

PIC16F917/916/914/913 Data Sheet

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology

Note the following details of the code protection feature on Microchip devices:

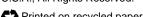
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in t his pub lication r egarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAK ES N O R EPRESENTATIONS OR W AR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR O RAL, STATUTORY O R OTHERWISE, RELATED TO THE INFO RMATION, INC LUDING BUT N OT LIMITED TO ITS C ONDITION, QUALITY, PERFOR MANCE, MERCHANTABILITY OR FITN ESS FOR PURPOSE . Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life s upport s ystems is n ot au thorized except with e xpress written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is aservice mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Міскоснір РІС16F917/916/914/913

28/40/44-Pin Flash-Based, 8-Bit CMOS Microcontrollers with LCD Driver and nanoWatt Technology

High-Performance RISC CPU:

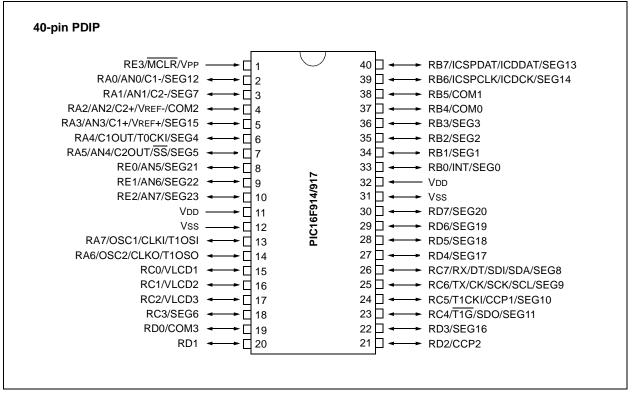
- Only 35 instructions to learn:
 - All single-cycle instructions except branches
- Operating speed:
 - DC 20 MHz oscillator/clock input
 - DC 200 ns instruction cycle
- Program Memory Read (PMR) capability
- Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes

Special Microcontroller Features:

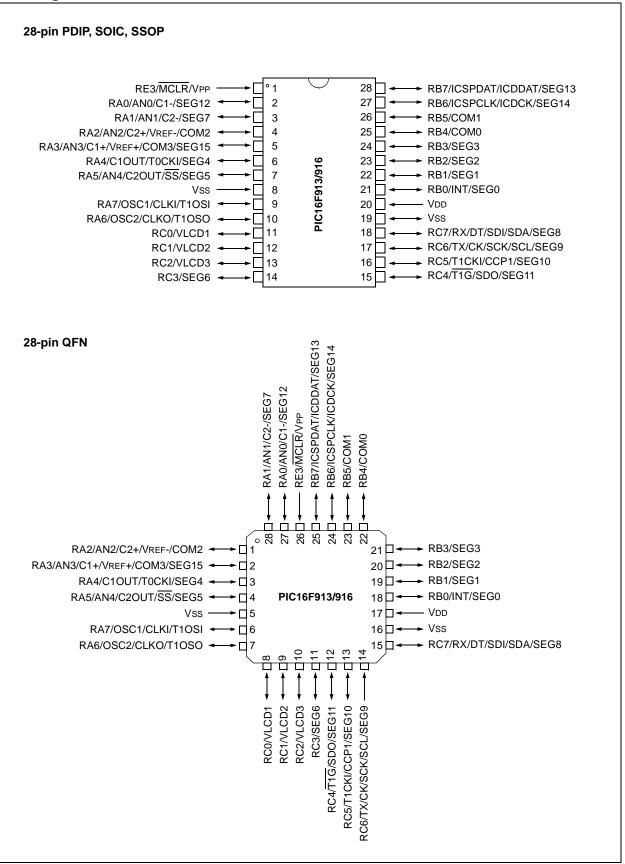
- Precision Internal Oscillator:
 - Factory calibrated to ±1%
 - Software selectable frequency range of 8 MHz to 32 kHz
 - Software tunable
 - Two-Speed Start-up mode
 - Crystal fail detect for critical applications
 - Clock mode switching during operation for power savings
- Power-saving Sleep mode
- Wide operating voltage range (2.0V-5.5V)
- Industrial and Extended temperature range
- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR) with software control option
- Enhanced Low-Current Watchdog Timer (WDT) with on-chip oscillator (software selectable nominal 268 seconds with full prescaler) with software enable
- Multiplexed Master Clear with pull-up/input pin
- Programmable code protection
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - Flash/Data EEPROM retention: > 40 years

