:0>				297*
SPBRGH		BRG<15:8>							
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0					
BAUD	Fosc	= 32.00	0 MHz	Fosc = 20.000 MHz			Fosc	; = 18.43	2 MHz	Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300			_			_			_			_	
1200	—	—	—	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	_	—	—	_	—	—	_	_	—	_	_	

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Fos	c = 8.000) MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_
19.2k	—	_	_	_	_	_	19.20k	0.00	2	_	_	_
57.6k	—	_	_	—	_	—	57.60k	0.00	0	_	_	—
115.2k	—	—	—	—	—	—	_	—	—	_	_	—

					SYNC	C = 0, BRGH	l = 1, BRG	616 = 0				
BAUD	Foso	= 32.00	0 MHz	Fosc = 20.000 MHz			Foso	: = 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300			_			_			_			_
1200	—	_	—	_	_	—	_	_	—	—	_	—
2400	—	_	_	_	_	_	_	_	_			_
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

					SYNC	C = 0, BRGH	l = 1, BRG	616 = 0				
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300			—	_		_		_	_	300	0.16	207
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	—
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	_	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	_	_	_
115.2k	—	_	—	—	_	_	115.2k	0.00	1	_	_	—

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 1				
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 1				
BAUD	Fosc = 8.000 MHz		Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	_	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	—	_	_	115.2k	0.00	1	—	_	_

				SYNC = 0	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1									
BAUD	Fosc = 32.000 MHz		Fosc	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215		
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303		
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151		
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287		
10417	10417	0.00	767	10417	0.00	479	10425	0.08	441	10433	0.16	264		
19.2k	19.18k	-0.08	416	19.23k	0.16	259	19.20k	0.00	239	19.20k	0.00	143		
57.6k	57.55k	-0.08	138	57.47k	-0.22	86	57.60k	0.00	79	57.60k	0.00	47		
115.2k	115.9k	0.64	68	116.3k	0.94	42	115.2k	0.00	39	115.2k	0.00	23		

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

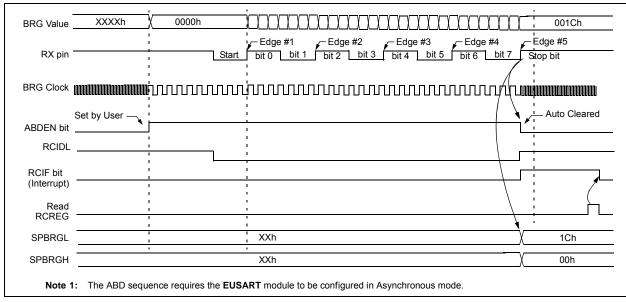
				SYNC = 0	, BRGH	= 1, BRG16	= 1 or SY	′NC = 1,	BRG16 = 1			
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	_	_
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	—	—	—

26.3.1 AUTO-BAUD DETECT

The EUSART m odule s upports a utomatic de tection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the a uto-baud c alibration s equence (Figure 26-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 26-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH reg ister the u ser c an v erify th at the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.


The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 26-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> th e Bre ak c haracter (s ee <u>Section 26.3.3</u> "<u>Auto-Wake-up on</u> <u>Break</u>").
 - 2: It is up to t he user to det ermine that the incoming character baud r ate is within the range of t he selecte d BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the aut o-baud p rocess, the auto-baud count er starts counting at 1. Upon complet ion o f the auto -baud sequence, to achieve maximum accuracy, subtract 1 from t he S PBRGH:SPBRGL register pair.

TABLE 26-6:BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
00		Fosc/64	Fosc/512
01		Fosc/16	Fosc/128
10		Fosc/16	Fosc/128
11		Fosc/4	Fosc/32

Note: During the A BD s equence, S PBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 26-6: AUTOMATIC BAUD RATE CALIBRATION

26.3.2 AUTO-BAUD OVERFLOW

During the c ourse of a utomatic b aud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRGL register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware w ill s et th e R CIF int errupt fl ag a nd c lear th e ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the R CIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

26.3.3 AUTO-WAKE-UP ON BREAK

During Slee p m ode, al I c locks to the EU SART a re suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feat ure al lows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Au to-Wake-up fea ture is enabled by s etting the WUE bit of the BAUDCON register. Once set, the normal receive s equence on R X/DT is disabled, and the EUSART rem ains in an Idle s tate, mo nitoring for a wake-up e vent independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The E USART mod ule generates an R CIF interrupt coincident with the w ake-up e vent. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 26-7), and asynchronously if the device is in Sleep mode (Figure 26-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idl e mode waiting to receive the next character.

26.3.3.1 Special Considerations

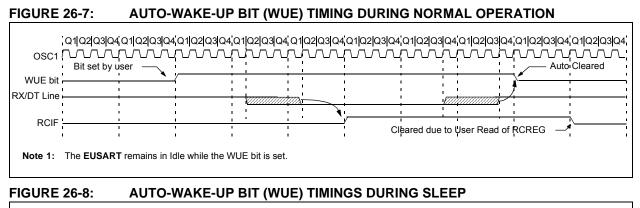
Break Character

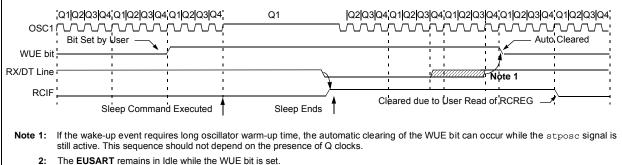
To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the w ake-up is en abled the function works independent of the low time on the data stream. If the WUE bit is set and a valid no n-zero character is received, the low time from the Start bit to the first rising edge will be in terpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be 10 or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Start-up Time


Oscillator start-up time must be considered, especially in ap plications using o scillators with lo nger st art-up intervals (i.e., LP, XT or HS/PL L mode). The Sync Break (or wake-up s ignal) c haracter m ust b e of sufficient I ength, and be fol lowed b y a s ufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.


WUE Bit

The w ake-up eve nt c auses a rec eive in terrupt b y setting t he R CIF b it. T he W UE b it i s c leared i n hardware by a ris ing edg e on RX/DT. The in terrupt condition is the n cl eared i n so ftware by re ading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be s et just prior to entering the Sleep mode.

PIC16(L)F1826/27

26.3.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Bre ak character (ty pically, th e Syn c character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 26-9 for the timing of the Break character sequence.

26.3.4.1 Break and Sync Transmit Sequence

The fol lowing se quence will start a message fram e header made up of a Break, followed by an auto-baud Sync byt e. Th is sequence is t ypical of a LIN bu s master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXR EG with a du mmy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hard ware and the Sy nc ch aracter is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

FIGURE 26-9: SEND BREAK CHARACTER SEQUENCE Write to TXREG -Dummy Write **BRG** Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 Stop bit Break TXIF bit (Transmit Interrupt Flag) TRMT bit (Transmit Shift Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

26.3.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the Received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The s econd m ethod uses the Auto-Wake-up fe ature described in **Section 26.3.3** "**Auto-Wake-up o n Break**". By ena bling this feature, th e EU SART w ill sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Bre ak character, the us er will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

26.4 EUSART Synchronous Mode

Synchronous serial communications are typically used in sy stems with a single master and on e or mo re slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional d ata li ne a nd a c lock lin e. S laves us e th e external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave d evices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

26.4.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the S PEN bit of the R CSTA register e nables th e EUSART.

26.4.1.1 Master Clock

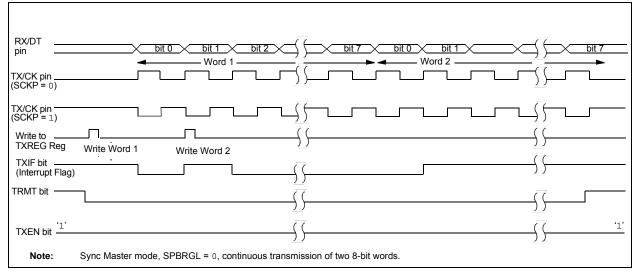
Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TX/CK line. The TX/CK pin output driver is automatically enabled when t he EUSART is c onfigured for sy nchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of e ach clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

26.4.1.2 Clock Polarity

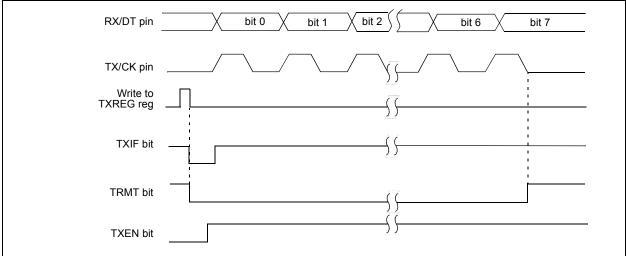
A c lock pol arity o ption i s pr ovided for M icrowire compatibility. Clock polarity is selected with the SCKP bit of the BAUDCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the dat a changes on the falling edg e of eac h clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock.

26.4.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RX/DT pin. The RX/DT and TX/CK pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.


A transmission is initiated by writing a character to the TXREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.


Note:	The TSR register is not mapped in data
	memory, so it is not available to the user.

- 26.4.1.4 Synchronous Master Transmission Set-up:
- Initialize the SPBRGH, SPBRGL reg ister p air and the BRGH and BRG16 bits to achieve the desired baud rate (see Section 26.3 "EUSART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Disable Receive mode by clearing bits S REN and CREN.
- 4. Enable Transmit mode by setting the TXEN bit.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 7. If 9 -bit transmission is selected, the ni nth b it should be loaded in the TX9D bit.
- 8. Start transmission by loading data to the TXREG register.

TABLE 26-7:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page						
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119						
APFCON1	—	_	_	—	_	_	_	TXCKSEL	119						
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	296						
INTCON	GIE PE	IE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86						
PIE1	TMR1GIE	TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE													
PIR1	TMR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF														
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295						
SPBRGL				BRG	<7:0>				297*						
SPBRGH				BRG	<15:8>				297*						
TRISB	TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0														
TXREG			EU	SART Transi	nit Data Regis	ter			287*						
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294						
Lanandi						fen Cumelene			_						

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Master Transmission.

* Page provides register information.

26.4.1.5 Synchronous Master Reception

Data is received at the R X/DT pin. The RX/DT pin output d river is au tomatically d isabled when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either t he S ingle R eceive E nable b it (SREN of t he RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are c ontinuously generated unt il C REN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (R SR). W hen a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are unread characters in the receive FIFO.

Note:	If the RX/DT function is on an analog pin,
	the cor responding ANSEL bit mu st be
	cleared for the receiver to function.

26.4.1.6 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a sl ave receives the clock on the TX/CK line. The TX/CK pin output driver is automatically disabled when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure theyare valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

Note: If the device is configured as a slave and the TX/CK function is on an analog pin, the corresponding A NSEL b it mus t be cleared.

26.4.1.7 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. W hen th is happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO

buffer can be read, however, no a dditional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

26.4.1.8 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will s hift 9-bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth, and Most Significant, data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the 8 Least Significant bits from the RCREG.

26.4.1.9 Synchronous Master Reception Set-up:

- 1. Initialize the SPBRGH, SPBRGL register pair for the ap propriate ba ud rat e. Set or cl ear th e BRGH and BRG16 bits, as required, to achieve the desired baud rate.
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the s ynchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 6. If 9-bit reception is desired, set bit RX9.
- 7. Start reception by setting the SR EN bit or for continuous reception, set the CREN bit.
- 8. Interrupt flag bit RCIF will be set when reception of a character is complete. An interrupt will be generated if the enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and de termine if an y error occurred during reception.
- 10. Read t he 8 -bit rec eived da ta by rea ding th e RCREG register.
- 11. If an overrun error oc curs, c lear the error by either cl earing the C REN bit of the R CSTA register or by clearing the SPEN bit which resets the EUSART.

PIC16(L)F1826/27

RX/DT pin TX/CK pin (SCKP = 0)	X bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	<u>'0'</u>
RCIF bit (Interrupt) ——— Read RCREG ————	
	gram demonstrates Sync Master mode with bit SREN = 1 and bit BRGH = 0.

FIGURE 26-12: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

TABLE 26-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION RECEPTION

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119			
—	—		—	—	—	—	TXCKSEL	119			
ABDOVF	RCIDL	-	SCKP	BRG16	_	WUE	ABDEN	296			
GIE PE	GIE PE IE TMR0IE INTE IOCIE TMR0IF INTF IOCIF										
TMR1GIE ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE											
TMR1GIF	IR1GIF ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF							91			
		EU	SART Recei	ve Data Regis	ter			290*			
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295			
			BRG	<7:0>				297*			
BRG<15:8>											
TRISB7	TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0							127			
CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294			
	RXDTSEL 	RXDTSELSDO1SELABDOVFRCIDLGIE PEIETMR1GIEADIETMR1GIFADIFSPENRX9TRISB7	RXDTSELSDO1SELSS1SELABDOVFRCIDLGIE PEIETMR0IETMR1GIEADIERCIETMR1GIFADIFRCIFSPENRX9SRENITRISB7TRISB6TRISB5	RXDTSELSDO1SELSS1SELP2BSEL(1)ABDOVFRCIDLSCKPGIE PEIETMR0IEINTETMR1GIEADIERCIETXIETMR1GIFADIFRCIFTXIFSPENRX9SRENCRENSPENRX9SRENBRGTRISB7TRISB6TRISB5TRISB4	RXDTSELSDO1SELSS1SELP2BSEL(1)CCP2SEL(1)—————ABDOVFRCIDL—SCKPBRG16GIE PEIETMR0IEINTEIOCIETMR1GIEADIERCIETXIESSPIETMR1GIFADIFRCIFTXIFSSPIFEUSART Receive Data RegisSPENRX9SRENCRENADDENBRG<7:0>BRG<15:8>TRISB7TRISB6TRISB5TRISB4TRISB3	RXDTSELSD01SELSS1SELP2BSEL(1)CCP2SEL(1)P1DSEL——————ABDOVFRCIDL—SCKPBRG16—GIE PEIETMR0IEINTEIOCIETMR0IFTMR1GIEADIERCIETXIESSPIECCP1IETMR1GIFADIFRCIFTXIFSSPIFCCP1IFSPENRX9SRENCRENADDENFERRSPENRX9SRENCRENADDENFERRTRISB7TRISB6TRISB5TRISB4TRISB3TRISB2	RXDTSELSD01SELSS1SELP2BSEL(1)CCP2SEL(1)P1DSELP1CSEL————————ABDOVFRCIDL—SCKPBRG16—WUEGIE PEIETMR0IEINTEIOCIETMR0IFINTFTMR1GIEADIERCIETXIESSPIECCP1IETMR2IETMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFSPENRX9SRENCRENADDENFERROERRSPENRX9SRENCRENADDENFERROERRBRG<7:0>BRG<15:8>TRISB7TRISB6TRISB5TRISB4TRISB3TRISB2TRISB1	RXDTSELSD01SELSS1SELP2BSEL ⁽¹⁾ CCP2SEL ⁽¹⁾ P1DSELP1CSELCCP1SEL——————TXCKSELABDOVFRCIDL—SCKPBRG16—WUEABDENGIE PEIETMR0IEINTEIOCIETMR0IFINTFIOCIFTMR1GIEADIERCIETXIESSPIECCP1IETMR2IETMR1IETMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFTMR1GIFADIFRCIFTXIFSSPIFCCP1IFTMR2IFTMR1IFSPENRX9SRENCRENADDENFERROERRRX9DBRG-7:0>BRG3 TRISB5TRISB4TRISB3TRISB2TRISB1TRISB0			

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Master Reception.

* Page provides register information.

26.4.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for Synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures t hat the d evice i s in t he Transmit mo de, otherwise the device will be configured to receive. Setting the S PEN bit of the R CSTA r egister ena bles th e EUSART.

26.4.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and SI ave modes ar e ident ical (see Section 26.4.1.3 "Synchronous Master Transmission"), except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next in struction. If the GIE bit is a lso s et, the program will call the Interrupt Service Routine.
- 26.4.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and c lear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- 4. If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant 8 bits to the TXREG register.

TABLE 26-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	_	_	—	_	_	_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXREG	EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Slave Transmission. * Page provides register information.

26.4.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section 26.4.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never Idle
- SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 26.4.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and c lear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The R CIF bit w ill be s et when r eception is complete. An interrupt will be g enerated if th e RCIE bit was set.
- 7. If 9-bit mo de is e nabled, re trieve t he M ost Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the 8 L east Si gnificant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error oc curs, cl ear the error by either cl earing the C REN b it of the R CSTA register or by clearing the SPEN bit which resets the EUSART.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON0	RXDTSEL	SDO1SEL	SS1SEL	P2BSEL ⁽¹⁾	CCP2SEL ⁽¹⁾	P1DSEL	P1CSEL	CCP1SEL	119
APFCON1	—	—	_	—	—		_	TXCKSEL	119
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	296
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	91
RCREG	EUSART Receive Data Register							290*	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	295
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	294

TABLE 26-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Synchronous Slave Reception.
* Page provides register information.

26.5 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

26.5.1 SYNCHRONOUS RECEIVE DURING SLEEP

To receive du ring Sle ep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Reception (see Section 26.4.2.4 "Synchronous Slave Reception Set-up:").
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- The RCIF interrupt flag must be cleared by reading RCREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RX/DT and TX/CK pins, respectively. When the data word has been completely clocked in by the external device, the RCIF in terrupt flag bit of the PIR1 register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the GIE global interrupt enable bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

26.5.2 SYNCHRONOUS TRANSMIT DURING SLEEP

To tran smit during Sleep, all the following conditions must be met before entering Sleep mode:

- RCSTA and TXSTA Control registers must be configured for Synchronous Slave Transmission (see Section 26.4.2.2 "Synchronous Slave Transmission Set-up:").
- The TXIF interrupt flag must be cleared by writing the output data to the TXREG, thereby filling the TSR and transmit buffer.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the PEIE bit of the INTCON register.
- Interrupt enable bits TXIE of the PIE1 register and PEIE of the INTCON register must set.

Upon entering Sleep mode, the device will be ready to accept clocks on TX/CK pin and transmit data on the RX/DT pin. When the data word in the TSR has been completely clocked out by the ex ternal device, the pending byte in the TXREG will transfer to the TSR and the TXIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXR EG is available to accept an other character for tran smission, which will clear the TXIF flag.

Upon waking from Sleep, the instruction following the SLEEP in struction will be executed. If the GI obal Interrupt Enable (GIE) bit is also set then the Interrupt Service Routine at address 0004h will be called.

26.5.3 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function registers, APFC ON0 and APFCON1. To de termine which pins can be moved and what their default locations are upon a res et, see Section 12.1 "Alternate Pin Function" for more information.

PIC16(L)F1826/27

NOTES:

27.0 CAPACITIVE SENSING MODULE

The capacitive sensing module allows for an interaction with an end user without a mechanical interface. In a typical a pplication, the c apacitive sensing module is attached to a p ad on a P rinted Circuit Board (PCB), which is electrically isolated from theend user. When the end user places their finger over the PCB p ad, a capacitive load is added, causing a frequency shift in the capacitive s ensing module. The capacitive sen sing module requires sof tware and at least one timer resource to d etermine the change in freque ncy. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- Multiple timer resources
- · Software control
- · Operation during Sleep

27.1 Analog MUX

The capacitive sensing module can monitor up to 12 inputs. The capacitive sensing inputs are defined as CPS<11:0>. To determine if a freq uency change has occurred the user must:

- Select the appropriate CPS pin by setting the CPSCH<3:0> bits of the CPSCON1 register
- · Set the corresponding ANSEL bit
- Set the corresponding TRIS bit
- · Run the software algorithm

Selection of the CPSx pin while the module is enabled will cause the capacitive sensing oscillator to be on the CPSx pin. Failure to set the corresponding ANSEL and TRIS bits can cause the capacitive sensing oscillator to stop, leading to false frequency readings.