Low-Power Features:

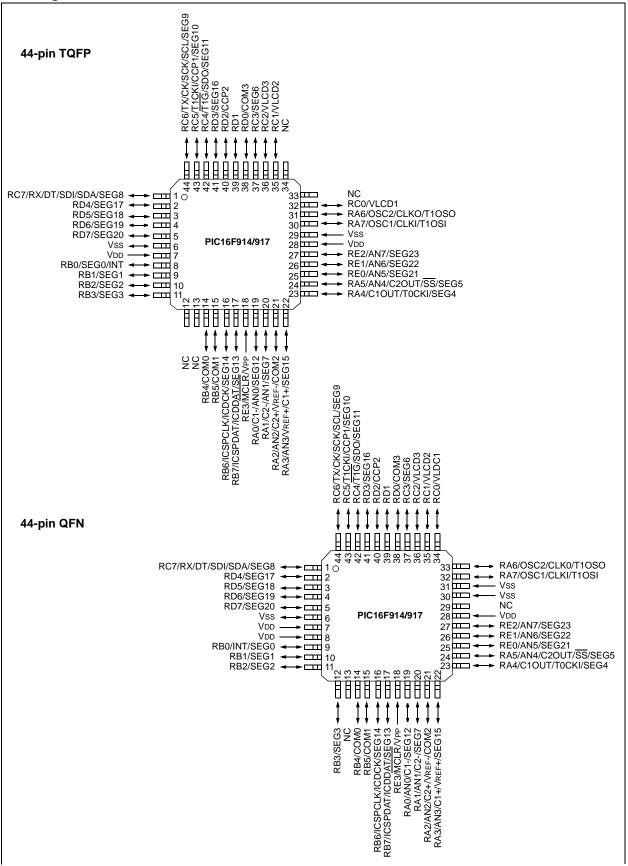
- Standby Current:
 - <100 nA @ 2.0V, typical
- Operating Current:
 - -8 .5 μA @ 32 kHz, 2.0V, typical
 - -1 00 µA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
 - -1 μA @ 2.0V, typical


Peripheral Features:

- Liquid Crystal Display module:
 - Up to 60 pixel drive capability on 28-pin devices
 - Up to 96 pixel drive capability on 40-pin devices
 - Four commons
- Up to 35 I/O pins and 1 input-only pin:
 - High-current source/sink for direct LED drive
 - Interrupt-on-pin change
 - Individually programmable weak pull-ups
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins
- Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (CVREF) module (% of VDD)
 - Comparator inputs and outputs externally accessible
- A/D Converter:
 - 10-bit resolution and up to 8 channels
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Enhanced Timer1:
 - 16-bit timer/counter with prescaler
 - External Gate Input mode
 - Option to use OSC1 and OSC2 as Timer1 oscillator if INTOSCIO or LP mode is selected
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Addressable Universal Synchronous
 Asynchronous Receiver Transmitter (AUSART)
- Up to 2 Capture, Compare, PWM modules:
 - 16-bit Capture, max. resolution 12.5 ns
 - 16-bit Compare, max. resolution 200 ns
 - 10-bit PWM, max. frequency 20 kHz
- Synchronous Serial Port (SSP) with I²C[™]


PIC16F917/916/914/913

Device	Program Memory	Data N	lemory	1/0	10-bit A/D	LCD	ССР	Timers 8/16-
Device	Flash (words/bytes)	SRAM (bytes)	EEPROM (bytes)	1/0	(ch)	(segment drivers)	CCP	bit
PIC16F913	4K/7K	256	256	24	5	16	1	2/1
PIC16F914	4K/7K	256	256	35	8	24	2	2/1
PIC16F916	8K/14K	352	256	24	5	16	1	2/1
PIC16F917	8K/14K	352	256	35	8	24	2	2/1


Pin Diagrams - PIC16F914/917, 40-Pin

Pin Diagrams - PIC16F913/916, 28-Pin

Pin Diagrams - PIC16F914/917, 44-Pin

Table of Contents

7 . 13 . 31 . 69 . 81
. 31 . 69
. 69
Q1
-
. 85
. 90
. 93
101
125
127
143
153
159
177
185
205
215
219
245
247
257
257
258
259
267
267
268
269