27.2 Capacitive Sensing Oscillator

The capacitive sensing oscillator consists of a constant current source and a constant current sink, to produce a tri angle waveform. The CPSO UT bit to f th e CPSCON0 register shows the status of the capacitive sensing oscillator, whether it is a sinking or s ourcing current. The oscillator is designed to drive a capacitive load (single PCB pad) and at the same time, be a clock source to either Timer0 or Timer1. The oscillator has three di fferent c urrent settings as d efined b y CPSRNG<1:0> of the CPSCON0 register. The different current settings for the oscillator serve two purposes:

- Maximize the number of counts in a timer for a fixed time base
- Maximize the count differential in the timer during a change in frequency

27.3 Timer resources

To measure the change in frequency of the capacitive sensing oscillator, a fixed time base is required. For the period of the f ixed time base, the capacitive sensing oscillator is used to clock either Timer0 or Timer1. The frequency of the capacitive sensing oscillator is equal to the number of c ounts in the timer d ivided by the period of the fixed time base.

27.4 Fixed Time Base

To me asure the freq uency of the capacitive sensing oscillator, a fix ed ti me base is req uired. Any tim er resource or software loop can be used to establish the fixed time base. It is up to the end user to determine the method in which the fixed time base is generated.

Note: The fixed time base can not be generated by the timer resource that the capacitive sensing oscillator is clocking.

27.4.1 TIMER0

To select Timer0 as the timer resource for the capacitive sensing module:

- Set the T0XCS bit of the CPSCON0 register
- · Clear the TMR0CS bit of the OPTION register

When Timer0 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer0. Refer to **Section 20.0** "**Timer0 Module**" for additional information.

27.4.2 TIMER1

To s elect T imer1 as the tim er resource f or th e capacitive sensing module, set the TMR1CS<1:0> of the T1CON register to '11'. When Timer1 is chosen as the timer resource, the capacitive sensing oscillator will be the clock source for Timer1. Because the Timer1 module has a gate control, developing a time base for the frequency measurement can be simplified by using the Timer0 overflow flag.

It is recommend that the Timer0 overflow flag, in conjunction with the Toggle mode of the Timer1 gate, be used to de velop the fix ed time bas e re quired by the software p ortion of the capacitive s ensing module. Refer to **Section 21.6.3 "Timer1 Gate Toggle Mode**" for additional information.

TABLE 27-1: TIMER1 ENABLE FUNC	TION
--------------------------------	------

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	On
1	1	Count Enabled by input

27.5 Software Control

The software portion of the capacitive sensing module is required to determine the change in frequency of the capacitive sensing oscillator. This is a ccomplished by the following:

- Setting a fixed time base to acquire counts on Timer0 or Timer1
- Establishing the nominal frequency for the capacitive sensing oscillator
- Establishing the reduced frequency for the capacitive sensing oscillator due to an additional capacitive load
- Set the frequency threshold

27.5.1 NOMINAL FREQUENCY (NO CAPACITIVE LOAD)

To determine the nominal frequency of the capacitive sensing oscillator:

- Remove any extra capacitive load on the selected CPSx pin
- At the start of the fixed time base, clear the timer resource
- At the end of the fixed time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator for the given time bas e. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base.

27.5.2 REDUCED FREQUENCY (ADDITIONAL CAPACITIVE LOAD)

The extra capacitive load will cause the frequency of the capacitive sensing oscillator to decrease. To determine the r educed f requency of the capacit ive se nsing oscillator:

- Add a typical capacitive load on the selected CPSx pin
- Use the same fixed time base as the nominal frequency measurement
- At the start of the fixed time base, clear the timer resource
- At the end of the fixed time base save the value in the timer resource

The value of the timer resource is the number of oscillations of the capacitive sensing oscillator with an additional capacitive load. The frequency of the capacitive sensing oscillator is equal to the number of counts on in the timer divided by the period of the fixed time base. This frequency should be less than the value obtained during the nominal frequency measurement.

27.5.3 FREQUENCY THRESHOLD

The f requency th reshold s hould be p laced m idway between the val ue of nom inal frequency a nd th e reduced frequency of the capacitive sensing oscillator. Refer to Application Note AN1103, "*Software Handling for Capacitive Sensing*" (DS0 1103) for m ore d etailed information on t he software r equired f or ca pacitive sensing module.

Note:	For more information on general capacitive sensing refer to Application Notes:
	 AN1101, "Introduction to Capacitive Sensing" (DS01101)
	 AN1102, "Layout and Physical Design Guidelines for Capacitive Sensing" (DS01102)

27.6 Operation during Sleep

The capacitive sensing oscillator will continue to run as long as the module is enabled, independent of the part being in Sleep. In order for the software to determine if a frequency change has occ urred, the p art must be awake. However, the part does not have to be awake when the timer resource is acquiring counts.

Note: Timer0 does not operate when in Sleep, and t herefore ca nnot be us ed for capacitive sense measurements in Sleep.

R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R-0/0	R/W-0/0			
CPSON	—	—	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'				
u = Bit is unch	nanged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	CPSON: Capacitive Sensing Module Enable bit 1 = Capacitive sensing module is enabled 0 = Capacitive sensing module is disabled									
bit 6-4	Unimplemen	ted: Read as 'o)'							
bit 3-2	CPSRNG<1:0>: Capacitive Sensing Oscillator Range bits 00 = Oscillator is off 01 = Oscillator is in low range. Charge/discharge current is nominally 0.1 μA. 10 = Oscillator is in medium range. Charge/discharge current is nominally 1.2 μA. 11 = Oscillator is in high range. Charge/discharge current is nominally 18 μA.									
bit 1	1 = Oscillator	CPSOUT: Capacitive Sensing Oscillator Status bit 1 = Oscillator is sourcing current (Current flowing out the pin)								
bit 0	 1 = Oscillator is sourcing current (Current flowing out the pin) 0 = Oscillator is sinking current (Current flowing into the pin) TOXCS: Timer0 External Clock Source Select bit If TMR0CS = 1 The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0: 1 = Timer0 clock source is the capacitive sensing oscillator 0 = Timer0 clock source is the T0CKI pin If TMR0CS = 0 Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4 									

REGISTER 27-1: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

REGISTER 27-2: CPSCON1: CAPACITIVE SENSING CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
_	—	—	_	CPSCH3	CPSCH2	CPSCH1	CPSCH0				
bit 7						·	bit				
Legend:											
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit, read	as '0'					
u = Bit is und	hanged	x = Bit is unkno	wn	-n/n = Value a	t POR and BOR	Value at all oth	er Resets				
'1' = Bit is se	t	'0' = Bit is clea	red								
bit 7-4	Unimplemen	ted: Read as '0'									
bit 3-0	CPSCH<3:0>	: Capacitive Sen	sing Channe	I Select bits							
		If CPSON = 0:									
	These bi	These bits are ignored. No channel is selected.									
	If CPSON = 1	<u>If CPSON = 1</u> :									
	0000 =	channel 0, (CPS	60)								
	0001 =	channel 1, (CPS									
	0010 =	channel 2, (CPS2)									
	0011 =	channel 3, (CPS3)									
	0100 =	channel 4, (CPS	64)								
	0101 =	channel 5, (CPS	S5)								
	0110 =	channel 6, (CPS	6)								
	0111 =	channel 7, (CPS	67)								
	1000 =	channel 8, (CPS	S8)								
	1001 =	channel 9, (CPS	<u>S9)</u>								
	1010 =	channel 10, (CF	S10)								
	1011 =	channel 11, (CP									
	1100 =	Reserved. Do n									
	1101 =	Reserved. Do n	ot use.								
	1110 =	Reserved. Do n	ot use.								
	1111 =										

TABLE 27-2: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA		—		ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	123
ANSELB	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	_	128
CPSCON0	CPSON	_	_	_	CPSRNG1	CPSRNG0	CPSOUT	T0XCS	318
CPSCON1		_			CPSCH3	CPSCH2	CPSCH1	CPSCH0	319
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	176
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	91
T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	_	TMR10N	185
TxCON	_	TxOUTPS3	TxOUTPS2	TxOUTPS1	TxOUTPS0	TMRxON	TxCKPS1	TxCKPS0	185
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	122
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	127

Legend: — = Unimplemented locations, read as '0'. Shaded cells are not used by the capacitive sensing module.

PIC16(L)F1826/27

NOTES:

28.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to man ufacture circuit boards with unprogrammed devices. Programming can be d one after the assembly process all owing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- •M CLR/VPP
- VDD
- Vss

In Program/Verify mode the Program Memory, User IDs and the C onfiguration W ords are programmed through serial communications. The ICSPDAT pin is a bi directional I/O use d for transferring the serial data and t he ICSPCLK pin is the clock input. For more information on ICSPTM re fer t o the " *PIC16(L)F182X/PIC12(L)F1822 Memory Programming Specification*" (DS41390).

28.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and IC SPDAT pins low then raising the voltage on $\overline{\text{MCLR}/\text{VPP}}$ to VHH.

Some programmers prod uce V PP greater than VIHH (9.0V), an external circuit is required to limit the V PP voltage. See Figure 28-1 for example circuit.

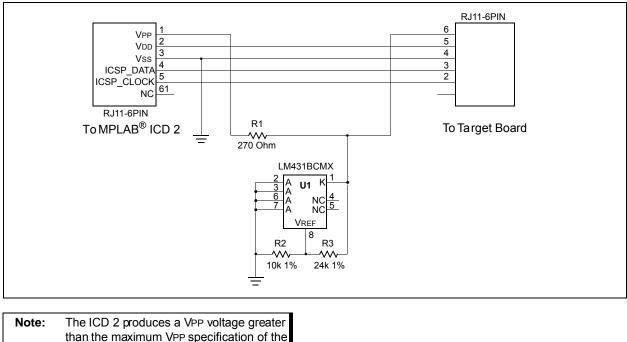


FIGURE 28-1: VPP LIMITER EXAMPLE CIRCUIT

PIC16(L)F1826/27.

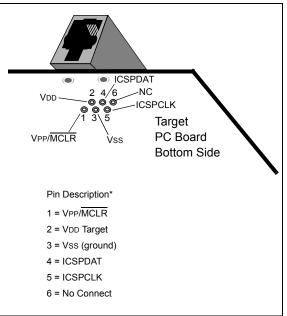
28.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC16(L)F1826/27 de vices to b e pro grammed u sing VDD on Iy, without high voltage. When the LVP bit of Configuration Word 2 is set to '1', the low-voltage ICSP programming en try i s en abled. T o di sable t he Low-Voltage IC SP m ode, th e L VP bi t mu st b e programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 3 2-bit ke y s equence is pres ented o n ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, \overline{MCLR} must be held at VIL for as long as Program/Verify mode is to be maintained.


If low-voltage programming is enabled (LVP = 1), the MCLR R eset f unction is a utomatically enabled and cannot be disabled. See Section 7.3 "MCLR" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

28.3 Common Programming Interfaces

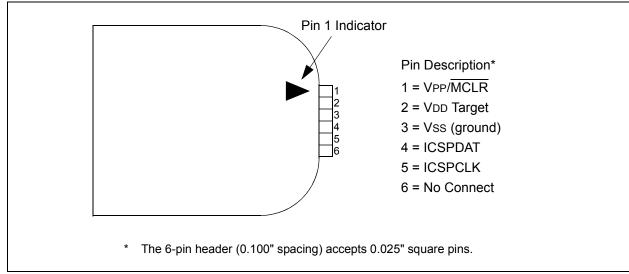
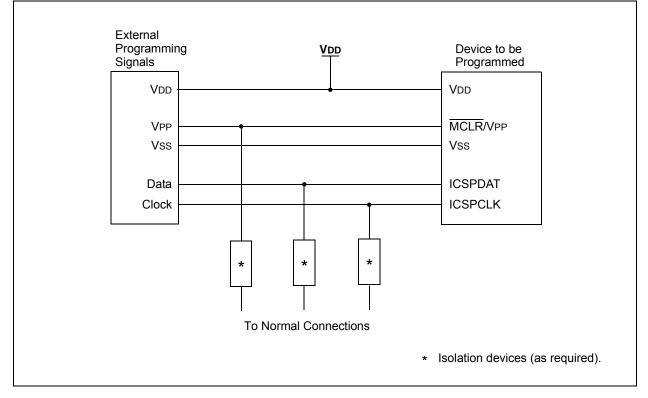

Connection to a target device is typically done through an ICSP^m h eader. A commonly found connector on development tools is the R J-11 in the 6P6C (6 pin, 6 connector) configuration. See Figure 28-2.

FIGURE 28-2: ICD RJ-11 STYLE CONNECTOR INTERFACE

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 28-3.


FIGURE 28-3: PICkit[™] STYLE CONNECTOR INTERFACE

For additional interface recommendations, refer to your specific de vice p rogrammer manual p rior to PC B design.

It is recommended that is olation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 28-4 for more information.

PIC16(L)F1826/27

NOTES:

29.0 INSTRUCTION SET SUMMARY

Each PIC16 instruction is a 14-bit word containing the operation co de (opc ode) and all required o perands. The op codes are broken into three broad categories.

- Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 29-3 lists the instructions re cognized by the MPASMTM assembler.

All instructions are executed within a single instruction cycle, with the fol lowing exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All i nstruction e xamples us e t he f ormat '0xhh' t o represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

29.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 29-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 29-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-out bit
С	Carry bit
DC	Digit carry bit
Z	Zero bit
PD	Power-down bit

FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations 13 8 7 6 0					
OPCODE d f (FILE #)					
d = 0 for destination W d = 1 for destination f f = 7-bit file register address					
Bit-oriented file register operations 13 10 9 7 6 0					
OPCODE b (BIT #) f (FILE #)					
b = 3-bit bit address f = 7-bit file register address					
Literal and control operations					
General					
13 8 7 0					
OPCODE k (literal)					
k = 8-bit immediate value					
CALL and GOTO instructions only					
13 11 10 0					
OPCODE k (literal)					
k = 11-bit immediate value					
MOVLP instruction only					
13 7 6 0					
OPCODE k (literal)					
k = 7-bit immediate value					
MOVLB instruction only					
13 54 0					
OPCODE k (literal)					
k = 5-bit immediate value					
BRA instruction only					
13 9 8 0					
OPCODE k (literal)					
k = 9-bit immediate value					
FSR Offset instructions					
13 7 6 5 0 OPCODE n k (literal)					
n = appropriate FSR k = 6-bit immediate value					
FSR Increment instructions 13 3 2 1 0					
OPCODE n m (mode)					
n = appropriate FSR m = 2-bit mode value					
OPCODE only					
13 0 OPCODE					

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status	
		Description		MSb			LSb	Affected	Note
		BYTE-ORIENTED FILE	REGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE		RATIO	NS				I
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED	SKIP OPERATIO	NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
LITERAL	-			1				T	
ADDLW	k	Add literal and W	1	11	1110	kkkk		C, DC, Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLB	k	Move literal to BSR	1	00	0000	001k	kkkk		
MOVLP	k	Move literal to PCLATH	1	11	0001	1kkk			
MOVLW	k	Move literal to W	1	11	0000	kkkk	kkkk		
SUBLW	k	Subtract W from literal	1	11	1100	kkkk	kkkk	C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	1

TABLE 29-3: PIC16(L)F1826/27 ENHANCED INSTRUCTION SET

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

Mnemonic, Operands			1	14-Bit Opcode				Status	
		Description	Cycles	MSb		•	LSb	Affected	Notes
		CONTROL OPERA	TIONS						
BRA	k	Relative Branch	2	11	001k	kkkk	kkkk		
BRW	_	Relative Branch with W	2	00	0000	0000	1011		
CALL	k	Call Subroutine	2	10	0kkk	kkkk	kkkk		
CALLW	_	Call Subroutine with W	2	00	0000	0000	1010		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
RETFIE	k	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	0100	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
INHERENT OPERATIONS					•				
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO, PD	
NOP	_	No Operation	1	00	0000	0000	0000		
OPTION	_	Load OPTION_REG register with W	1	00	0000	0110	0010		
RESET	_	Software device Reset	1	00	0000	0000	0001		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO, PD	
TRIS	f	Load TRIS register with W	1	00	0000	0110	Offf		
		C-COMPILER OPT	IMIZED					•	•
ADDFSR	n, k	Add Literal k to FSRn	1	11	0001	0nkk	kkkk		
MOVIW	n mm	Move Indirect FSRn to W with pre/post inc/dec	1	00	0000	0001	0nmm	Z	2, 3
		modifier, mm							
	k[n]	Move INDFn to W, Indexed Indirect.	1	11	1111	0nkk	kkkk	Z	2
MOVWI	n mm	Move W to Indirect FSRn with pre/post inc/dec	1	00	0000	0001	lnmm		2, 3
		modifier, mm							
	k[n]	Move W to INDFn, Indexed Indirect.	1	11	1111	1nkk	kkkk		2

TABLE 29-3: PIC16(L)F1826/27 ENHANCED INSTRUCTION SET (CONTINUED)

Note 1:If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.

3: See Table in the MOVIW and MOVWI instruction descriptions.

29.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn			
Syntax:	[label] ADDFSR FSRn, k			
Operands:	$-32 \le k \le 31$ n \in [0, 1]			
Operation:	$FSR(n) + k \rightarrow FSR(n)$			
Status Affected:	None			
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.			
	FOD: is limited to the second of 0000h			

FSRn is limited to the range 0000h -FFFFh. Moving beyond these bounds will cause the FSR to wrap around.

ANDLW	AND literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \leq k \leq 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.			

will cause the FSR to wrap around.
Add literal and W

Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

ASRF	Arithmetic Right Shift				
Syntax:	[<i>label</i>]ASRF f{,d}				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \ \in \ [0,1] \end{array}$				
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,				
Status Affected:	C, Z				
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If				

flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

ADDWFC	
--------	--

ADDLW

ADD W and CARRY bit to f

Syntax:	[<i>label</i>] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

BCF	Bit Clear f
Syntax:	[label]BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTF
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k	Synt Ope
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255	Ope
Operation:	$(PC) + 1 + k \rightarrow PC$	Statu
Status Affected:	None	Des
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a two-cycle instruc- tion. This branch has a limited range.	

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incre- mented to fetch the next instruction, the new address will be $PC + 1 + (W)$. This instruction is a two-cycle instruc- tion.

BSF	Bit Set f
Syntax:	[label] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<6:3>) \rightarrow PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$00h \rightarrow WDT$ $0 \rightarrow \underline{WDT} \text{ prescaler,}$ $1 \rightarrow \underline{TO}$ $1 \rightarrow \overline{PD}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W	COMF	(
Syntax:	[label] CALLW	Syntax:	
Operands:	None	Operands:	(
Operation:	(PC) +1 \rightarrow TOS, (W) \rightarrow PC<7:0>, (PCLATH<6:0>) \rightarrow PC<14:8>	Operation: Status Affected:	(
Status Affected:	None	Description:	-
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a two-cycle instruction.		5

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

CLRW	Clear W
Syntax:	[<i>label</i>] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \leq k \leq 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	C ← register f ←0

LSRF Logical Right Shift	
--------------------------	--

Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$\begin{array}{l} 0 \rightarrow dest < 7 > \\ (f < 7:1 >) \rightarrow dest < 6:0 >, \\ (f < 0 >) \rightarrow C, \end{array}$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	0→ register f → C

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	MOVF FSR, 0
	After Instruction W = value in FSR register Z = 1

ΜΟΥΙΨ	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\begin{split} &\text{INDFn} \rightarrow W \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will be} \\ &\text{either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

MOVLB Move literal to BSR

Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 15$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The five-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The seven-bit literal 'k' is loaded into the PCLATH register.
MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$

Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION_REG
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

MOVWI	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ \textbf{-32} \leq k \leq 31 \end{array}$
Operation:	 W → INDFn Effective address is determined by FSR + 1 (preincrement) FSR - 1 (predecrement) FSR + k (relative offset) After the Move, the FSR value will be either: FSR + 1 (all increments) FSR - 1 (all decrements) Unchanged
Status Affected:	None

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	
Syntax:	

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

RETFIE	Return from Interrupt		
Syntax:	[label] RETFIE		
Operands:	None		
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$		
Status Affected:	None		
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example:	RETFIE		
	After Interrupt PC = TOS GIE = 1		

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RETLW	Return with literal in W	RLF	Rotate Left f through Carry	
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d	
Operands:	0 ≤ k ≤ 255	Operands:	$0 \le f \le 127$ d $\in [0,1]$	
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	See description below	
Status Affected:	None	Status Affected:	C	
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.	
Words:	1		C Register f	
Cycles: Example: TABLE	<pre>2 CALL TABLE;W contains table ;offset value ;W now has table value ADDWF PC ;W = offset</pre>	Words: Cycles: <u>Example:</u>	1 1 RLF REG1,0 Before Instruction REG1 = 1110 0110	
	RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table		C = 0 After Instruction REG1 = 1110 0110 W = 1100 1100 C = 1	
	Before Instruction W = 0x07 After Instruction W = value of k8			

RRF	Rotate Right f through Carry		
Syntax:	[label] RRF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	See description below		
Status Affected:	С		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.		
	C Register f		

SUBLW	Subtract V	V from literal		
Syntax:	[label]S	UBLW k		
Operands:	$0 \leq k \leq 255$			
Operation:	$k - (W) \to (W$	$k - (W) \rightarrow (W)$		
Status Affected:	C, DC, Z	C, DC, Z		
Description:	The W register is subtracted (2's com- plement method) from the eight-bit literal 'k'. The result is placed in the W register.			
	C = 0	W > k		
	C = 1	$W \le k$		
	DC = 0	W<3:0> > k<3:0>		

DC = 1

SLEEP	Enter Sleep mode
Syntax:	[label]S LEEP
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT}, \\ 0 \rightarrow \text{WDT prescaler}, \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f		
Syntax:	[label] SU	IBWF f,d	
opolaliaol	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	(f) - (W) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.		
	C = 0	W > f	
	C = 1	$W \leq f$	

0 0	VV > 1
C = 1	$W \leq f$
DC = 0	W<3:0> > f<3:0>
DC = 1	$W<3:0> \le f<3:0>$

 $W<3:0> \le k<3:0>$

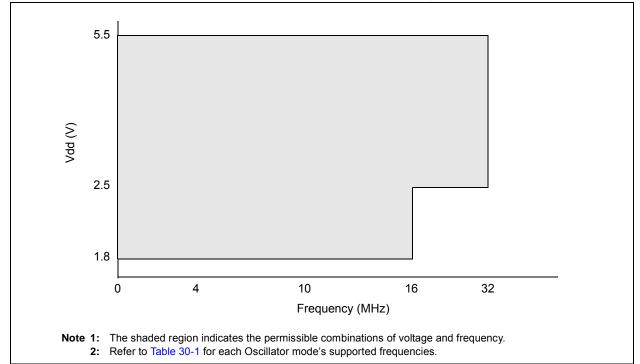
SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

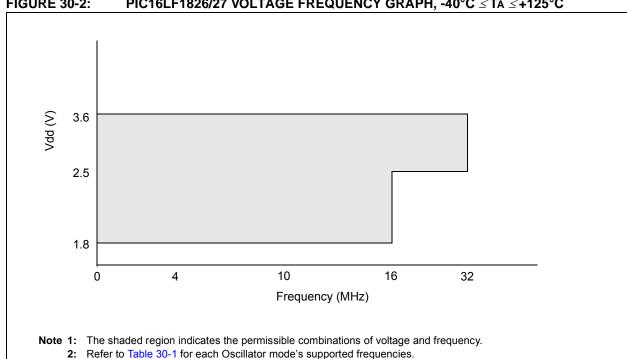
SWAPF	Swap Nibbles in f
Syntax:	[label] SW APF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W		
Syntax:	[<i>label</i>] XORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	Z		
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.		

TRIS	Load TRIS Register with W	XOR
Syntax:	[label] TRIS f	Synta
Operands:	$5 \le f \le 7$	Opera
Operation:	(W) \rightarrow TRIS register 'f'	_
Status Affected:	None	Opera
Description:	Move data from W register to TRIS	Status
·	register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.	Desci

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f,d						
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						


30.0 ELECTRICAL SPECIFICATIONS


Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss, PIC16F1826/27	
Voltage on VDD with respect to Vss, PIC16LF1826/27	0.3V to +4.0V
Voltage on MCLR with respect to Vss	0.3V to +9.0V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin, -40°C \leq TA \leq +85°C for industrial	
Maximum current out of Vss pin, -40°C \leq TA \leq +125°C for extended	114 mA
Maximum current into VDD pin, -40°C \leq TA \leq +85°C for industrial	292 mA
Maximum current into VDD pin, -40°C \leq TA \leq +125°C for extended	107 mA
Clamp current, Ік (VPIN < 0 or VPIN > VDD)	20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD IOL).) – Vон) x Iон} + ∑(Vol x
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause pe	ermanent damage to the

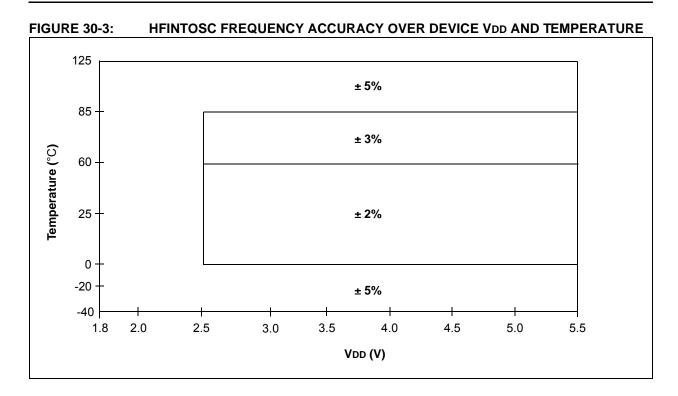

⁺ NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

FIGURE 30-2: PIC16LF1826/27 VOLTAGE FREQUENCY GRAPH, -40°C < TA <+125°C

30.1 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended)

PIC16LI	F1826/27		$ \begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array} $							
PIC16F1	PIC16F1826/27			$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D001	Vdd	Supply Voltage								
		PIC16LF1826/27	1.8 2.5		3.6 3.6	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (NOTE 2)			
D001		PIC16F1826/27	1.8 2.5	-	5.5 5.5	V V	Fosc ≤ 16 MHz: Fosc ≤ 32 MHz (NOTE 2)			
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾								
		PIC16LF1826/27	1.5	_	_	V	Device in Sleep mode			
D002*		PIC16F1826/27	1.7		—	V	Device in Sleep mode			
	VPOR*	Power-on Reset Release Voltage	—	1.6	—	V				
	VPORR*	Power-on Reset Rearm Voltage		-						
		PIC16LF1826/27	—	0.8	—	V	Device in Sleep mode			
		PIC16F1826/27	_	1.7	_	V	Device in Sleep mode			
D003	VADFVR	Fixed Voltage Reference Voltage for ADC	-8 -8 -8		6 6 6	%	$\begin{array}{l} 1.024V, \ VDD \geq 2.5V \\ 2.048V, \ VDD \geq 2.5V \\ 4.096V, \ VDD \geq 4.75 \end{array}$			
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC	-11 -11 -11		7 7 7	%	$\begin{array}{l} 1.024V, VDD \geq 2.5V\\ 2.048V, VDD \geq 2.5V\\ 4.096V, VDD \geq 4.75 \end{array}$			
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms	See Section 7.1 "Power-on Reset (POR)" for details.			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: PLL required for 32 MHz operation.

*

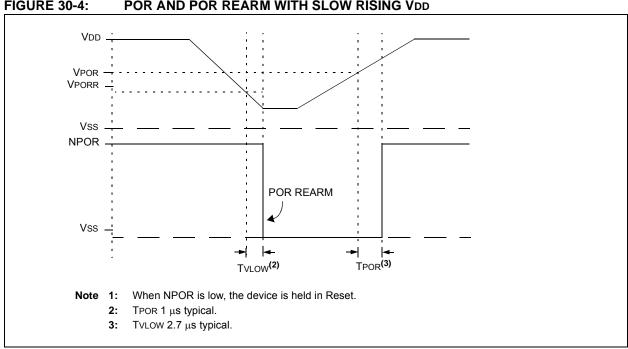


FIGURE 30-4: POR AND POR REARM WITH SLOW RISING VDD

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended)

PIC16LF	1826/27		d Operati g tempera	iture -	40°C ≤ T/	less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended	
PIC16F1	326/27			l Operati g tempera	iture -	less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended	
Param Device Min.			Turnt	Max.	Units		Conditions
No.	Characteristics	WIIII.	Тур†	WIAX.	Units	VDD	Note
	Supply Current (IDD) ^{(1,}	2)					
D010		—	7.0	13	μA1	.8	Fosc = 32 kHz
		—9	.0	16	μ A 3	.0	LP Oscillator mode, $-40^{\circ}C \le TA \le +85^{\circ}C$
		—7	.0	17	μA1	.8	Fosc = 32 kHz
		—9	.0	18	μ A 3	.0	LP Oscillator mode, $-40^{\circ}C \le TA \le +125^{\circ}C$
D010		_	24	40	μA	1.8	Fosc = 32 kHz
		—	30	48	μA	3.0	LP Oscillator mode $-40^{\circ}C \le TA \le +85^{\circ}C$
		—	32	55	μA	5.0	
		_	24	43	μA	1.8	Fosc = 32 kHz
		_	30	50	μA	3.0	LP Oscillator mode $-40^{\circ}C \le TA \le +125^{\circ}C$
			32	60	μA	5.0	$= -40 C \leq 1A \leq \pm 125 C$
D011		_	110	200	μA1	.8	Fosc = 1 MHz
		_	200	400	μ A 3	.0	XT Oscillator mode
D011		—	160	210	μA	1.8	Fosc = 1 MHz
		_	210	400	μA	3.0	XT Oscillator mode
		_	250	450	μA	5.0	
D012			290	475	μA1	.8	Fosc = 4 MHz
		_	600	900	μ A 3	.0	XT Oscillator mode
D012		_	380	570	μA	1.8	Fosc = 4 MHz
		_	650	880	μA	3.0	XT Oscillator mode
		_	680	1100	μA	5.0	
D013		_	40	80	μ A 1	.8	Fosc = 500 kHz
		—7	0	120	μ A 3	.0	EC Oscillator mode, Low-power mode
D013		_	60	120	μA	1.8	Fosc = 500 kHz
			80	180	μA	3.0	EC Oscillator mode Low-power mode
		—	93	200	μA	5.0	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- 3: 8 MHz internal RC oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

*

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended) (Continued)

PIC16LF	1826/27			d Operati g tempera	ature	itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
PIC16F1	826/27			d Operati g tempera	ature	itions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
Param	Device	Min.	Тур†	Max.	Units		Conditions		
No.	Characteristics		וקעי	max.	Units	VDD	Note		
	Supply Current (IDD) ^{(1,}	2)							
D014		_	260	475	μ A 1	.8	Fosc = 4 MHz		
		—5	50	800	μ A 3	.0	EC Oscillator mode, Medium-power mode		
D014		—	375	655	μA	1.8	Fosc = 4 MHz		
		—	600	800	μΑ	3.0	EC Oscillator mode Medium-power mode		
		—	650	930	μΑ	5.0			
D015		_	3.6	10	μ A 1	.8	Fosc = 31 kHz		
		—7	.0	15	μ A 3	.0	LFINTOSC mode		
D015			21	42	μΑ	1.8	Fosc = 31 kHz		
			27	55	μΑ	3.0	LFINTOSC mode		
		—	28	60	μA	5.0			
D016		_	110	210	μ A 1	.8	Fosc = 500 kHz		
		—	150	250	μ A 3	.0	MFINTOSC mode		
D016			150	250	μΑ	1.8	Fosc = 500 kHz		
		_	210	345	μΑ	3.0	MFINTOSC mode		
		—	270	425	μΑ	5.0			
D017*		_	0.8	1.5	mA	1.8	Fosc = 8 MHz		
		—	1.3	2.4	mA	3.0	HFINTOSC mode		
D017*		_	1.0	2.0	mA	1.8	Fosc = 8 MHz		
		_	1.5	2.6	mA	3.0	HFINTOSC mode		
		-	1.7	2.8	mA	5.0			
D018		_	1.2	2.5	mA	1.8	Fosc = 16 MHz		
			2.5	3.75	mA	3.0	HFINTOSC mode		
D018			1.7	2.23	mA	1.8	Fosc = 16 MHz		
		_	2.7	4.3	mA	3.0	HFINTOSC mode		
		-	3.0	4.6	mA	5.0			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- 3: 8 MHz internal RC oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

30.2 DC Characteristics: PIC16(L)F1826/27-I/E (Industrial, Extended) (Continued)

PIC16LF1	1826/27	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
PIC16F18	326/27		d Operati g tempera	iture -	40°C ≤ TA	less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended					
Param	Device	Min.	Тур†	Max.	Units		Conditions				
No.	Characteristics		IJPT	max.	onits	Vdd	Note				
	Supply Current (IDD) ^(1, 2)										
D019		—	4.0	7.3	mA	3.0	Fosc = 32 MHz				
		—4	.4	7.5	mA	3.6	HFINTOSC mode (Note 3)				
D019		—	4.2	7.3	mA	3.0	Fosc = 32 MHz				
		_	4.6	7.5	mA	5.0	HFINTOSC mode (Note 3)				
D020		—	4.0	6.0	mA	3.0	Fosc = 32 MHz				
		—4	.7	7.0	mA	3.6	HS Oscillator mode (Note 4)				
D020		—	4.2	6.8	mA	3.0	Fosc = 32 MHz				
		—	4.9	7.6	mA	5.0	HS Oscillator mode (Note 4)				
D021			410	0.65	mA	1.8	Fosc = 4 MHz				
		_	710	1.25	mA	3.0	EXTRC mode (Note 5)				
D021		—	430	0.695	mA	1.8	Fosc = 4 MHz				
		—	730	1.3	mA	3.0	EXTRC mode (Note 5)				
		_	860	1.35	mA	5.0					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins as inputs, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: 8 MHz internal RC oscillator with 4x PLL enabled.

4: 8 MHz crystal oscillator with 4x PLL enabled.

5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down)

PIC16LF1	826/27			rd Operating temper		ditions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended			
PIC16F18	26/27		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param	Device Characteristics	Min.	Tunt Max. Max.	Units		Conditions			
No.	Device Characteristics	WIIII.	Тур†	+85°C	+125°C	Units	Vdd	Note	
	Power-down Base Current	(IPD) ⁽²⁾		1		1		1	
D022			0.02	1.0	4.0	μA	1.8	WDT, BOR, FVR, and T1OSC	
		—	0.03	1.1	7.0	μ A 3	.0	disabled, all Peripherals Inactive	
D022			15	35	50	μA	1.8	WDT, BOR, FVR, and T1OSC	
		_	18	40	60	μA	3.0	disabled, all Peripherals Inactiv	
		-	19	45	70	μA	5.0		
D023			0.5	1.1	5.0	μA	1.8	LPWDT Current (Note 1)	
			0.8	2.0	8.0	μ A 3	.0		
D023			LPWDT Current (Note 1)						
			19	40	60	μA	3.0	_	
			20	45	70	μA	5.0		
D023A			8.5	23	32	μA	1.8	FVR current (Note 1)	
			8.5	26	40	μ A 3	.0		
D023A		_	32	62	66	μA	1.8	FVR current (Note 1)	
			39	70	80	μA	3.0	_	
			70	110	120	μA	5.0		
D024			8.1	14	20	μA	3.0	BOR Current (Note 1)	
D024			34	57	70	μA	3.0	BOR Current (Note 1)	
		-	67	100	115	μA	5.0		
D025			0.6	1.5	5.0	μΑ	1.8	T1OSC Current (Note 1)	
		-	0.8	2.5	8.0	μ A 3	.0		
D025			16	35	50	μA	1.8	T1OSC Current (Note 1)	
			21	40	60	μA	3.0	_	
		—	25	45	70	μA	5.0		
D026			0.1	1.1	5.0	μΑ	1.8	A/D Current (Note 1, Note 3), no conversion in progress	
-		-	0.1	2.0	8.0	μ A 3	.0		
D026			16	35	50	μA			
			21	40	60	μA	3.0		
		—	25	45	70	μA	5.0		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down) (Continued)

PIC16LF1	826/27			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
PIC16F18		rd Operation ng temper		litions (unless otherwise stated) -40°C \leq TA \leq +85°C for industrial -40°C \leq TA \leq +125°C for extended							
Param	Device Characteristics	Min.	Typ†	Max.	Max.	Units	Conditions				
No.			19PT	+85°C	+125°C	onno	Vdd	Note			
	Power-down Base Current	(IPD) ⁽²⁾									
D026A*		_	250	—	—	μA	1.8	A/D Current (Note 1, Note 3),			
		—	250	—	—	μ A 3	.0	conversion in progress			
D026A*		_	280	—	—	μA	1.8	A/D Current (Note 1, Note 3),			
		_	280		—	μA	3.0	conversion in progress			
		—	280	—	—	μA	5.0				
D027			3.5	6	8	μA	1.8	Cap Sense Low Power			
			7	10	14	μ A 3	.0	Oscillator mode (Note 1)			
D027			4.3	36	38	μA	1.8	Cap Sense Low Power			
			5.8	39	42	μA	3.0	Oscillator mode (Note 1)			
		—	6.3	42	45	μA	5.0				
D027A			4.2	8	10	μA	1.8	Cap Sense Medium Power			
		—	6	12	15	μ A 3	.0	Oscillator mode (Note 1)			
D027A			7.4	38	40	μA	1.8	Cap Sense Medium Power			
			9.7	42	43	μA	3.0	Oscillator mode (Note 1)			
		—	10.4	46	48	μA	5.0				
D027B		—	6	10	15	μA	1.8	Cap Sense High Power			
		—	10	14	20	μ A 3	.0	Oscillator mode (Note 1)			
D027B			17	44	50	μA	1.8	Cap Sense High Power			
			41	68	80	μA	3.0	Oscillator mode (Note 1)			
		—	50	78	90	μA	5.0				
D028		_	6.9	11	15	μA	1.8	Comparator Current, Low Power			
		—	7.0	13	16	μ A 3	.0	mode, one comparator enabled (Note 1)			
D028		—	24	45	60	μA	1.8	Comparator Current, Low Power			
			24.5	60	70	μA	3.0	mode, one comparator enabled			
		_	25	65	75	μA	5.0	(Note 1)			
D028A		—	7.0	12	16	μA	1.8	Comparator Current, Low Powe			
		—	7.2	14	17	μ A 3	.0	mode, two comparators enabled (Note 1)			
D028A			24	45	60	μA	1.8	Comparator Current, Low Power			
		_	24.5	60	70	μA	3.0	mode, two comparators enabled (Note 1)			
		_	25	65	75	μA	5.0				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.

*

30.3 DC Characteristics: PIC16(L)F1826/27-I/E (Power-Down) (Continued)

PIC16LF18	826/27		r d Opera t ng temper	•	-40°C ≤	$TA \le +85^{\circ}$	erwise stated) C for industrial i°C for extended				
PIC16F182	26/27			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Dovice Characteristics	Min.	Тур†	Max.	Max.	Units		Conditions			
No.	Device Characteristics	win.		+85°C	+125°C	Units	Vdd	Note			
	Power-down Base Current (IPD) ⁽²⁾										
D028B		_	24	32	40	μA	1.8	Comparator Current, High Power			
		—	25	35	45	μ A 3	.0	mode, one comparator enabled (Note 1)			
D028B			36	60	80	μA	1.8	Comparator Current, High Power			
		_	37	63	87	μA	3.0	mode, one comparator enabled			
			38	65	90	μA	5.0	(Note 1)			
D028C			40	80	90	μA	1.8	Comparator Current, High Power			
		_	41	83	95	μ A 3	.0	mode, two comparators enabled			
D028C		—	43	86	100	μA	1.8	Comparator Current, High Power			
		_	44	90	105	μA	3.0	mode, two comparators enabled			
		_	45	95	110	μA	5.0	(Note 1)			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins set to inputs state and tied to VDD.

3: A/D oscillator source is FRC.