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

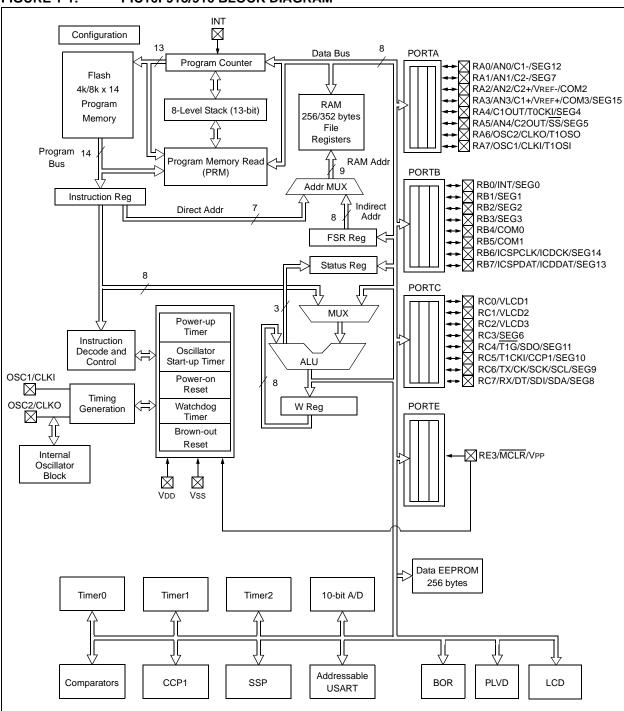
To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

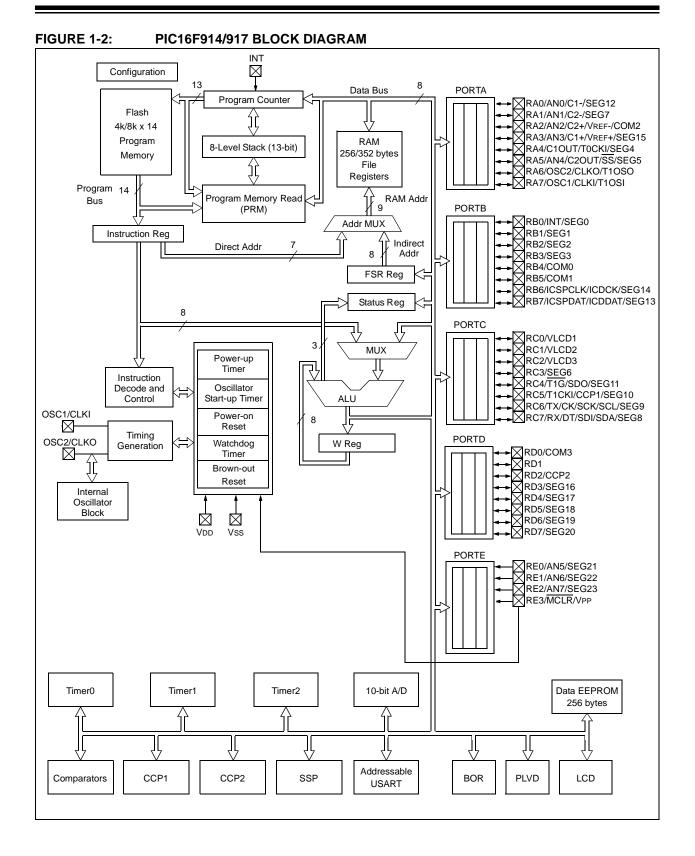
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


NOTES:

1.0 DEVICE OVERVIEW


This document contains device specific information for the PIC16F91X. Additional information may be found in the "*PICmicro® Mi d-Range M CU Family R eference Manual*" (D S33023), d ownloaded from the Microchip web site. The Reference Manual should be considered a complementary document to this data sheet and is highly recommended reading for a bet ter understanding of the device architecture and operation of the peripheral modules.

The PIC 16F91X de vices ar e co vered b y t his da ta sheet. It is ava ilable in 28 /40/44-pin p ackages. Figure 1-1 shows a block diagram of the PIC 16F913/ 916 device and Table 1-1 shows the pinout description. Figure 1-2 shows a block diagram of the PIC 16F914/ 917 device and Table 1-1 shows the pinout description.