30.4 DC Characteristics: PIC16(L)F1826/27-I/E

	DC CI	HARACTERISTICS			$-40^\circ C \le T \text{A}$	≤ +85°C	otherwise stated) for industrial C for extended
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage					
		I/O PORT:					
D030		with TTL buffer	—	—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D030A			—	—	0.15 VDD	V1	$.8V \le V \text{DD} \le 4.5V$
D031		with Schmitt Trigger buffer	—		0.2 VDD	V2	$.0V \leq V \text{DD} \leq 5.5 V$
		with I ² C™ levels	—		0.3 VDD	V	
		with SMBus™ levels	—		0.8	V	$2.7V \le V\text{DD} \le 5.5V$
D032		MCLR, OSC1 (RC mode) ⁽¹⁾	—		0.2 VDD	V	
D033		OSC1 (HS mode)		_	0.3 VDD	V	
	VIH	Input High Voltage					•
		I/O ports:		_			
D040		with TTL buffer	2.0		—	V	$4.5V \le V \text{DD} \le 5.5V$
D040A			0.25 VDD + 0.8			V	$1.8V \leq V\text{DD} \leq 4.5V$
D041		with Schmitt Trigger buffer	0.8 VDD			V	$2.0V \le V\text{DD} \le 5.5V$
		with I ² C™ levels	0.7 Vdd			V	
		with SMBus™ levels	2.1	_	_	V	$2.7V \le V\text{DD} \le 5.5V$
D042		MCLR	0.8 VDD	_	—	V	
D043A		OSC1 (HS mode)	0.7 VDD	_	—	V	
D043B		OSC1 (RC mode)	0.9 VDD	_	_	V	(Note 1)
	lil	Input Leakage Current ⁽²⁾				•	
D060		I/O ports	—	± 5	± 100	nA	Vss \leq VPIN \leq VDD, Pin at high- impedance at 85°C
		(2)		± 5	± 1000	nA	125°C
D061	-	MCLR ⁽³⁾	—	± 0	55 00	2hA	$Vss \leq V \text{PIN} \leq V \text{DD} \text{ at } 85^\circ C$
	IPUR	Weak Pull-up Current					
D070*			25	100	200	•	VDD = 3.3V, $VPIN = VSS$
	Vol	Output Low Voltage ⁽⁴⁾	25	140	300	μA	VDD = 5.0V, VPIN = VSS
D000	VOL		1		1		$ c \rangle = 0 = 0$
D080		I/O ports			0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V
	Voн	Output High Voltage ⁽⁴⁾	1				
D090		I/O ports					ЮН = 3.5mA, VDD = 5V
2000			Vdd - 0.7	—	_	V	IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V
		Capacitive Loading Specs on	Output Pins				
D101*	COSC2	OSC2 pin	—	_	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1
D101A*	Cio	All I/O pins		_	50	pF	
*		arameters are characterized but	not tested			F.	I

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

DC CHA	ARACTE	RISTICS	Standard C Operating to				ess otherwise stated) 125°C
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP/RA5 pin	8.0	_	9.0	V	(Note 3, Note 4)
D111	Iddp	Supply Current during Programming			10	mA	
D112		VDD for Bulk Erase	2.7	—	VDD max.	V	
D113	VPEW	VDD for Write or Row Erase	Vdd min.	V	DD max.	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/ Write	_	—	1.0	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—		5.0	mA	
		Data EEPROM Memory					
D116	ED	Byte Endurance	100K	—	—Е	/W	-40°C to +85°C
D117	Vdrw	VDD for Read/Write	Vdd min.	V	DD max.	V	
D118	TDEW	Erase/Write Cycle Time	—	4.0	5.0	ms	
D119	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D120	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D121	Eр	Cell Endurance	10K	_	—Е	/W	-40°C to +85°C (Note 1)
D122	Vpr	VDD for Read	Vdd min.	V	DD max.	V	
D123	Tiw	Self-timed Write Cycle Time		2	2.5	ms	
D124	TRETD	Characteristic Retention	_	40		Year	Provided no other specifications are violated

30.5 Memory Programming Requirements

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Refer to Section 11.2 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

30.6 Thermal Considerations

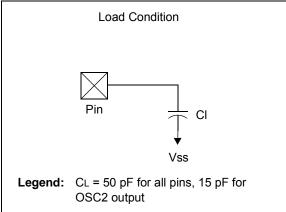
	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Тур.	Units	Conditions					
TH01	θJA	Thermal Resistance Junction to Ambient	65.5	°C/W	18-pin PDIP package					
			76	°C/W	18-pin SOIC package					
			89.3	°C/W	20-pin SSOP package					
			TBD	°C/W	28-pin UQFN 4x4mm package					
			31.1	°C/W	28-pin QFN 6x6mm package					
TH02	θJC	Thermal Resistance Junction to Case	29.5	°C/W	18-pin PDIP package					
			23.5	°C/W	18-pin SOIC package					
			31.1	°C/W	20-pin SSOP package					
			TBD	°C/W	28-pin UQFN 4x4mm package					
			5	°C/W	28-pin QFN 6x6mm package					
TH03	TJMAX	Maximum Junction Temperature	150	°C						
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O					
TH05	PINTERNAL	Internal Power Dissipation		W	PINTERNAL = IDD x VDD ⁽¹⁾					
TH06	Pi/o	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$					
TH07	Pder	Derated Power		W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾					

Legend: TBD = To Be Determined

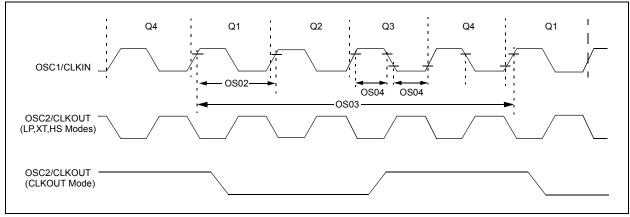
Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature

3: T_J = Junction Temperature


30.7 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

2. 1000			
т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	osc	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDIx	sc	SCKx
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O PORT	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impedance)	V	Valid
L	Low	Z	High-impedance

FIGURE 30-5: LOAD CONDITIONS

30.8 AC Characteristics: PIC16(L)F1826/27-I/E

FIGURE 30-6: CLOCK TIMING

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS

	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	-	0.5	MHz	EC Oscillator mode (low)			
			DC	—	4	MHz	EC Oscillator mode (medium)			
			DC	—	20	MHz	EC Oscillator mode (high)			
		Oscillator Frequency ⁽¹⁾	_	32.768	—	kHz	LP Oscillator mode			
			0.1	—	4	MHz	XT Oscillator mode			
			1	—	4	MHz	HS Oscillator mode			
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V			
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V			
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	_	∞μ	s	LP Oscillator mode			
			250	—	×	ns	XT Oscillator mode			
			50	_	×	ns	HS Oscillator mode			
			50	—	×	ns	EC Oscillator mode			
		Oscillator Period ⁽¹⁾	_	30.5	—	μs	LP Oscillator mode			
			250	—	10,000	ns	XT Oscillator mode			
			50	—	1,000	ns	HS Oscillator mode			
			250	—	—	ns	RC Oscillator mode			
OS03	TCY	Instruction Cycle Time ⁽¹⁾ 200	TCY	—D	С	ns	Tcy = Fosc/4			
OS04*	TosH,	External CLKIN High,	2—		—	μs	LP oscillator			
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator			
			20	—	—	ns	HS oscillator			
OS05*	TosR,	External CLKIN Rise,	0—		×	ns	LP oscillator			
	TosF	External CLKIN Fall	0—		×	ns	XT oscillator			
			0—		×	ns	HS oscillator			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 30-2: OSCILLATOR PARAMETERS

	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions			
OS08	HFosc	Internal Calibrated HFINTOSC	±2%		16.0	—	MHz	$0^{\circ}C \leq TA \leq +60^{\circ}C, \ V\text{DD} \geq 2.5V$			
		Frequency ⁽²⁾	±3%		16.0	_	MHz	$60^{\circ}C \leq TA \leq \textbf{+85}^{\circ}C, V\text{DD} \geq 2.5V$			
			±5%		16.0	_	MHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS08A	MFosc	Internal Calibrated MFINTOSC	±2%		500	_	kHz	$0^{\circ}C \leq TA \leq \text{+}60^{\circ}C, \text{VDD} \geq 2.5 \text{V}$			
		Frequency ⁽²⁾	±3%		500	_	kHz	$60^{\circ}C \leq T\!A \leq \textbf{+85}^{\circ}C, V\text{DD} \geq 2.5V$			
			±5%		500	_	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS09	LFosc	Internal LFINTOSC Frequency	_	Ι	31	_	kHz	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time MFINTOSC			3.2	8	μS				
		Wake-up from Sleep Start-up Time	—	—	24	35	μS				

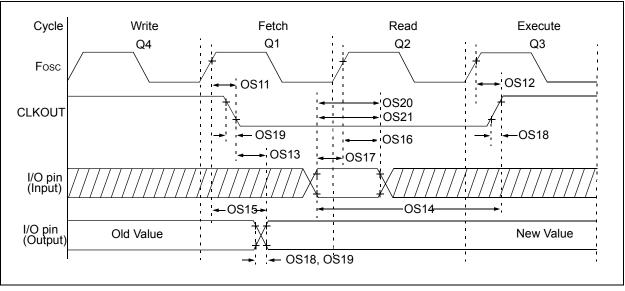
These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are † not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

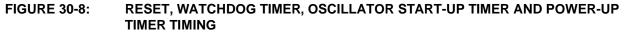
3: By design.

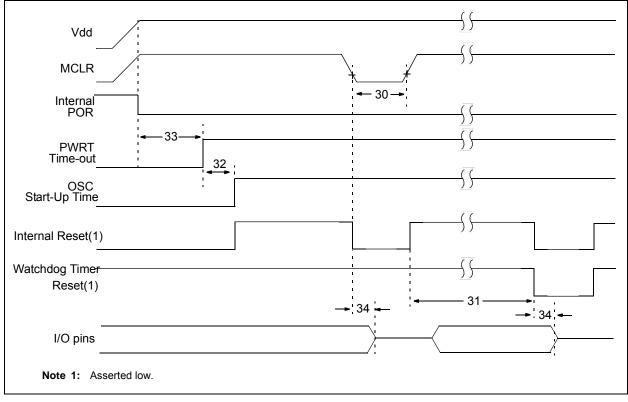

TABLE 30-3: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)

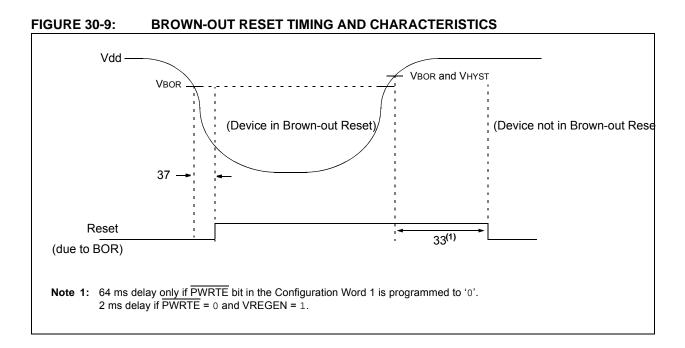
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16		32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	_		2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	—	+0.25%	%	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


	Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$										
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾			70	ns	VDD = 3.3-5.0V				
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾			72	ns	VDD = 3.3-5.0V				
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾ ——			20	ns					
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾ T	osc + 200 ns	_	_	ns					
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.3-5.0V				
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	_	_	ns	VDD = 3.3-5.0V				
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20			ns					
OS18	TioR	Port output rise time ⁽²⁾	_	40 15	72 32	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS19	TioF	Port output fall time ⁽²⁾		28 15	55 30	ns	VDD = 1.8V VDD = 3.3-5.0V				
OS20*	Tinp	INT pin input high or low time	25			ns					
OS21*	Tioc	Interrupt-on-change new input level time	25			ns					

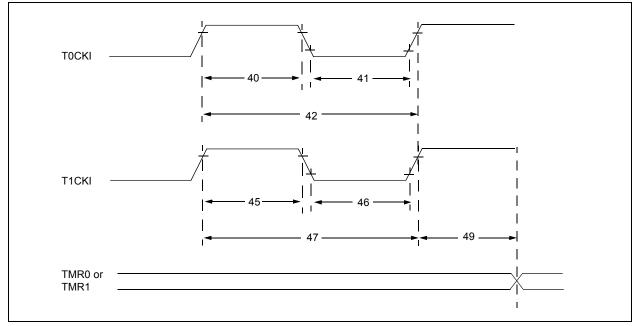

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Includes OSC2 in CLKOUT mode.

TABLE 30-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS


Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C									
Param No.	Sym.	Characteristic		Тур†	Max.	Units	Conditions		
30	TMCLM	CLR Pulse Width (low)	2	_	_	μS			
31	TWDTLP	Low-Power Watchdog Timer Time-out Period (No Prescaler)	10	16	27	ms	VDD = 3.3V-5V 1:16 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ^{(1),} (2)		1024		Tosc	(Note 3)		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms			
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		—	2.0	μS			
35	VBOR	Brown-out Reset Voltage	2.38 1.80	2.5 1.9	2.73 2.11	VB	ORV=2.5V BORV=1.9V		
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C		
37*	TBORDC	Brown-out Reset DC Response Time	03		35	μsV	$DD \leq VBOR$		

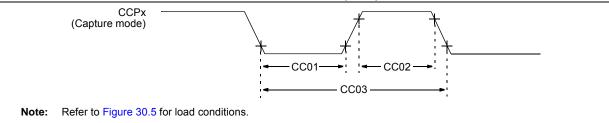
These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - **3:** Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 30-6: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS


Standard Operating Conditions (unless otherwise stated)
Operating Temperature $-40^{\circ}C < T_{A} < +125^{\circ}C$

Param No.	Sym.		Characterist	ic	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High Pulse Width No Prescaler			0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
41*	TT0L	T0CKI Low P	ulse Width	No Prescaler	0.5 Tcy + 20		_	ns	
				With Prescaler	10		_	ns	
42*	Тт0Р	T0CKI Period	-		Greater of: 20 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (2, 4,, 256)
45*	Тт1Н	T1CKI High Time	Synchronous, No Prescaler		0.5 TCY + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 TCY + 20			ns	
		Time	Synchronous, with Prescaler		15	—		ns	
			Asynchronous		30	—		ns	
47*	TT1P	T1P T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	
			Asynchronous		60	—	_	ns	
48	F⊤1		llator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33. 1	kHz	
49*	TCKEZTMR1	Delay from E Increment	External Clock Edge to Timer		2 Tosc	—7	Tosc	—	Timers in Sync mode

These parameters are characterized but not tested. †

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-11: **CAPTURE/COMPARE/PWM TIMINGS (CCP)**

TABLE 30-7: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions				
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20			ns					
			With Prescaler	20			ns					
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20			ns					
			With Prescaler	20			ns					
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)				

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-8: PIC16(L)F1826/27 A/D CONVERTER (ADC) CHARACTERISTICS:

	Standard Operating Conditions (unless otherwise stated) Dperating temperature Tested at +25°C							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	—	_	10	bit		
AD02	EIL	Integral Error	—	_	±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	—	—	±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	—	_	±2.5	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_	_	±2.0	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage ⁽³⁾			Vdd	VV	REF = (VREF+ minus VREF-) (NOTE 5)	
AD07	VAIN	Full-Scale Range	—		VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source			10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

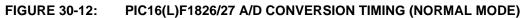
Note 1: Total Absolute Error includes integral, differential, offset and gain errors.

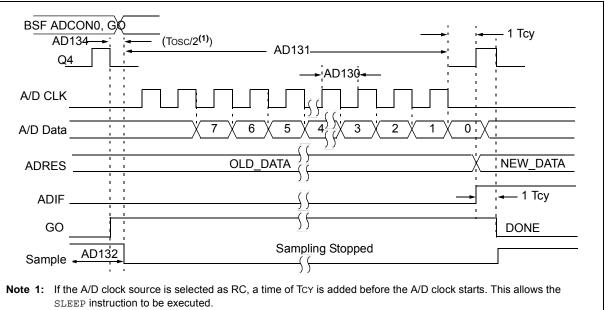
2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: ADC VREF is from external VREF, VDD pin or FVR, whichever is selected as reference input.

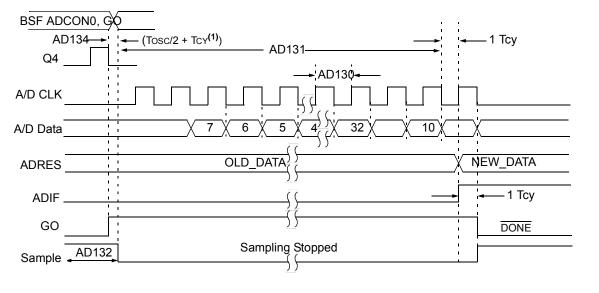
4: When ADC is off, it will not consume any current other than leakage current. The power-down current specification includes any such leakage from the ADC module.

5: FVR voltage selected must be 2.048V or 4.096V.


TABLE 30-9: PIC16(L)F1826/27 A/D CONVERSION REQUIREMENTS


	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
AD130*	Tad	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.5	9.0 6.0	μsT μs	OSC-based ADCS<1:0> = 11 (ADRC mode)		
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—1	1	-	Tad	Set GO/DONE bit to conversion complete		
AD132*	TACQ	Acquisition Time	_	5.0	—	μs			

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

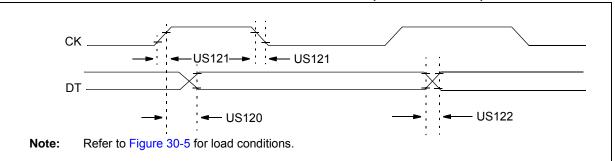
FIGURE 30-13: PIC16(L)F1826/27 A/D CONVERSION TIMING (SLEEP MODE)

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

Operating	Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).						
Param No.	Sym.	Characteristics Min. Typ. Ma x. Units Comm		Comments			
CM01	Vioff	Input Offset Voltage	_	±7.5	±60	mV	High Power Mode
CM02	Vicm	Input Common Mode Voltage	0	_	Vdd	V	
CM03*	CMRR	Common Mode Rejection Ratio	_	50		dB	
CM04A		Response Time Rising Edge	_	400	800	ns	High Power Mode
CM04B	Troop	Response Time Falling Edge	_	200	400	ns	High Power Mode
CM04C	Tresp	Response Time Rising Edge	_	1200		ns	Low Power Mode
CM04D		Response Time Falling Edge	_	550	_	ns	
CM05*	Tmc2ov	Comparator Mode Change to Output Valid			10	μS	
CM06	Chyster	Comparator Hysteresis	_	65		mV	Hysteresis ON

TABLE 30-10: COMPARATOR SPECIFICATIONS

* These parameters are characterized but not tested.


TABLE 30-11: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: 1.8V < VDD < 5.5V, -40°C < TA < +125°C (unless otherwise stated).							
Param No.	Sym.	Characteristics	Min.	Тур. М	a x.	Units	Comments
DAC01*	CLSB	Step Size	_	VDD/32	_	V	
DAC02*	CACC	Absolute Accuracy	_	_	± 1/2	LSb	
DAC03*	CR	Unit Resistor Value (R)	_	5000	_	Ω	
DAC04*	Сѕт	Settling Time ⁽¹⁾			10	μS	
*	These parameters are characterized but not tested						

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<4:0> transitions from '0000' to '1111'.