PIC16F917/916/914/913

FIGURE 1-1: PIC16F913/916 BLOCK DIAGRAM

TABLE 1-1: PIC16F91X PINOUT DESCRIPTIONS

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1-/SEG12	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN		Analog input Channel 0/Comparator 1 input - negative
	C1-	_	AN	Comparator 1 negative input.
	SEG12		AN	LCD analog output.
RA1/AN1/C2-/SEG7	RA1	TTL	CMOS	General purpose I/O.
	AN1	AN		Analog input Channel 1/Comparator 2 input – negative
	C2-	—	AN	Comparator 2 negative input.
	SEG7	—	AN	LCD analog output.
RA2/AN2/C2+/VREF-/COM2	RA2	TTL	CMOS	General purpose I/O.
	AN2	AN		Analog input Channel 2/Comparator 2 input – positive.
	C2+	_	AN	Comparator 2 positive input.
	VREF-	AN	_	External Voltage Reference – negative.
	COM2	—	AN	LCD analog output.
RA3/AN3/C1+/VREF+/COM3 ⁽¹⁾ /	RA3	TTL	CMOS	General purpose I/O.
SEG15	AN3	AN	—	Analog input Channel 3/Comparator 1 input – positive.
	C1+	_	AN	Comparator 1 positive input.
	VREF+	AN		External Voltage Reference – positive.
	COM3 ⁽¹⁾	—	AN	LCD analog output.
	SEG15	—	AN	LCD analog output.
RA4/C1OUT/T0CKI/SEG4	RA4	TTL	CMOS	General purpose I/O.
	C1OUT	—	CMOS	Comparator 1 output.
	TOCKI	ST	_	Timer0 clock input.
	SEG4	_	AN	LCD analog output.
RA5/AN4/C2OUT/ SS /SEG5	RA5	TTL	CMOS	General purpose I/O.
	AN4	AN	—	Analog input Channel 4.
	C2OUT	—	CMOS	Comparator 2 output.
	SS	TTL	_	Slave select input.
	SEG5	—	AN	LCD analog output.
RA6/OSC2/CLKO/T1OSO	RA6	TTL	CMOS	General purpose I/O.
	OSC2	—	XTAL	Crystal/Resonator.
	CLKO	—	CMOS	Tosc/4 reference clock.
	T10SO	—	XTAL	Timer1 oscillator output.
RA7/OSC1/CLKI/T1OSI	RA7	TTL	CMOS	General purpose I/O.
	OSC1	XTAL	—	Crystal/Resonator.
	CLKI	ST		Clock input.
	T10SI	XTAL	_	Timer1 oscillator input.
RB0/INT/SEG0	RB0	TTL	CMOS	General purpose I/O. Individually enabled pull-up.
	INT	ST		External interrupt pin.
	SEG0		AN	LCD analog output.
RB1/SEG1	RB1	TTL	CMOS	General purpose I/O. Individually enabled pull-up.
	SEG1	1	AN	LCD analog output.

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917.

2: Pins available on PIC16F914/917 only.

TABLE 1-1: PIC16F91X PINOUT DESCRIPTIONS (CONTINUED)

		Туре	Туре	Description		
RB2/SEG2	RB2	TTL	CMOS	General purpose I/O. Individually enabled pull-up.		
	SEG2	—	AN	LCD analog output.		
RB3/SEG3	RB3	TTL	CMOS	General purpose I/O. Individually enabled pull-up.		
	SEG3	_	AN	LCD analog output.		
RB4/COM0	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	COM0		AN	LCD analog output.		
RB5/COM1	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	COM1	—	AN	LCD analog output.		
RB6/ICSPCLK/ICDCK/SEG14	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	ICSPCLK	ST	—	ICSP™ clock.		
	ICDCK	ST	_	ICD clock I/O.		
	SEG14	_	AN	LCD analog output.		
RB7/ICSPDAT/ICDDAT/SEG13	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on- change. Individually enabled pull-up.		
	ICSPDAT	ST	CMOS	ICSP Data I/O.		
	ICDDAT	ST	CMOS	ICD Data I/O.		
	SEG13		AN	LCD analog output.		
RC0/VLCD1	RC0	ST	CMOS	General purpose I/O.		
	VLCD1	AN		LCD analog input.		
RC1/VLCD2	RC1	ST	CMOS	General purpose I/O.		
	VLCD2	AN		LCD analog input.		
RC2/VLCD3	RC2	ST	CMOS	General purpose I/O.		
	VLCD3	AN		LCD analog input.		
RC3/SEG6	RC3	ST	CMOS	General purpose I/O.		
	SEG6		AN	LCD analog output.		
RC4/T1G/SDO/SEG11	RC4	ST	CMOS	General purpose I/O.		
	T1G	ST	—	Timer1 gate input.		
	SDO	—	CMOS	Serial data output.		
	SEG11	_	AN	LCD analog output.		
RC5/T1CKI/CCP1/SEG10	RC5	ST	CMOS	General purpose I/O.		
	T1CKI	ST		Timer1 clock input.		
	CCP1	ST	CMOS	Capture 1 input/Compare 1 output/PWM 1 output.		
	SEG10		AN	LCD analog output.		
RC6/TX/CK/SCK/SCL/SEG9	RC6	ST	CMOS	General purpose I/O.		
	ТХ	—	CMOS	USART asynchronous serial transmit.		
	СК	ST	CMOS	USART synchronous serial clock.		
	SCK	ST	CMOS	SPI™ clock.		
	SCL	ST	CMOS	I ² C [™] clock.		
	SEG9		AN	LCD analog output.		