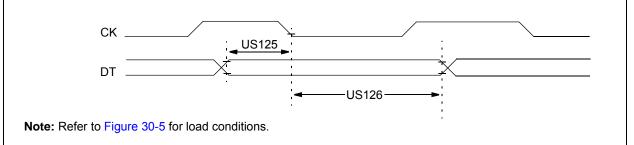

FIGURE 30-14: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 30-12: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

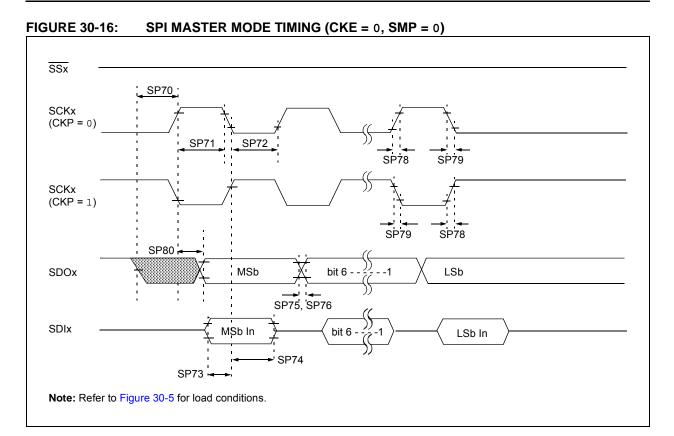
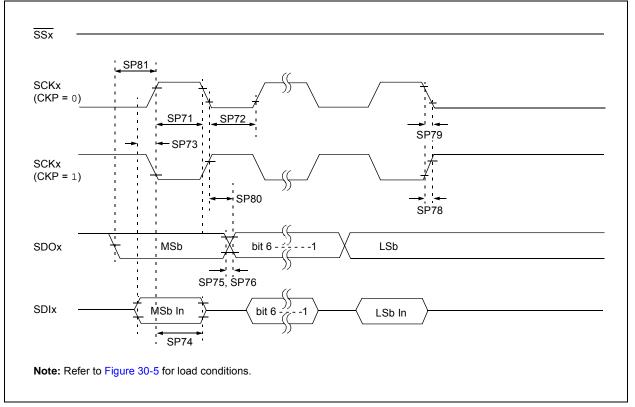
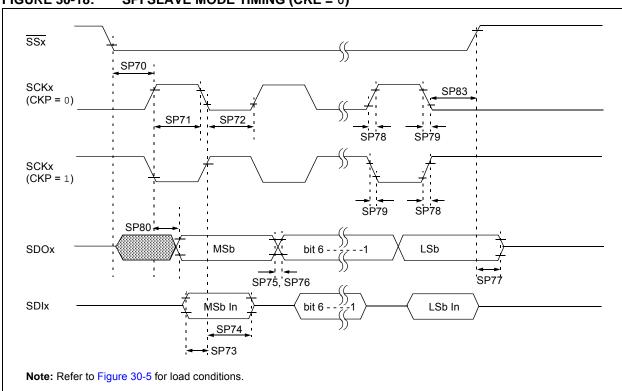

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	_	80	ns			
		Clock high to data-out valid	1.8-5.5V	_	100	ns			
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V	—	45	ns			
	(Master mode)	1.8-5.5V	_	50	ns				
US122	TDTRF	Data-out rise time and fall time	3.0-5.5V	—	45	ns			
			1.8-5.5V	_	50	ns			

FIGURE 30-15: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING




TABLE 30-13: USART SYNCHRONOUS RECEIVE REQUIREMENTS

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	· Symbol Characteristic Min. Max. Units Conditions					Conditions		
US125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10	_	ns			
US126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15		ns			

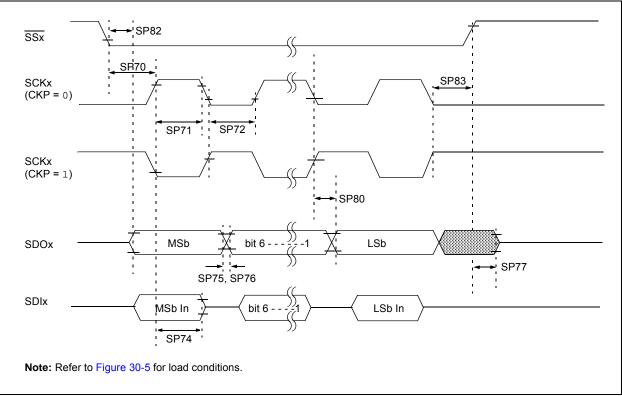

FIGURE 30-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 30-18: SPI SLAVE MODE TIMING (CKE = 0)

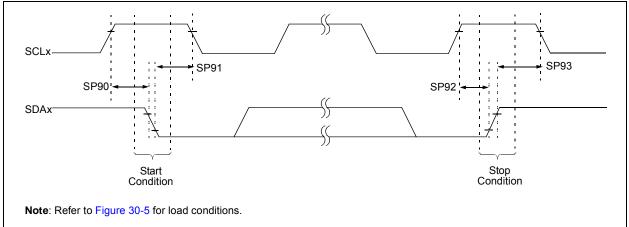

Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	SSx↓ to SCKx↓ or SCKx↑ input		Тсү		—	ns	
SP71*	TscH	SCKx input high time (Slave mod	de)	Tcy + 20	—	_	ns	
SP72*	TscL	SCKx input low time (Slave mod	e)	Tcy + 20	_	_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDIx data input to	SCKx edge	100	_	_	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDIx data input to SCKx edge		100	_	—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			1.8-5.5V	—	25	50	ns	
SP76*	TDOF	SDOx data output fall time		_	10	25	ns	
SP77*	TssH2doZ	SSx↑ to SDOx output high-impe	dance	10	_	50	ns	
SP78*	TscR	SCKx output rise time	3.0-5.5V	_	10	25	ns	
		(Master mode)	1.8-5.5V	_	25	50	ns	
SP79*	TscF	SCKx output fall time (Master mo	ode)	_	10	25	ns	
SP80*	TscH2doV,	SDOx data output valid after	3.0-5.5V	—	_	50	ns	
	TscL2DoV	SCKx edge	1.8-5.5V	—	_	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDOx data output setup to SCKx edge		Тсу		—	ns	
SP82*	TssL2doV	SDOx data output valid after SS	↓ edge	—	—	50	ns	
SP83*	TscH2ssH, TscL2ssH	SSx ↑ after SCKx edge		1.5Tcy + 40		—	ns	

TABLE 30-14: SPI MODE REQUIREMENTS

These parameters are characterized but not tested.

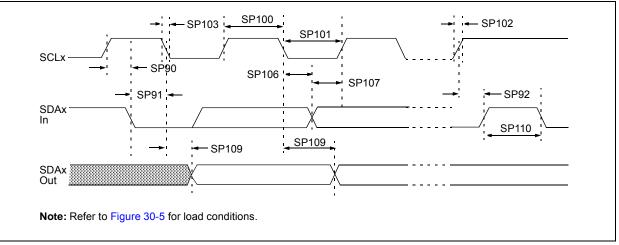

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-20: I²C[™] BUS START/STOP BITS TIMING

*

FIGURE 30-21: I²C[™] BUS DATA TIMING

TABLE 30-15: I²C[™] BUS START/STOP BITS REQUIREMENTS

Param No.	Symbol	Characteristic		Min.	Тур	Max.	Units	Conditions	
SP90*	TSU:STA	Start condition	100 kHz mode	4700		—	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		Start condition	
SP91*	THD:STA	Start condition	100 kHz mode	4000	—	—	ns	After this period, the first	
		Hold time	400 kHz mode	600	_	—		clock pulse is generated	
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	—	ns		
		Setup time	400 kHz mode	600	_	—			
SP93	THD:STO	Stop condition	100 kHz mode	4000	_	—	ns		
		Hold time	400 kHz mode	600	_				

* These parameters are characterized but not tested.

Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions
SP100*	Thigh	Clock high time	100 kHz mode	4.0		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μS	Device must operate at a minimum of 10 MHz
			SSPx module	1.5Tcy			
SP101*	TLOW	Clock low time	100 kHz mode	4.7		μS	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μS	Device must operate at a minimum of 10 MHz
			SSPx module	1.5Tcy			
SP102*	SP102* TR	SDAx and SCLx	100 kHz mode	_	1000	ns	
		rise time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
SP103*	TF	SDAx and SCLx fall	100 kHz mode	_	250	ns	
		time	400 kHz mode	20 + 0.1Св	250	ns	CB is specified to be from 10-400 pF
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μS	
SP107*	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)
		time	400 kHz mode	100	_	ns	
SP109*	ΤΑΑ	Output valid from	100 kHz mode	_	3500	ns	(Note 1)
		clock	400 kHz mode	_	_	ns	
SP110*	TBUF	Bus free time	100 kHz mode	4.7		μS	Time the bus must be free
			400 kHz mode	1.3	—	μS	before a new transmission can start
SP111	Св	Bus capacitive loadir	ng	—	400	pF	

TABLE 30-16:	I ² C [™] BUS DATA REQUIREMENTS
--------------	---

These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCLx to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C[™] bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCLx signal. If such a device does stretch the low period of the SCLx signal, it must output the next data bit to the SDAx line TR max. + TsU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCLx line is released.

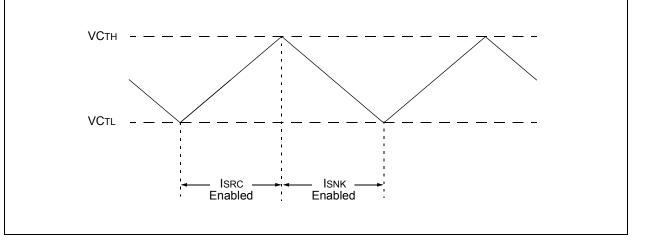

Param. No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
CS01	ISRC	Current Source	High	-3	-8	-15	μA	
			Medium	-0.8	-1.5	-3	μA	
			Low	-0.1	-0.3	-0.4	μA	
CS02	Isnk	Current Sink	High	2.5	7.5	14	μA	
			Medium	0.6	1.5	2.9	μA	
			Low	0.1	0.25	0.6	μA	
CS03	VСтн	Cap Threshold		_	0.8	_	mV	
CS04	VCTL	Cap Threshold			0.4	_	mV	
CS05	VCHYST		High	350	525	725	mV	
		(VCTH - VCTL)	Medium	250	375	500	mV	
			Low	175	300	425	mV	

TABLE 30-17: CAP SENSE OSCILLATOR SPECIFICATIONS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 30-22: CAP SENSE OSCILLATOR

31.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or t ables, the data presented are **outside specified operating range** (i.e., outside specified V DD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" r epresents t he me an of t he d istribution at 25°C. "Maximum" or "mi nimum" r epresents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.

FIGURE 31-1: VOH VS. IOH OVER TEMPERATURE (VDD = 5.0V)

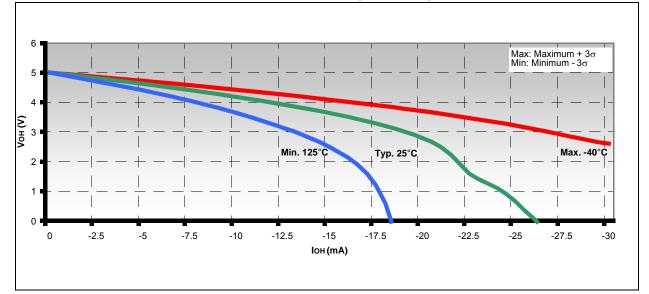
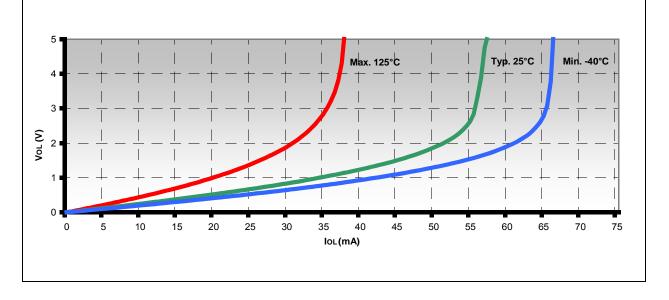



FIGURE 31-2: Vol VS. IoL OVER TEMPERATURE (VDD = 5.0V)

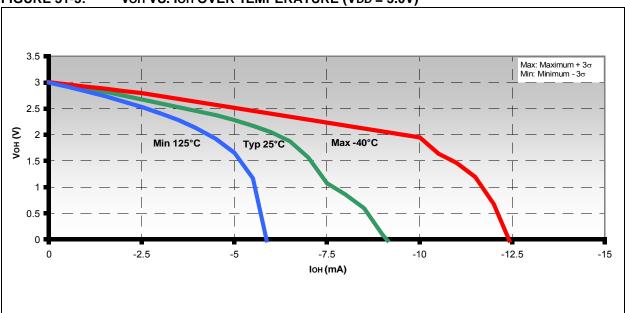
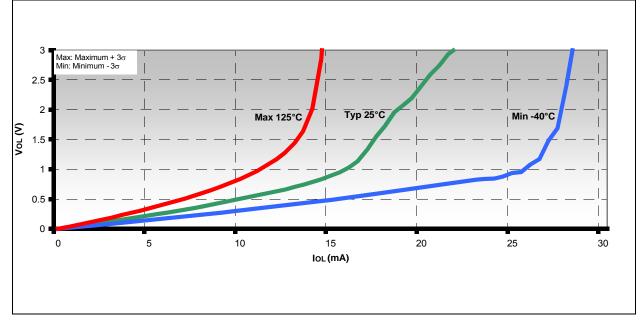
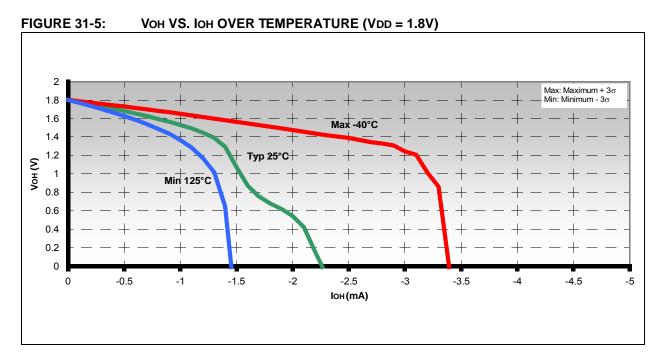
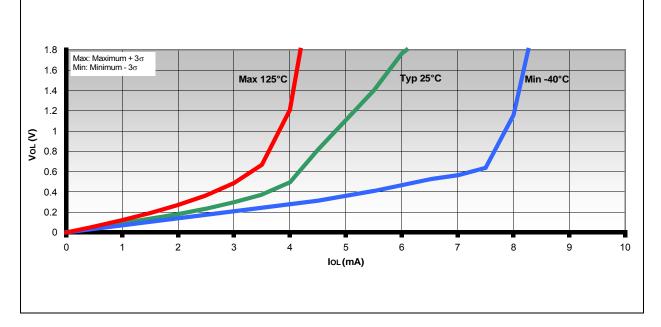
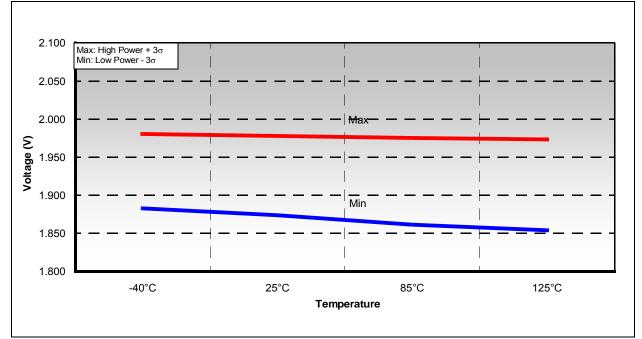
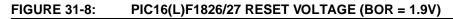
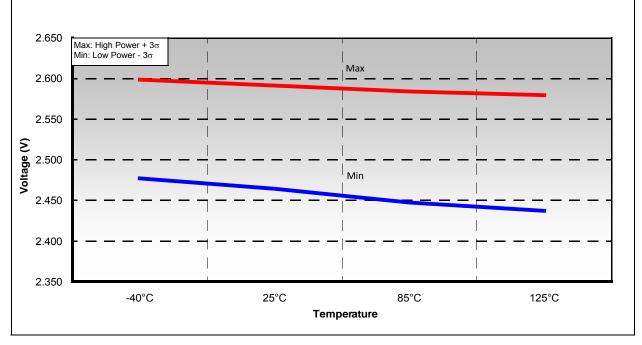



FIGURE 31-3: VOH VS. IOH OVER TEMPERATURE (VDD = 3.0V)


FIGURE 31-6: Vol VS. IoL OVER TEMPERATURE (VDD = 1.8V)

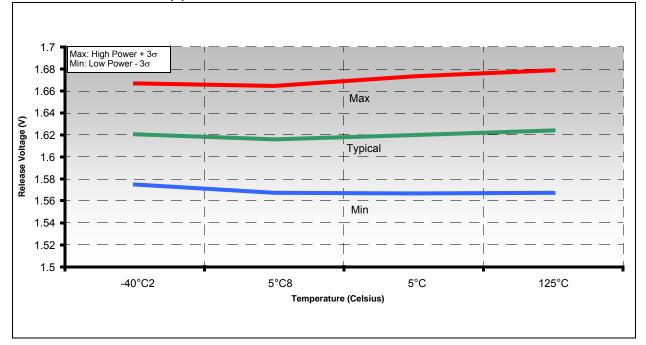
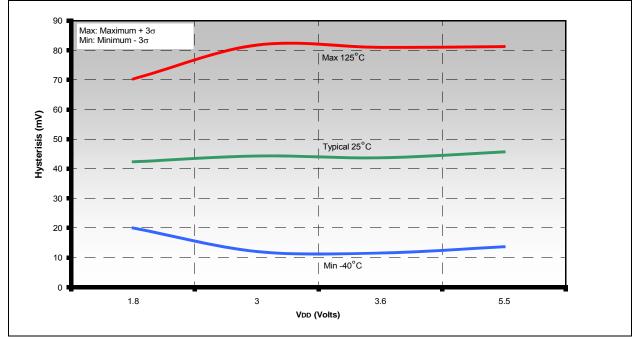
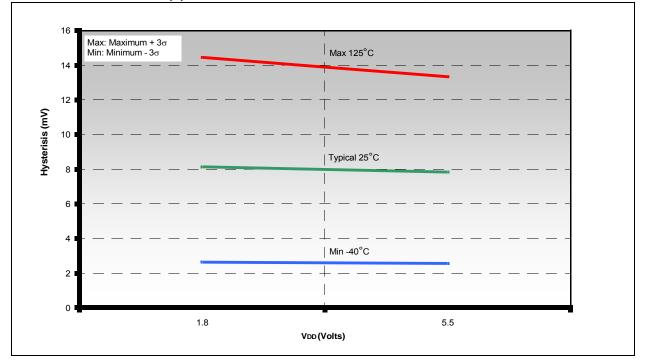


FIGURE 31-7: PIC16(L)F1826/27 RESET VOLTAGE (BOR = 1.9V)





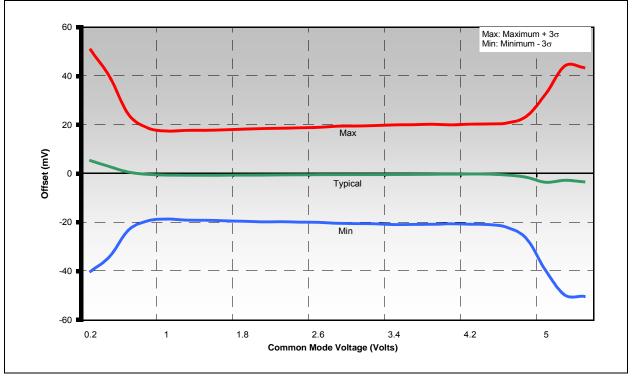


FIGURE 31-11: PIC16(L)F1826/27 COMPARATOR HYSTERISIS, LOW-POWER MODE

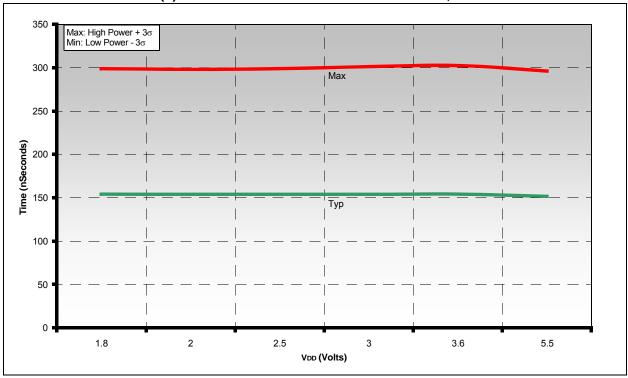
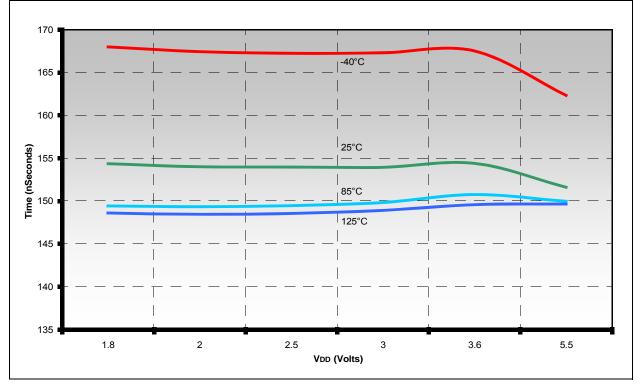



FIGURE 31-13: PIC16(L)F1826/27 COMPARATOR RESPONSE TIME, HIGH-POWER MODE

NOTES:

32.0 DEVELOPMENT SUPPORT

The P IC[®] microcontrollers and d sPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - -M PLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- •E mulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

32.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development pre viously unseen in the 8/1 6/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- · A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE s upports multiple d ebugging to ols i n a single development paradigm, from the cost-effective simulators, t hrough low-cost i n-circuit de buggers, to full-featured emu lators. This el iminates the learning curve when upgrading to tools with increased flexibility and power.