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917.

2: Pins available on PIC16F914/917 only.

PIC16F91X PINOUT DESCRIPTIONS (CONTINUED) **TABLE 1-1:**

Name	Function	Input Type	Output Type	Description
RC7/RX/DT/SDI/SDA/SEG8	RC7	ST	CMOS	General purpose I/O.
	RX	ST		USART asynchronous serial receive.
	DT	ST	CMOS	USART synchronous serial data.
	SDI	ST	CMOS	SPI™ data input.
	SDA	ST	CMOS	I ² C™ data.
	SEG8		AN	LCD analog output.
RD0/COM3 ^(1, 2)	RD0	ST	CMOS	General purpose I/O.
	COM3		AN	LCD analog output.
RD1 ⁽²⁾	RD1	ST	CMOS	General purpose I/O.
RD2/CCP2 ⁽²⁾	RD2	ST	CMOS	General purpose I/O.
	CCP2	ST	CMOS	Capture 2 input/Compare 2 output/PWM 2 output.
RD3/SEG16 ⁽²⁾	RD3	ST	CMOS	General purpose I/O.
	SEG16		AN	LCD analog output.
RD4/SEG17 ⁽²⁾	RD4	ST	CMOS	General purpose I/O.
	SEG17	—	AN	LCD analog output.
RD5/SEG18 ⁽²⁾	RD5	ST	CMOS	General purpose I/O.
	SEG18	—	AN	LCD analog output.
RD6/SEG19 ⁽²⁾	RD6	ST	CMOS	General purpose I/O.
	SEG19		AN	LCD analog output.
RD7/SEG20 ⁽²⁾	RD7	ST	CMOS	General purpose I/O.
	SEG20		AN	LCD analog output.
RE0/AN5/SEG21 ⁽²⁾	RE0	ST	CMOS	General purpose I/O.
	AN5	AN	_	Analog input Channel 5.
	SEG21		AN	LCD analog output.
RE1/AN6/SEG22 ⁽²⁾	RE1	ST	CMOS	General purpose I/O.
	AN6	AN	_	Analog input Channel 6.
	SEG22	—	AN	LCD analog output.
RE2/AN7/SEG23 ⁽²⁾	RE2	ST	CMOS	General purpose I/O.
	AN7	AN	—	Analog input Channel 7.
	SEG23		AN	LCD analog output.
RE3/MCLR/Vpp	RE3	ST	—	Digital input only.
	MCLR	ST	—	Master Clear with internal pull-up.
	Vpp	ΗV		Programming voltage.
Vdd	Vdd	D		Power supply for microcontroller.
Vss	Vss	D		Ground reference for microcontroller.

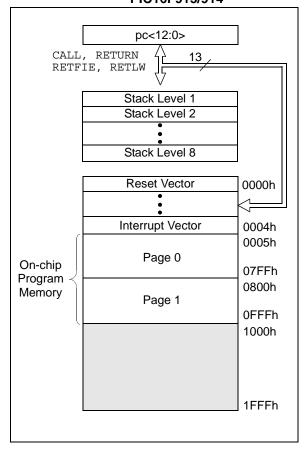
TTL = TTL compatible input

HV = High Voltage

Legend: AN = Analog input or output CMOS = CMOS compatible input or output D = Direct TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels ST = Schmitt Trigger input with CMOS levels

XTAL = Crystal

Note 1: COM3 is available on RA3 for the PIC16F913/916 and on RD0 for the PIC16F914/917.


2: Pins available on PIC16F914/917 only.

2.0 MEMORY ORGANIZATION

2.1 Program Memory Organization

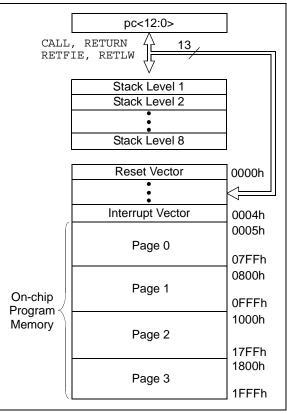

The PIC 16F917/916/914/913 has a 13-bit program counter cap able of address ing a 4k \times 14 program memory space for the P IC16F913/914 (0000h-0FFFh) and an 8k \times 14 program mem ory space for the PIC16F916/917 (000 0h-1FFFh). A ccessing a loc ation above the memory boundaries for the PIC16F913 and PIC16F914 will cause a wrap around within the first 4k \times 14 space. The Reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16F913/914

FIGURE 2-2:

PROGRAM MEMORY MAP AND STACK FOR THE PIC16F916/917

2.2 Data Memory Organization

The da ta m emory is p artitioned i nto m ultiple ba nks which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). Bits RP0 and RP1 are bank select bits.

	RP0	RP1	(STATUS<6:5>)
=	00: -	\rightarrow Bank 0	
=	01: -	\rightarrow Bank 1	
=	10: -	\rightarrow Bank 2	
=	11: -	→ Bank 3	

Each bank extends up to 7Fh (128 bytes). The lower locations of ea ch bank a re res erved for the Spe cial Function Registers. Ab ove the Sp ecial F unction Registers ar e th e G eneral Purp ose R egisters, implemented as s tatic RAM. All implemented banks contain Spe cial Function R egisters. Some fre quently used Sp ecial Function R egisters from one bank a re mirrored i n a nother b ank for c ode re duction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register fil e is organized as 256 x 8 i n the PIC16F913/914 and 352 x 8 in the PIC 16F916/917. Each r egister is a ccessed either di rectly or indi rectly through the FileSelect Register (FSR) (see Section 2.5 "Indirect Addressing, INDF and FSR Registers").

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the C PU and peripheral functions for controlling the desired ope ration of t hed evice (s ee T ables 2-1, 2-2, 2-3 and 2-4). These registers are static RAM.

The special registers can be classified into two sets: core and peripheral. The Special Function Registers associated with the "core" are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

	File		File		File		File
	Address		Address		Address		Address
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	LCDCON	107h		187h
	08h		88h	LCDPS	108h		188h
PORTE	09h	TRISE	89h	LVDCON	109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATL	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADRL	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h	LCDDATA0	110h		190h
TMR2	11h	ANSEL	91h	LCDDATA1	111h		
T2CON	12h	PR2	92h		112h		
SSPBUF	13h	SSPADD	93h	LCDDATA3	113h		
SSPCON	14h	SSPSTAT	94h	LCDDATA4	114h		
CCPR1L	15h	WPUB	95h		115h		
CCPR1H	16h	IOCB	96h	LCDDATA6	116h		
CCP1CON	17h	CMCON1	97h	LCDDATA7	117h		
RCSTA	18h	TXSTA	98h		118h		
TXREG	19h	SPBRG	99h	LCDDATA9	119h	General	
RCREG	1Ah		9Ah	LCDDATA10	11Ah	Purpose	
	1Bh		9Bh		11Bh	Register ⁽²⁾	
	1Ch	CMCON0	9Ch	LCDSE0	11Ch		
	1Dh	VRCON	9Dh	LCDSE1	11Dh	96 Bytes	
ADRESH	1Eh	ADRESL	9Eh		11Eh		
ADCON0	1Fh	ADCON1	9Fh		11Fh		
	20h		A0h		120h		
		General		General			
General		Purpose		Purpose			
Purpose Register		Register		Register			
		80 Bytes		80 Bytes			
96 Bytes			EFh		16Fh		1EFh
		accesses	F0h	accesses	170h	accesses	1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h-7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Note 1: Not a physical register.