32.2 MPLAB C Compilers for Various Device Families

The MPLAB C C ompiler co de development sy stems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. T hese compilers p rovide p owerful integration capabilities, s uperior co de o ptimization an d ea se of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

32.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete AN SI C com pilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. T hese compilers p rovide po werful integration c apabilities, o mniscient code ge neration and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

32.4 MPASM Assembler

The MPASM Assembler is a full -featured, un iversal macro assembler for PIC10/12/16/18 MCUs.

The M PASM As sembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, M AP files to detail memory us age and symbol reference, absolute LST files that contain source lines and g enerated m achine c ode and C OFF fil es for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

32.5 MPLINK Object Linker/ MPLIB Object Librarian

The M PLINK O bject L inker c ombines relocatable objects c reated b y t he MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from p recompiled I ibraries, using d irectives f rom a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This all ows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB As sembler p roduces re locatable m achine code from sy mbolic as sembly la nguage for PIC24, PIC32 and ds PIC devices. MPLAB C Compiler us es the assembler to produce its object file. The assembler generates rel ocatable obj ect fi les that can then b e archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

32.7 MPLAB SIM Software Simulator

The M PLAB SIM Sof tware Sim ulator al lows c ode development in a P C-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The M PLAB SIM So ftware Simulator fully supports symbolic de bugging u sing the MPL AB C Compilers, and the M PASM and M PLAB Assemblers. The so ftware s imulator o ffers the fl exibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

32.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL IC E In-C ircuit Emulator Sy stem is Microchip's next generation high-spee d emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and ds PIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low -Voltage D ifferential Signal (LVDS) interconnection (CAT5).

The emulator is fieldupgradable through future firmware downloads in MPLAB ID E. In upc oming rele ases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB R EAL IC E of fers significant advantages o ver c ompetitive em ulators including low-cost, ful I-speed e mulation, run-time variable watches, traœ analysis, complex breakpoints, a ruggedized probe interfaœ and long (up to threemeters) interconnection cables.

32.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB IC D 3 In-C ircuit D ebugger System is Microchip's m ost cost e ffective h igh-speed ha rdware debugger/programmer for Microchip Flash Digital Signal Con troller (DSC) an d m icrocontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPL AB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

32.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the de sign engineer's PC using a full speed USB interface and can be connected to the target via a n Microchip de bug (R J-11) co nnector (c ompatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to im plement i n-circuit d ebugging a nd In-Circuit Se rial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's g uide, lessons, t utorial, c ompiler and MPLAB IDE software.

32.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of mi crocontrollers. T he f ull f eatured Windows[®] prog ramming in terface supports baseline (PIC10F, P IC12F5xx, P IC16F5xx), mi drange (PIC12F6xx, P IC16F), P IC18F, PIC24, ds PIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development En vironment (I DE) the PIC kit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In -Circuit-Debugging runs, h alts a nd si ngle steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's gui de, lessons, tut orial, co mpiler and MPLAB IDE software.

32.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage ve rification at V DDMIN an d V DDMAX for maximum rel iability. It fea tures a I arge LC D d isplay (128 x 64) for menus and error messages and a modular, de tachable socket assembly to su pport var ious package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It c an also set code p rotection in th is mode. The MPLAB PM 3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized al gorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

32.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A w ide v ariety of d emonstration, de velopment and evaluation bo ards f or va rious P IC MC Us a nd dsP IC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature se nsors, sw itches, s peakers, R S-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for ana log filter de sign, K EELOQ[®] security I Cs, CAN, IrDA[®], P owerSmart b attery management, S EEVAL[®] evaluation system, Sigma-Delta A DC, fl ow ra te sensing, plus many more.

Also a vailable are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

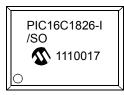
Check the Microchip web page (www.microchip.com) for the c omplete I ist of de monstration, de velopment and evaluation kits.

33.0 PACKAGING INFORMATION

33.1 Package Marking Information

18-Lead PDIP

18-Lead SOIC (.300")


20-Lead SSOP

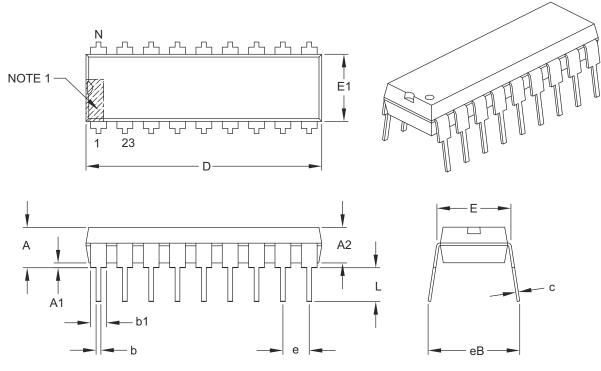

28-Lead QFN/UQFN

Example

Example

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be ca rried	nt the full Microchip part number cannot be marked on one line, it will d ove r to the next line, thu s lim iting the nu mber of av ailable s for customer-specific information.


* Standard P ICmicro[®] d evice m arking con sists of Mi crochip p art nu mber, y ear co de, w eek cod e a nd traceability code. For PICmicro d evice m arking beyond this, certain price adders apply. Please check with your Microchip S ales Office. For QTP devices, any special marking adders are included in QTP price.

33.2 Package Details

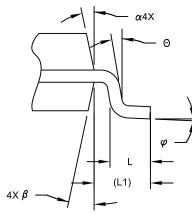
The following sections give the technical details of the packages.

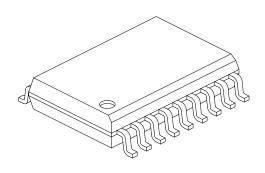
18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		.100 BSC	
Top to Seating Plane	A	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

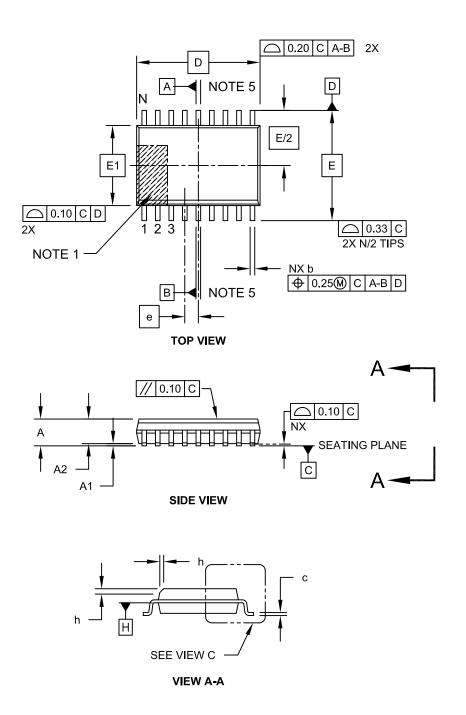
Microchip Technology Drawing C04-007B

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW C

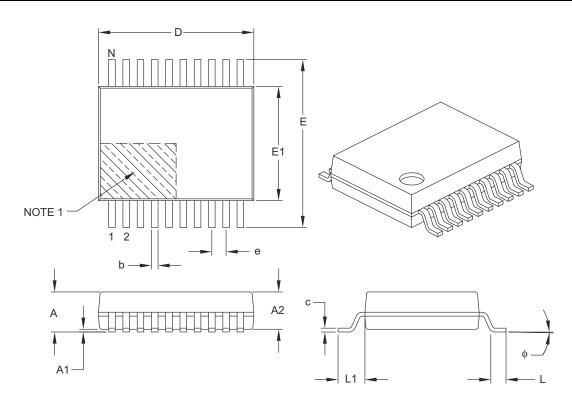
	Units	N	ILLI METER	S
Dimension Lin	nits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overall Length	D		11.55 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	_	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-051C Sheet 2 of 2

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-051C Sheet 1 of 2

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

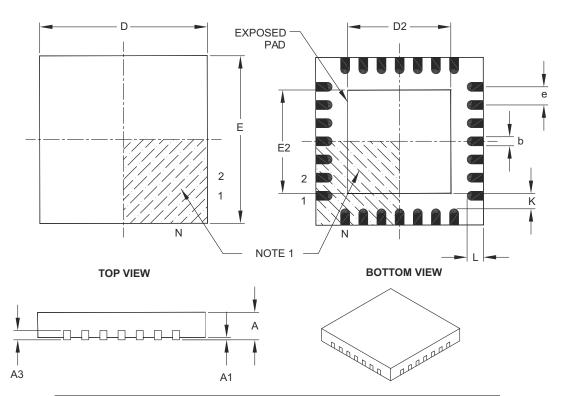
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		20	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	С	0.09	_	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

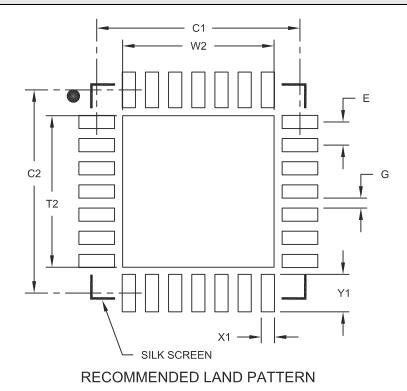
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
Dimensi	on Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	_	_


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

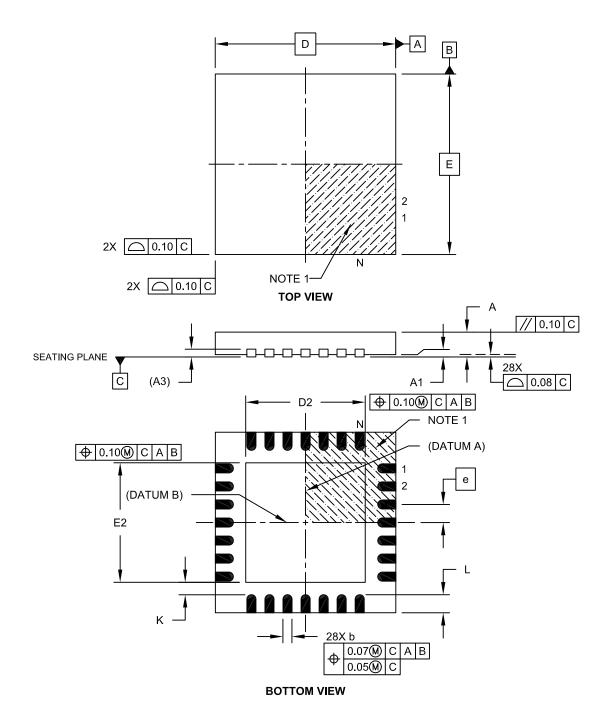
Microchip Technology Drawing C04-105B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIM	ETERS
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

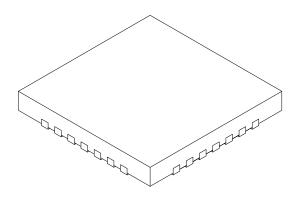
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-152A Sheet 1 of 2

28-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		0.40 BSC	
Overall Height	A	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.127 REF	
Overall Width	E		4.00 BSC	
Exposed Pad Width	E2	2.55	2.65	2.75
Overall Length	D		4.00 BSC	
Exposed Pad Length	D2	2.55	2.65	2.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-152A Sheet 2 of 2

NOTES:

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

Original release (06/2009)

Revision B (08/09)

Revised Tables 5-3, 6-2, 12-2, 12-3; Updated Electrical Specifications; Add ed U QFN Pa ckage; Add ed SO IC and QFN Land Patterns; Updated Product ID section.

Revision C (06/10)

Updated Ele ctrical S pecification an d in cluded Enhanced Core Golden Chapters.

Revision D (04/11)

Added Char Data to release Final data sheet.

APPENDIX B: MIGRATING FROM OTHER PIC[®] DEVICES

This s ection p rovides comparisons when m igrating from ot her similar P $IC^{\textcircled{B}}$ dev ices to th e PIC16(L)F1826/27 family of devices.

B.1 PIC16F648A to PIC16(L)F1827

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F648A	PIC16(L)F1827
Max. Operating Speed	20 MHz	32 MHz
Max. Program Memory (Words)	4K	4K
Max. SRAM (Bytes)	256	384
Max. EEPROM (Bytes)	256	256
A/D Resolution	10-bit	10-bit
Timers (8/16-bit)	2/1	4/1
Brown-out Reset	Y	Y
Internal Pull-ups	RB<7:0>	RB<7:0>, RA5
Interrupt-on-Change	RB<7:4>	RB<7:0>, Edge Selectable
Comparator	2	2
AUSART/EUSART	1/0	0/2
Extended WDT	N	Y
Software Control Option of WDT/BOR	NY	
INTOSC	48 kHz or	31 kHz -
Frequencies	4 MHz	32 MHz
Clock Switching	Y	Y
Capacitive Sensing	N	Y
CCP/ECCP	2/0	2/2
Enhanced PIC16 CPU	NY	
MSSPx/SSPx	0	2/0
Reference Clock	N	Y
Data Signal Modulator	NY	
SR Latch	N	Y
Voltage Reference	N	Y
DAC	Y	Y

NOTES:

INDEX

Α	
A/D	
Specifications	361
Absolute Maximum Ratings	
AC Characteristics	
Industrial and Extended	354
Load Conditions	353
ACKSTAT	266
ACKSTAT Status Flag	266
ADC	139
Acquisition Requirements	149
Associated registers	151
Block Diagram	
Calculating Acquisition Time	
Channel Selection	140
Configuration	
Configuring Interrupt	
Conversion Clock	
Conversion Procedure	
Internal Sampling Switch (Rss) IMPEDANCE	
Interrupts	
Operation	
Operation During Sleep	
Port Configuration	140
Reference Voltage (VREF)	
Source Impedance	
Special Event Trigger	
Starting an A/D Conversion	
ADCON0 Register	
ADCON1 Register	
ADDFSR	
ADRESH Register ADRESH Register (ADFM = 0)	
ADRESH Register (ADFM = 1)	
ADRESL Register (ADFM = 0) ADRESL Register (ADFM = 1)	
Alternate Pin Function	
Analog-to-Digital Converter. See ADC	110
ANSELA Register	123
ANSELB Register	123
APFCON0 Register	
APFCOND Register	
Assembler	
MPASM Assembler	280
Automatic Context Saving	
Automatio Context Odving	

В

-	
Bank 10	
Bank 11	
Bank 12	33, 34
Bank 13	33, 34
Bank 14	
Bank 15	
Bank 16	
Bank 17	
Bank 18	
Bank 19	
Bank 20	
Bank 21	
Bank 22	
Bank 23	
Bank 31	35

Bank 6	31
Bank 7	31
Bank 8	32
Bank 9	33
BAUDCON Register	296
BF	268
BF Status Flag 266, 2	268
Block Diagram	
Capacitive Sensing	315
Block Diagrams	
(CCP) Capture Mode Operation 2	204
ADC 1	
ADC Transfer Function 1	150
Analog Input Model 150, 1	169
CCP PWM	208
Clock Source	52
Comparator1	164
Compare 2	206
Crystal Operation 54,	55
Digital-to-Analog Converter (DAC) 1	154
EUSART Receive	286
EUSART Transmit 2	
External RC Mode	
Fail-Safe Clock Monitor (FSCM)	
Generic I/O Port 1	117
Interrupt Logic	
On-Chip Reset Circuit	
PIC16F/LF1826/27	
PIC16F193X/LF193X	
PWM (Enhanced) 2	
Resonator Operation	
Timer0 173, 1	
Timer1 1	
Timer1 Gate 182, 183, 1	
Timer2/4/6	
Voltage Reference	
Voltage Reference Output Buffer Example 1	
BORCON Register	
BRA	
Break Character (12-bit) Transmit and Receive	
Brown-out Reset (BOR)	
Specifications	
Timing and Characteristics	558

С

C Compilers	
MPLAB C18	380
CALL	331
CALLW	331
Capacitive Sensing	315
Associated registers w/ Capacitive Sensing	319
Specifications	370
Capture Module. See Enhanced Capture/Compare/PWM	1
(ECCP)	
Capture/Compare/PWM	203
Capture/Compare/PWM (CCP)	
Associated Registers w/ Capture	205
Associated Registers w/ Compare	207
Associated Registers w/ PWM 211,	225
Capture Mode	
CCPx Pin Configuration	204
Compare Mode	206
CCPx Pin Configuration	206
Software Interrupt Mode 204,	206

	206
Timer1 Mode Resource	204, 206
Prescaler	204
PWM Mode	
Duty Cycle	
Effects of Reset	211
Example PWM Frequencies and	
Resolutions, 20 MHZ	210
Example PWM Frequencies and	
Resolutions, 32 MHZ	210
Example PWM Frequencies and	
Resolutions, 8 MHz	
Operation in Sleep Mode	211
Resolution	
System Clock Frequency Changes	211
PWM Operation	208
PWM Overview	
PWM Period	209
PWM Setup	209
CCP1CON Register	
CCPR1H Register	
CCPR1L Register	
CCPTMRS Register	-
CCPxAS Register	
CCPxCON (ECCPx) Register	
CLKRCON Register	
Clock Accuracy with Asynchronous Operation	
Clock Sources	
External Modes	50
EC	
HS	
LP	
OST	
RC	55
XT	53
Internal Modes	53 56
Internal Modes HFINTOSC	53 56 56
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing	53 56 56 58
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC	53 56 56 58 57
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing	53 56 56 58 57
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC	53 56 56 58 57 57 56
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC	53 56 56 58 57 57 56 60
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC Clock Switching	53 56 56 58 57 57 56 60
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC Clock Switching CMOUT Register	53 56 56 58 57 56 60 171 170
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC Clock Switching CMOUT Register CMXCON0 Register	53 56 56 58 57 56 60 171 170
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC Clock Switching CMOUT Register CMXCON0 Register CMXCON1 Register	53 56 56 58 57 56 60 171 170 171
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC Clock Switching CMOUT Register CMUT Register CMXCON0 Register CMXCON1 Register Code Examples A/D Conversion	53 56 56 58 57 56 60 171 170 171 171
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC CMOUT Register CMUT Register CMXCON0 Register CMXCON1 Register Code Examples A/D Conversion Changing Between Capture Prescalers	53 56 56 58 57 56 60 171 170 171 171 144 204
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC CMOUT Register CMUT Register CMXCON0 Register CMXCON1 Register Code Examples A/D Conversion Changing Between Capture Prescalers Initializing PORTA	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117
Internal Modes	53 56 56 58 57 56 60 171 170 171 171 144 204 117 112
Internal Modes	53 56 56 58 57 56 60 171 170 171 171 144 204 117 112
Internal Modes HFINTOSC Internal Oscillator Clock Switch Timing LFINTOSC MFINTOSC CMOUT Register CMXCON0 Register CMXCON1 Register CMXCON1 Register Code Examples A/D Conversion Changing Between Capture Prescalers Initializing PORTA Write Verify Write Verify Writing to Flash Program Memory Comparator	53 56 56 58 57 56 60 171 170 171 171 171 144 204 117 112 110
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172
Internal Modes	53 56 56 58 57 56 60 171 170 171 171 171 144 204 117 112 110 172 163
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172 163 163
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172 163 163 163
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172 163 163 163
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172 163 163 163 166 363
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 144 204 117 112 110 172 163 163 163 166 363
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 112 110 172 163 163 163 166 363 179
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 112 110 172 163 163 163 166 363 179 /
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 171 171 172 163 163 163 163 163 163 163 163 163
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 171 171 172 163 163 163 163 166 363 179 / 44
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 171 172 163 163 163 163 166 363 179 / 44 46 27 318
Internal Modes	53 56 56 58 57 56 60 171 170 171 170 171 171 172 163 163 163 163 166 363 179 / 44 46 27 318

Customer Change Notification Service	403
Customer Notification Service	403
Customer Support	403
D	
-	
DACCON0 (Digital-to-Analog Converter Control 0)	
Register	156
DACCON1 (Digital-to-Analog Converter Control 1)	
Register	
Data EEPROM Memory	101
Associated Registers	
Code Protection	102
Reading	
Writing	102
Data Memory	
DC and AC Characteristics	
Graphs and Tables	371
DC Characteristics	
Extended and Industrial	
Industrial and Extended	342
Development Support	
Device Configuration	
Code Protection	
Configuration Word	43
User ID	
Device ID Register	
Device Overview	
Digital-to-Analog Converter (DAC)	153
Associated Registers	
Effects of a Reset	154
Specifications	363

Е

ECCP/CCP. See Enhanced Capture/Compare/PWM	
EEADR Registers	. 101
EEADRH Registers	
EEADRL Register	. 113
EEADRL Registers	. 101
EECON1 Register 101	115
EECON2 Register 101	116
EEDATH Register 113	114
EEDATL Register	. 113
EEPROM Data Memory	
Avoiding Spurious Write	. 102
Write Verify	. 112
Effects of Reset	
PWM mode	211
Electrical Specifications	
Enhanced Capture/Compare/PWM (ECCP)	203
Enhanced PWM Mode	212
Auto-Restart	. 221
Auto-shutdown	
Direction Change in Full-Bridge Output Mode.	
Full-Bridge Application	
Full-Bridge Mode	
Half-Bridge Application	
Half-Bridge Application Examples	
Half-Bridge Mode	215
Output Relationships (Active-High and	
Active-Low)	
Output Relationships Diagram	
Programmable Dead Band Delay	
Shoot-through Current	
Start-up Considerations	
Specifications	
Enhanced Mid-Range CPU	15

Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART)	
Errata	
EUSART	. 285
Associated Registers	
Baud Rate Generator	
Asynchronous Mode	
12-bit Break Transmit and Receive	. 305
Associated Registers	
Receive	
Transmit	
Auto-Wake-up on Break	
Baud Rate Generator (BRG)	
Clock Accuracy	
Receiver	
Setting up 9-bit Mode with Address Detect	
Transmitter	. 287
Baud Rate Generator (BRG)	202
Auto Baud Rate Detect Baud Rate Error, Calculating	
Baud Rates, Asynchronous Modes Formulas	
High Baud Rate Select (BRGH Bit)	
Synchronous Master Mode	311
Receive	310
Transmit	
Reception	
Transmission	
Synchronous Slave Mode	. 500
Associated Registers	
Receive	312
Transmit	
Reception	
Transmission	
Extended Instruction Set	
ADDFSR	. 329
F	
Fail-Safe Clock Monitor	63
Fail-Safe Condition Clearing	63
Fail-Safe Detection	63
Fail-Safe Operation	
Reset or Wake-up from Sleep	
Firmware Instructions	. 325
Fixed Voltage Reference (FVR)	
Associated Registers	
Flash Program Memory	. 101
Erasing	
Modifying	
Writing	
FSR Register	
FVRCON (Fixed Voltage Reference Control) Register	. 136

| |²(

C Mode (MSSPx)	
Acknowledge Sequence Timing	
Bus Collision	
During a Repeated Start Condition	
During a Stop Condition	
Effects of a Reset	
I ² C Clock Rate w/BRG	
Master Mode	
Operation	
Reception	
Start Condition Timing	264, 265

Transmission 266 Multi-Master Communication, Bus Collision and Arbitration Arbitration 271 Multi-Master Mode 271 Read/Write Bit Information (R/W Bit) 247 Slave Mode 252 Transmission 252 Sleep Operation 271 NDF Register 271 Instruction Format 320 Instruction Set 325 ADDUW 329 ADDWF 329 ADDWF 329 ADDWF 329 ANDUW 329 ANDUW 329 ANDUWE 329 ANDUWE 330 CALL 331 LSRF 333 MOVF 333 MOVF 333 MOVF 333 MOVF 333 MOVF 334 MOVW 335 OPTION 335 SUBWFB 337 TRIS 338	Trenersiesien	000
Arbitration 271 Multi-Master Mode 271 Read/Write Bit Information (R/W Bit) 247 Slave Mode Transmission 252 Sleep Operation 271 INDF Register 270 INDF Register 271 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDWF 329 ADDWF 329 ADDWF 329 ANDWF 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVIB 334 MOVUB 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330		200
Multi-Master Mode 271 Read/Write Bit Information (R/W Bit) 247 Slave Mode 252 Sleep Operation 271 Stop Condition Timing 270 INDF Register 271 Indirect Addressing 39 Instruction Format 326 Instruction Format 329 ADDLW 329 ADDWF 329 ADDWF 329 ANDWF 329 MOVWC 331 CALL 331 CALL 331 NOVF 333 MOVW 334 MOVW 335 RESET 336 OPTION 335 SUBWFB 337 TRIS	Multi-Master Communication, Bus Collision and	
Read/Write Bit Information (R/W Bit) 247 Slave Mode Transmission 252 Step Operation 271 Stop Condition Timing 270 INDF Register 270 INDF Register 270 Instruction Format 326 Instruction Set 325 ADDLW 329 ADDWF 329 ADDWF 329 ANDLW 329 ANDLW 329 ANDWF 329 SEF 333 LSF 333 SEF 333 MOVE 334 MOVW 335 OPTION 335 DECF	Arbitration	271
Read/Write Bit Information (R/W Bit) 247 Slave Mode Transmission 252 Step Operation 271 Stop Condition Timing 270 INDF Register 270 INDF Register 270 Instruction Format 326 Instruction Set 325 ADDLW 329 ADDWF 329 ADDWF 329 ANDLW 329 ANDLW 329 ANDWF 329 SEF 333 LSF 333 SEF 333 MOVE 334 MOVW 335 OPTION 335 DECF	Multi-Master Mode	271
Slave Mode 7 Transmission 252 Sleep Operation 270 INDF Register 270 INDF Register 271 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDWF 329 ADDWF 329 ANDWF 329 BRA 330 CALL 311 CALL 331 CAL 331 LSRF 333 MOVF 333 MOVF 333 MOVF 333 MOVF 333 MOVF 333 MOVIW 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSC 330 BTFSC 332 INCFF 331 DECFSZ		
Transmission 252 Sleep Operation 271 Stop Condition Timing 270 INDF Register 27 Indirect Addressing 39 Instruction Format 326 Instruction Format 329 ADDUW 329 ADDWF 329 ANDLW 329 ANDUWF 329 ANDWF 329 BRA 330 CALL 311 CALLW 313 CALLW 331 CALLW 333 MOVF 333 MOVF 333 MOVF 333 MOVW 334 MOVW 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 330 BCF 330 BCF 330 CALL 331 CLRP 331 CLRWDT 331 C		271
Sleep Operation 271 Stop Condition Timing 270 INDF Register 27 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDWF 329 ADDWF 329 ADDWF 329 ANDLW 329 ANDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 BRA 330 CALL 331 CALL 331 CALL 331 LSRF 333 MOVF 333 MOVIW 344 MOVUB 334 MOVUB 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 CALL 331 CLRF 330 CALL 331 CLRWDT		
Stop Condition Timing 270 INDF Register 27 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDUW 329 ADDWFC 329 ADDWFC 329 ANDWF 329 ANDWF 329 BRA 330 CALL 311 CALL 313 LSRF 333 MOVF 333 MOVF 333 MOVF 333 MOVF 333 MOVIW 344 MOVUW 334 MOVUW 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 BTFSS 330 BTFSS 330 BTFSS 331 CLRWDT 331 CLRWDT	Transmission	252
INDF Register 27 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDUW 329 ADDWF 329 ADDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 BRA 330 CALL 331 CALLW 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVIW 334 MOVIW 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 CLRW 331 CLRW 331 CLRWDT 331 CLRWDT 331 DECF 332 IORFSZ 332 IORWF 332 IORWF 332	Sleep Operation	271
INDF Register 27 Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDUW 329 ADDWF 329 ADDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 BRA 330 CALL 331 CALLW 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVIW 334 MOVIW 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 CLRW 331 CLRW 331 CLRWDT 331 CLRWDT 331 DECF 332 IORFSZ 332 IORWF 332 IORWF 332	Stop Condition Timing	270
Indirect Addressing 39 Instruction Format 326 Instruction Set 329 ADDWF 329 ADDWFC 329 ANDLW 329 ANDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 BRA 330 CALL 331 CALLW 331 LSF 333 MOVF 333 MOVIW 334 MOVUB 334 MOVUB 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRF 331 CLRF 331 DECF 331 DECF 331 DECF 332 INCFSZ 332 INCFSZ 332 IORWF 334		
Instruction Format 326 Instruction Set 325 ADDLW 329 ADDWFC 329 ANDWF 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVE 334 MOVLB 334 MOVUN 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330	•	
Instruction Set 325 ADDLW 329 ADDWF 329 ADDWFC 329 ANDWF 329 ANDWF 329 ANDWF 329 ANDWF 329 BRA 330 CALL 331 CALW 331 LSLF 333 MOVF 333 MOVF 333 MOVIW 334 MOVIW 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 DECF 331 DECFSZ 332 INCF 332 INCF 332 INCF 332 IORUW 334 NOP 335 RETFIE		
ADDLW. 329 ADDWFC. 329 ANDLW. 329 ANDWF. 329 BRA. 330 CALL 331 CALLW. 331 CALW. 331 LSLF. 333 MOVF. 333 MOVF. 333 MOVIW. 344 MOVUB. 344 MOVUB. 334 MOVUB. 334 MOVUB. 334 MOVUB. 335 OPTION. 335 SUBWFB. 337 TRIS. 338 BCF. 330 BTFSC. 330 BTFSS. 330 CLRF. 331 CLRWDT 331 CLRWDT 331 DECF. 332 INCFSZ 334		
ADDWF 329 ADDWFC 329 ANDW 329 ANDWF 329 BRA 330 CALL 331 CALW 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVW 344 MOVW 334 MOVLB 334 MOVUB 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRWDT 331 CLRWDT 331 DECF 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 IORUW 334 MOVUW 334 MOVUW	Instruction Set	325
ADDWF 329 ADDWFC 329 ANDW 329 ANDWF 329 BRA 330 CALL 331 CALW 331 LSLF 333 MOVF 333 MOVF 333 MOVF 333 MOVW 344 MOVW 334 MOVLB 334 MOVUB 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRWDT 331 CLRWDT 331 DECF 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 IORUW 334 MOVUW 334 MOVUW	ADDLW	329
ADDWFC 329 ANDWF 329 BRA 330 CALL 331 CALL 331 CALL 331 LSF 333 MOVF 333 MOVF 334 MOVIW 334 MOVIW 334 MOVU 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BSF. 330 BTFSC 330 BTFSC 330 CALL 331 CLRW 331 CLRW 331 CLRW 331 DECF 331 DECFSZ 332 INCF 334 MOVUW 334 MOVUW 335		
ANDLW. 329 ANDWF 329 BRA 330 CALL 331 CALLW 333 LSLF 333 LSRF 333 MOVF 333 MOVF 333 MOVID 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BCF 330 BTFSS 330 BTFSS 330 CLRW 331 CLRF 331 CLRF 331 DECFSZ 332 INCF 332 INCF 332 INCFSZ 332 IORUWF 334 MOVUW 334 MOVUW 334 MOVUW 332 INCF 331 DECFSZ 332 INCF 334 MOVUW 334 MOVUW 334 MOVUW 33		
ANDWF 329 BRA 330 CALL 331 CALLW 331 LSLF 333 MOVF 333 MOVF 333 MOVE 333 MOVE 333 MOVE 334 MOVU 334 MOVU 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 CLRWDT 331 CLRWDT 331 DECFSZ 332 INCF 332 INCF 332 INCF 332 INCF 334 NOP 335 RETFIE 336 RETFIE 336 RETFIE 336 RETFIE 336 RETFIE 33		
BRA 330 CALL 331 CALLW 331 CALW 331 LSF 333 LSF 333 MOVF 333 MOVF 333 MOVIW 334 MOVIB 334 MOVUI 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRF 331 CLRWDT 331 CLRWDT 331 DECF 331 DECF 332 INCFSZ 332 IORLW 332 IORLW 334 MOVLW 334 MOVLW 334 MOVLW 332 IORLW 332 IORLW 332 IORLW 336 RETFIE	ANDLW	329
CALL 331 CALLW 331 LSLF 333 MOVF 333 MOVIW 334 MOVIW 334 MOVUB 334 MOVUB 334 MOVUB 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSC 330 BTFSS 331 CLRW 331 CLRW 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCF 334 MOVUW 334 MOVUW 334 MOVUW 334 MOVUW 334 MOVUW 335 RETFIE 336 RETFIE 336 RETURN <td>ANDWF</td> <td>329</td>	ANDWF	329
CALL 331 CALLW 331 LSLF 333 MOVF 333 MOVIW 334 MOVIW 334 MOVUB 334 MOVUB 334 MOVUB 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSC 330 BTFSS 331 CLRW 331 CLRW 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCFSZ 332 INCF 334 MOVUW 334 MOVUW 334 MOVUW 334 MOVUW 334 MOVUW 335 RETFIE 336 RETFIE 336 RETURN <td>BRA</td> <td>330</td>	BRA	330
CALLW 331 LSLF 333 MOVF 333 MOVF 333 MOVIW 334 MOVUB 334 MOVUB 334 MOVUB 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 CLRW 331 DECF 331 DECFSZ 332 INCF 332 INCFSZ 332 INCFSZ 332 IORWF 334 MOVUW 334 MOVUW 334 MOVUW 336 RETFIE 336 RETFIE 336 RETFIE 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW		
LSLF 333 LSRF 333 MOVF 333 MOVIW 334 MOVIB 334 MOVIB 334 MOVIB 334 MOVIB 334 MOVIB 334 MOVIB 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CLRW 331 CLRW 331 CLRWDT 331 DECF 331 DECFSZ 332 INCF 332 INCF 332 INCF 332 IORUW 334 MOVLW 332 MOVLW 334 MOVWF 335 RETFIE 336 RETURN 336 RETURN 336 RETURN 337 SUBLW 337 SUBWF		
LSRF 333 MOVF 333 MOVIW 334 MOVLB 334 MOVUI 335 OPTION 335 OPTION 335 SUBWFB 337 TRIS 338 BCF 330 BFFSC 330 BTFSC 330 CLRW 331 CLRF 331 CLRWDT 331 CLRWDT 331 DECFSZ 332 GOTO 332 INCF 332 NOVLW 334 NOP 335 RETFIE 336 RETURN 336 RETURN 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW <		
MOVF 333 MOVIW 334 MOVIB 334 MOVUB 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRWDT 331 DECF 331 DECF 332 INCF 332 INCFSZ 332 IORUW 332 IORWF 332 IORWF 332 IORWF 332 IORWF 334 MOVLW 334 MOVLW 335 RETFIE 336 RETURN 336 REF 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW 338 XORWF 338 XORWF	LSLF	333
MOVF 333 MOVIW 334 MOVIB 334 MOVUB 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRWDT 331 DECF 331 DECF 332 INCF 332 INCFSZ 332 IORUW 332 IORWF 332 IORWF 332 IORWF 332 IORWF 334 MOVLW 334 MOVLW 335 RETFIE 336 RETURN 336 REF 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW 338 XORWF 338 XORWF	LSRF	333
MOVIW 334 MOVLB 334 MOVWI 335 OPTION 335 RESET 336 SUBWFB 337 TRIS 338 BCF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRWDT 331 CLRWDT 331 DECF. 331 DECF. 331 DECF. 332 INCF 332 INCF 332 INCF 332 IORWF 332 IORWF 332 IORWF 332 IORWF 334 MOVLW 332 IORWF 334 NOP 335 RETFIE 336 RETFIE 336 RETFIE 336 RETFIE 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBWF		
MOVLB 334 MOVWI 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 IORWF 334 MOVUW 334 NOP 335 RETFIE 336 RETURN 336 RETURN 337 SUBUW 337 SUBWF 338 XORLW 338 XORUW 338 XORUW 338 XORUW 338 XORUW 338 XORUW 338 XORUW		
MOVWI 335 OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 CLRW 331 DECF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORWF 332 IORWF 332 IORWF 332 NOP 335 RETFIE 336 RETURN 336 RETURN 336 REF 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBWF 338 XORWF 338 XORWF 338 XORWF 338 INTCON Register		334
OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 CLRW 331 DECF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 334 NOP 335 RETFIE	MOVLB	334
OPTION 335 RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRW 331 CLRW 331 CLRW 331 DECF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 334 NOP 335 RETFIE	MOVWI	335
RESET 335 SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRW 331 CLRWDT 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 334 MOVLW 334 MOVLW 334 NOP 335 RETFIE 336 RETURN 336 RET 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 XORUF 338 XORUF 338 XORUF 338 XORUF 338 INTCON Register 386 Internal		
SUBWFB 337 TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 CDF 331 DECF 331 DECFSZ 332 INCF 332 INCF 332 INCFSZ 332 INCFSZ 332 IORWF 334 MOVLW 334 MOVLW 335 RETFIE 336 RETURN 336 RETURN 337 SUBLW 337 SUBLW 337 SUBUF 337 SUBUF 338 XORUF 338 XORUF 338 XORUF 338 INTCON Register 36 Internal Oscillator Block 1000000000000000000000000000000000000		
TRIS 338 BCF 330 BSF 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECF 331 DECFSZ 332 INCF 332 IORLW 332 IORWF 332 IORWF 334 MOVUW 334 MOVWF 336 RETFIE 336 RETURN 336 RLF 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 388 INTCON Register 86 Internal Oscillator Block INTOSC		
BCF 330 BSF. 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORLW 332 IORWF 332 MOVLW 334 MOVWF 336 RETFIE 336 RETFIE 336 RETURN 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 388 INTCON Register 86 Internal Oscillator Block 1000000000000000000000000000000000000	SUBWFB	337
BCF 330 BSF. 330 BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORLW 332 IORWF 332 MOVLW 334 MOVWF 336 RETFIE 336 RETFIE 336 RETURN 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 388 INTCON Register 86 Internal Oscillator Block 1000000000000000000000000000000000000	TRIS	338
BSF. 330 BTFSC. 330 BTFSS. 330 CALL. 331 CLRF. 331 CLRW. 331 CLRWDT. 331 COMF. 331 DECF. 331 DECF. 332 GOTO. 332 INCF. 332 IORLW. 332 IORVF. 332 IORWF. 332 IORWF. 332 MOVLW. 334 MOVWF. 336 RETFIE 336 RETFIE 336 RETURN. 336 RLF. 337 SUBLW 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register. 86 Internal Oscillator Block 86		
BTFSC 330 BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 336 RETFIE 336 RETURN 336 RLF 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 366 Internal Oscillator Block 10705C		
BTFSS 330 CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORWF 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 RLF 337 SUBLW 337 SUBLW 337 SWAPF 338 XORUF 338 INTCON Register 338 INTCON Register 36 Internal Oscillator Block INTOSC		
CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 338 INTCON Register 366 Internal Oscillator Block INTOSC	BTFSC	330
CALL 331 CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 IORLW 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 338 INTCON Register 366 Internal Oscillator Block INTOSC	BTESS	330
CLRF 331 CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORLW 332 IORWF 332 IORWF 334 MOVLW 334 MOVE 335 RETFIE 336 RETFIE 336 RETURN 336 RLF 337 SUBLW 337 SUBLW 337 SUBLW 338 XORUF 338 INTCON Register 388 INTCON Register 86 Internal Oscillator Block INTOSC		
CLRW 331 CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORUW 332 IORWF 332 IORWF 334 MOVLW 334 MOVUW 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 RLF 336 RLF 337 SUBLW 337 SUBLW 337 SWAPF 338 XORUW 338 INTCON Register 338 INTCON Register 366 Internal Oscillator Block INTOSC		
CLRWDT 331 COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORUW 332 IORWF 332 MOVLW 334 MOVUW 334 MOVUW 334 MOVUW 336 RETFIE 336 RETLW 336 RETURN 336 RLF 336 RLF 337 SUBLW 337 SUBLW 337 SWAPF 338 XORUW 338 XORUW 338 INTCON Register 338 INTOSC BIOK	CLRF	331
COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 MOVLW 334 MOVUW 334 MOVUW 335 RETFIE 336 RETLW 336 RETURN 336 REF 337 SLEEP 337 SUBLW 337 SUBLW 337 SUBLW 338 XORLW 338 XORUW 338 INTCON Register 338 INTCON Register 366 Internal Oscillator Block INTOSC	CLRW	331
COMF 331 DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 MOVLW 334 MOVUW 334 MOVUW 335 RETFIE 336 RETLW 336 RETURN 336 REF 337 SLEEP 337 SUBLW 337 SUBLW 337 SUBLW 338 XORLW 338 XORUW 338 INTCON Register 338 INTCON Register 366 Internal Oscillator Block INTOSC	CLRWDT	331
DECF 331 DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 335 RETFIE 336 RETLW 336 RETURN 336 RLF 336 REF 337 SUBLW 337 SUBLW 337 SUBLW 338 XORLW 338 XORUF 338 INTCON Register. 86 Internal Oscillator Block INTOSC		
DECFSZ 332 GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETURN 336 REF 337 SLEEP 337 SUBLW 337 SUBWF 338 XORUW 338 XORUW 338 XORUW 338 INTCON Register 86 Internal Oscillator Block INTOSC		
GOTO 332 INCF 332 INCFSZ 332 IORWF 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETURN 336 REFURN 336 REF 337 SUBLW 337 SUBLW 337 SUBWF 338 XORUW 338 XORUW 338 INTCON Register 86 Internal Oscillator Block INTOSC		
INCF 332 INCFSZ 332 IORUW 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETURN 336 REF 336 REF 336 REF 336 REF 337 SUBLW 337 SUBWF 337 SUBWF 337 SUBWF 338 XORUW 338 INTCON Register 86 Internal Oscillator Block INTOSC	DECFSZ	332
INCF 332 INCFSZ 332 IORUW 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETURN 336 REF 336 REF 336 REF 336 REF 337 SUBLW 337 SUBWF 337 SUBWF 337 SUBWF 338 XORUW 338 INTCON Register 86 Internal Oscillator Block INTOSC	GOTO	332
INCFSZ 332 IORLW 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETURN 336 REF 336 REF 336 REF 336 REF 337 SLEEP 337 SUBLW 337 SUBWF 337 SUBWF 338 XORLW 338 XORUW 338 INTCON Register 86 Internal Oscillator Block INTOSC		
IORLW 332 IORWF 332 MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 REF 337 SLEEP 337 SUBLW 337 SUBLW 337 SUBWF 337 SUBWF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
IORWF		
MOVLW 334 MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 REF 336 REF 337 SLEEP 337 SUBLW 337 SUBWF 337 SUBWF 337 SUBWF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	IORLW	332
MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 RLF 336 RRF 337 SUBLW 337 SUBLW 337 SUBWF 337 SUBWF 337 SUBWF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	IORWF	332
MOVWF 334 NOP 335 RETFIE 336 RETLW 336 RETURN 336 RLF 336 RRF 337 SUBLW 337 SUBLW 337 SUBWF 337 SUBWF 337 SUBWF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	MOVIW	334
NOP 335 RETFIE 336 RETLW 336 RETURN 336 RLF 336 RRF 337 SLEEP 337 SUBLW 337 SUBWF 337 SUBWF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
RETFIE 336 RETLW 336 RETURN 336 RLF 336 RRF 337 SLEEP 337 SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
RETLW 336 RETURN 336 RLF 336 RRF 337 SLEEP 337 SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	NOP	335
RETURN	RETFIE	336
RETURN	RFTI W	336
RLF 336 RRF 337 SLEEP 337 SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
RRF 337 SLEEP 337 SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
SLEEP 337 SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	RLF	336
SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC	RRF	337
SUBLW 337 SUBWF 337 SWAPF 338 XORLW 338 XORWF 338 INTCON Register 86 Internal Oscillator Block INTOSC		
SUBWF		
SWAPF		
XORLW	SUBWF	337
XORLW	SWAPF	338
XORWF		
INTCON Register		
Internal Oscillator Block INTOSC		
INTOSC	INICON Register	86
	Internal Oscillator Block	
	INTOSC	
		355

Internal Sampling Switch (Rss) IMPEDANCE	149
Internet Address	403
Interrupt-On-Change	131
Associated Registers	133
Interrupts	81
ADC	144
Associated registers w/ Interrupts	94
Configuration Word w/ Clock Sources	67
Configuration Word w/ PORTA	124
Configuration Word w/ Reference Clock Sources	71
TMR1	181
INTOSC Specifications	355
IOCBF Register	132
IOCBN Register	132
IOCBP Register	132

L

LATA Register	
LATB Register	127
Load Conditions	
LSLF	
LSRF	

Μ

Master Synchronous Serial Port. See MSSPx	
MCLR	.76
Internal	.76
MDCARH Register	200
MDCARL Register	201
MDCON Register 1	
MDSRC Register 1	
Memory Organization	
Data	. 20
Program	. 17
Microchip Internet Web Site4	
Migrating from other PIC Microcontroller Devices	393
MOVIW	
MOVLB	334
MOVWI	335
MPLAB ASM30 Assembler, Linker, Librarian	380
MPLAB Integrated Development Environment Software 3	379
MPLAB PM3 Device Programmer	382
MPLAB REAL ICE In-Circuit Emulator System	
MPLINK Object Linker/MPLIB Object Librarian	
MSSPx	
I ² C Mode2	
I ² C Mode Operation2	
SPI Mode	
SSPxBUF Register2	237
SSPxSR Register	
° °	

0

-	
OPCODE Field Descriptions	
OPTION	
OPTION_REG Register	176
OSCCON Register	65
Oscillator	
Associated Registers	
Oscillator Module	51
ECH	51
ECL	51
ECM	
HS	51
INTOSC	51
LP	51
RC	51

XT	
Oscillator Parameters	355
Oscillator Specifications	354
Oscillator Start-up Timer (OST)	
Specifications	359
Oscillator Switching	
Fail-Safe Clock Monitor	63
Two-Speed Clock Start-up	61
OSCSTAT Register	66
OSCTUNE Register	67

Ρ

P1A/P1B/P1C/P1D.See Enhanced Capture/Compare/ PWM (ECCP)	
Packaging	
Marking	
PDIP Details	
PCL and PCLATH	
PCL Register	27
PCLATH Register	
PCON Register	
PIE1 Register	
PIE2 Register	
PIE3 Register	
PIE4 Register	
Pin Diagram	
PIC16F/LF1826/27, 18-pin PDIP/SOIC	4
PIC16F/LF1826/27, 28-pin QFN/UQFN	
Pinout Descriptions	
PIC16F/LF1826/27	11
PIR1 Register	
PIR2 Register	
PIR3 Register	
PIR4 Register	
PORTA	
ANSELA Register	
Associated Registers	
PORTA Register	
Specifications	
PORTA Register	
PORTB	
Additional Pin Functions	120
Weak Pull-up	107
ANSELB Register	
Associated Registers	
Interrupt-on-Change	
P1B/P1C/P1D.See Enhanced Capture/Compare/	120
PWM+ (ECCP+)	
Pin Descriptions and Diagrams	
PORTB Register	
PORTB Register	
Power-Down Mode (Sleep)	
Associated Registers	
Power-on Reset	
Power-up Time-out Sequence	
Power-up Time-out Sequence	
Specifications	
PR2 Register	
Precision Internal Oscillator Parameters	
Program Memory Map and Stack (PIC16F/LF1826)	
Map and Stack (PIC16F/LF1626) Map and Stack (PIC16F/LF1826/27)	
Programming, Device Instructions	
PSTRxCON Register PWM (ECCP Module)	230
PWM (ECCP Module) PWM Steering	000
	ZZJ

PIC16(L)F1826/27	7
------------------	---

Steering Synchronization
PWM Mode. See Enhanced Capture/Compare/PWM 212
PWM Steering
PWMxCON Register
-
R
RCREG
RCREG Register
RCSTA Register
Reader Response
Read-Modify-Write Operations
Reference Clock
Associated Registers71
Registers
ADCON0 (ADC Control 0) 145
ADCON1 (ADC Control 1) 146
ADRESH (ADC Result High) with ADFM = 0)
ADRESH (ADC Result High) with ADFM = 1)
ADRESL (ADC Result Low) with ADFM = 0)

Associated Registers71
ADCON0 (ADC Control 0)
ADCON1 (ADC Control 1)
ADRESH (ADC Result High) with ADFM = 0)
ADRESH (ADC Result High) with ADFM = 1)
ADRESL (ADC Result Low) with ADFM = 0)
ADRESL (ADC Result Low) with ADFM = 1)
ANSELA (PORTA Analog Select)
ANSELB (PORTB Analog Select)
APFCON0 (Alternate Pin Function Control 0)
APFCON1 (Alternate Pin Function Control 1)
BAUDCON (Baud Rate Control)
BORCON Brown-out Reset Control)
CCPTMRS (PWM Timer Selection Control)
CCPxAS (CCPx Auto-Shutdown Control)
CCPxCON (ECCPx Control)
CLKRCON (Reference Clock Control)
CMOUT (Comparator Output)
CMxCON0 (Cx Control)
CMxCON1 (Cx Control 1) 171
Configuration Word 1
Configuration Word 2
Core Function, Summary
CPSCON0 (Capacitive Sensing Control Register 0) 318
CPSCON1 (Capacitive Sensing Control Register 1) 319
DACCON0
DACCON1
Device ID
EEADRL (EEPROM Address) 113
EECON1 (EEPROM Control 1) 115
EECON2 (EEPROM Control 2) 116
EEDATH (EEPROM Data)
EEDATL (EEPROM Data) 113
FVRCON
INTCON (Interrupt Control)
IOCBF (Interrupt-on-Change Flag) 132
IOCBN (Interrupt-on-Change Negative Edge)
IOCBP (Interrupt-on-Change Positive Edge)
LATA (Data Latch PORTA) 122
LATB (Data Latch PORTB) 127
MDCARH (Modulation High Carrier Control
Register)
MDCARL (Modulation Low Carrier Control Register)201
MDCON (Modulation Control Register)
MDSRC (Modulation Source Control Register) 199
OPTION_REG (OPTION) 176
OSCCON (Oscillator Control)
OSCSTAT (Oscillator Status)
OSCTUNE (Oscillator Tuning)67
PCON (Power Control Register)79
PCON (Power Control)
PIE1 (Peripheral Interrupt Enable 1)
PIE2 (Peripheral Interrupt Enable 2)

PIE3 (Peripheral Interrupt Enable 3)	89
PIE4 (Peripheral Interrupt Enable 4)	90
PIR1 (Peripheral Interrupt Register 1)	91
PIR2 (Peripheral Interrupt Request 2)	92
PIR3 (Peripheral Interrupt Request 3)	93
PIR4 (Peripheral Interrupt Request 4)	
PORTA	
PORTB	127
PSTRxCON (PWM Steering Control)	230
PWMxCON (Enhanced PWM Control)	229
RCREG	302
RCSTA (Receive Status and Control)	295
SPBRGH	297
SPBRGL	297
Special Function, Summary	
SRCON0 (SR Latch Control 0)	
SRCON1 (SR Latch Control 1)	160
SSPxADD (MSSPx Address and Baud Rate,	
I ² C Mode)	283
SSPxCON1 (MSSPx Control 1)	280
SSPxCON2 (SSPx Control 2)	281
SSPxCON3 (SSPx Control 3)	
SSPxMSK (SSPx Mask)	
SSPxSTAT (SSPx Status)	279
STATUS	
T1CON (Timer1 Control)	
T1GCON (Timer1 Gate Control)	
TRISA (Tri-State PORTA)	
TRISB (Tri-State PORTB)	
TXCON	
TXSTA (Transmit Status and Control)	
WDTCON (Watchdog Timer Control)	
WPUB (Weak Pull-up PORTB)	
RESET	
Reset	
Reset Instruction	
Resets	
Associated Registers	
Revision History	393
-	

S

Shoot-through Current	222
Software Simulator (MPLAB SIM)	381
SPBRG Register	. 29
SPBRGH Register	297
SPBRGL Register	297
Special Event Trigger	
Special Function Registers (SFRs)	. 28
SPI Mode (MSSPx)	
Associated Registers	241
SPI Clock	237
SR Latch	157
Associated registers w/ SR Latch	161
SRCON0 Register	159
SRCON1 Register	160
SSP1ADD Register	. 30
SSP1BUF Register	. 30
SSP1CON Register	. 30
SSP1CON2 Register	. 30
SSP1CON3 Register	. 30
SSP1MSK Register	. 30
SSP1STAT Register	. 30
SSP2ADD Register	. 30
SSP2BUF Register	. 30
SSP2CON1 Register	. 30
SSP2CON2 Register	. 30

SSP2CON3 Register	
SSP2MSK Register	
SSP2STAT Register	
SSPxADD Register	
SSPxCON1 Register	
SSPxCON2 Register	
SSPxCON3 Register	
SSPxMSK Register	
SSPxOV	
SSPxOV Status Flag	
SSPxSTAT Register	
R/W Bit	
Stack	
Accessing	
Reset	
Stack Overflow/Underflow	
STATUS Register	
SUBWFB	

т

T1CON Register	28,	185
T1GCON Register		186
T2CON Register	28	, 32
Temperature Indicator Module		
Thermal Considerations		352
Timer0 1	73,	192
Associated Registers		176
Operation		173
Specifications		360
Timer1		177
Associated registers		187
Asynchronous Counter Mode		179
Reading and Writing		179
Clock Source Selection		178
Interrupt		
Operation		178
Operation During Sleep		181
Oscillator		179
Prescaler		179
Specifications		360
Timer1 Gate		
Selecting Source		179
TMR1H Register		
TMR1L Register		177
Timer2		
Associated registers		
Timer2/4/6		189
Associated registers		192
Timers		
Timer1		
T1CON		185
T1GCON		186
Timer2/4/6		
TXCON		191
Timing Diagrams		
A/D Conversion		362
A/D Conversion (Sleep Mode)		
Acknowledge Sequence		270
Asynchronous Reception		292
Asynchronous Transmission		
Asynchronous Transmission (Back to Back)		288
Auto Wake-up Bit (WUE) During Normal Operati	ion .	304
Auto Wake-up Bit (WUE) During Sleep		304
Automatic Baud Rate Calibration		302
Baud Rate Generator with Clock Arbitration		263

BRG Reset Due to SDA Arbitration During Start	
Condition	
Brown-out Reset (BOR)	
Brown-out Reset Situations	75
Bus Collision During a Repeated Start Condition	
(Case 1)	275
Bus Collision During a Repeated Start Condition	
(Case 2)	
Bus Collision During a Start Condition (SCL = 0)	
Bus Collision During a Stop Condition (Case 1)	
Bus Collision During a Stop Condition (Case 2)	
Bus Collision During Start Condition (SDA only)	
Bus Collision for Transmit and Acknowledge	
CLKOUT and I/O	
Clock Synchronization	
Clock Timing	
Comparator Output	
Enhanced Capture/Compare/PWM (ECCP)	360
Fail-Safe Clock Monitor (FSCM)	
First Start Bit Timing	
Full-Bridge PWM Output	217
Half-Bridge PWM Output 215,	222
I ² C Bus Data	368
I ² C Bus Start/Stop Bits	
I ² C Master Mode (7 or 10-Bit Transmission)	
I ² C Master Mode (7-Bit Reception)	269
I ² C Stop Condition Receive or Transmit Mode	
INT Pin Interrupt	
Internal Oscillator Switch Timing	
PWM Auto-shutdown	
Firmware Restart	
PWM Direction Change	
PWM Direction Change at Near 100% Duty Cycle	
PWM Output (Active-High) PWM Output (Active-Low)	
Repeat Start Condition	
Reset Start-up Sequence	
Reset, WDT, OST and Power-up Timer	
Send Break Character Sequence	
SPI Master Mode (CKE = 1, SMP = 1)	
SPI Mode (Master Mode)	
SPI Slave Mode (CKE = 0)	
SPI Slave Mode (CKE = 1)	366
Synchronous Reception (Master Mode, SREN)	
Synchronous Transmission	
Synchronous Transmission (Through TXEN)	
Timer0 and Timer1 External Clock	
Timer1 Incrementing Edge	
Two Speed Start-up	
USART Synchronous Receive (Master/Slave)	
USART Synchronous Transmission (Master/Slave).	
Wake-up from Interrupt	
Timing Diagrams and Specifications	
PLL Clock	355
Timing Parameter Symbology	353
Timing Requirements	
I ² C Bus Data	369
I2C Bus Start/Stop Bits	
SPI Mode	
TMR0 Register	28
TMR1H Register	28
TMR1L Register	28
TMR2 Register	3, 32
TRIS	
TRISA Register 28,	122

TRISB	125
TRISB Register	28, 127
Two-Speed Clock Start-up Mode	61
TXCON (Timer2/4/6) Register	
TXREG	
TXREG Register	
TXSTA Register	
BRGH Bit	

U

USART

Synchronous Master Mode		
Requirements, Synchronous Receive	. 364	
Requirements, Synchronous Transmission	. 364	
Timing Diagram, Synchronous Receive	. 364	
Timing Diagram, Synchronous Transmission	. 364	

۷

VREF. SEE ADC Reference Voltage

W

Wake-up on Break303Wake-up Using Interrupts96Watchdog Timer (WDT)76Associated Registers100Configuration Word w/ Watchdog Timer100Modes98Specifications359WCOL263, 266, 268, 270
WCOL Status Flag 263, 266, 268, 270
WDTCON Register
WPUB Register
WWW Address403
WWW, On-Line Support8

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to m ake fi les an d i nformation e asily av ailable to customers. Accessible by using your favorite Internet browser, th e w eb si te c ontains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's c ustomer notification s ervice h elps keep customers current on Microchip products. Subscribers will r eceive e-mail notification w henever t here are changes, upd ates, rev isions or errat a related to a specified product family or development tool of interest.

To register, access t he Microchip w eb s ite a t www.microchip.com. U nder "Sup port", c lick o n "Customer Cha nge No tification" and fo llow th e registration instructions.

CUSTOMER SUPPORT

Users of Microchip p roducts c an rec eive as sistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers sh ould con tact the ir dis tributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A lis ting of s ales offices and lo cations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If y ou wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation c an be tter s erve y ou, p lease F AX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
Fror	n: Name			
	Company			
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Арр	lication (optional):			
Wou	Id you like a reply?YN			
Dev	ice: LPIC16(L)F1826/27	terature Number: DS41391D		
Que	stions:			
1.	What are the best features of this document?			
2	Llow doop this document most your bordware and pothy	are development peeds?		
Ζ.	2. How does this document meet your hardware and software development needs?			
3.	3. Do you find the organization of this document easy to follow? If not, why?			
4		and subject		
4.	What additions to the document do you think would enha	ance the structure and subject?		
5.	5. What deletions from the document could be made without affecting the overall usefulness?			
6.	5. Is there any incorrect or misleading information (what and where)?			
7.	How would you improve this document?			

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Range Package Pattern PIC16F1826 ⁽¹⁾ , PIC16F1827 ⁽¹⁾ , PIC16F1826T ⁽²⁾ , PIC16F1827T ⁽²⁾ ; VDD range 1.8V to 5.5V PIC16LF1826 ⁽¹⁾ , PIC16LF1827 ⁽¹⁾ , PIC16LF1826T ⁽²⁾ , PIC16LF1827T ⁽²⁾ ;	 a) PIC16F1826 - IML 301 = Industrial temp., QFN package, Extended VDD limits, QTP pattern #301. b) PIC16F1826 - I/P = Industrial temp., PDIP package, Extended VDD limits. c) PIC16F1827 - E/SS= Extended temp., SSOP package, normal VDD limits.
Temperature Range:	VDD range 1.8V to 3.6V I= -40°C to +85°C (Industrial) E= -40°C to +125°C (Extended)	
Package:	ML = Micro Lead Frame (QFN) 6x6 MV = Micro Lead Frame (UQFN) 4x4 P = Plastic DIP SO = SOIC SS = SSOP	Note 1:F=Wide Voltage RangeLF=Standard Voltage Range2:T=in tape and reel SOIC, SSOP, and QFN/UQFN packages only.
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/18/11