2: On the PIC16F913, unimplemented data memory locations, read as '0'.

FIGURE 2-4: PIC16F914/917 SPECIAL FUNCTION REGISTERS

	File		File		File		File
	Address		Address		Address		Addres
Indirect addr. (1)	00h	Indirect addr. (1)	80h	Indirect addr. (1)	100h	Indirect addr. (1)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	WDTCON	105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h	LCDCON	107h		187h
PORTD	08h	TRISD	88h	LCDPS	108h		188h
PORTE	09h	TRISE	89h	LVDCON	109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATL	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADRL	10Dh	EECON2 ⁽¹⁾	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh		18Eh
TMR1H	0Fh	OSCCON	8Fh	EEADRH	10Fh		18Fh
T1CON	10h	OSCTUNE	90h	LCDDATA0	110h		190h
TMR2	11h	ANSEL	91h	LCDDATA1	111h		
T2CON	12h	PR2	92h	LCDDATA2	112h		
SSPBUF	13h	SSPADD	93h	LCDDATA3	113h		
SSPCON	14h	SSPSTAT	94h	LCDDATA4	114h		
CCPR2L	15h	WPUB	95h	LCDDATA5	115h		
CCPR2H	16h	IOCB	96h	LCDDATA6	116h		
CCP2CON	17h	CMCON1	97h	LCDDATA7	117h		
RCSTA	18h	TXSTA	98h	LCDDATA8	118h		
TXREG	19h	SPBRG	99h	LCDDATA9	119h	General	
RCREG	1Ah		9Ah	LCDDATA10	11Ah		
CCPR2L	1Bh		9Bh	LCDDATA11	11Bh	Purpose Register ⁽²⁾	
CCPR2H	1Ch	CMCON0	9Ch	LCDSE0	11Ch		
CCPR2CON	1Dh	VRCON	9Dh	LCDSE1	11Dh	96 Bytes	
ADRESH	1Eh	ADRESL	9Eh	LCDSE2	11Eh		
ADCON0	1Fh	ADCON1	9Fh		11Fh		
	20h		A0h		120h		
		General		General			
General		Purpose		Purpose			
Purpose		Register		Register			
Register							
96 Bytes		80 Bytes		80 Bytes			4
90 Dytes			EFh		16Fh		1EFh
	754	accesses 70h-7Fh	F0h	accesses 70h-7Fh	170h	accesses 70h-7Fh	1F0h
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh

Unimplemented data memory locations, read as '0'.

Note 1: Not a physical register.

2: On the PIC16F914, unimplemented data memory locations, read as '0'.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR Reset	Value on all other Resets ⁽¹⁾
Bank 0											
00h	INDF	Addressing	g this locatio	n uses conte	nts of FSR to	address dat	a memory (r	not a physica	I register)	xxxx xxxx	xxxx xxxx
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	uuuu uuuu
02h	PCL	Program C	Counter's (PC		0000 0000	0000 0000					
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect Da	ata Memory /	Address Poin	iter					xxxx xxxx	uuuu uuuu
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	uuuu uuuu
08h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	uuuu uuuu
09h	PORTE	_	_	_	_	RE3	RE2 ⁽²⁾	RE1 ⁽²⁾	RE0 ⁽²⁾	xxxx	uuuu
0Ah	PCLATH	_	_	—	Write Buffer	for upper 5 l	oits of Progr	am Counter		0 0000	0 0000
0Bh	INTCON	GIE P	EIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	_	CCP2IF	0000 -0-0	0000 -0-0
0Eh	TMR1L	Holding Register for the Least Significant Byte of the 16-bit TMR1								xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Re	egister for the	e Most Signif	icant Byte of	the 16-bit TM	1R1			xxxx xxxx	uuuu uuuu
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
11h	TMR2	Timer2 Mc	dule Registe	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	ous Serial Po	rt Receive B	uffer/Transmi	t Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/C	ompare/PWI	A Register 1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PWI	A Register 1	(MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit Data	Register	•				•	0000 0000	0000 0000
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	0000 0000
1Bh ⁽²⁾	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)								uuuu uuuu
1Ch ⁽²⁾	CCPR2H	Capture/C	ompare/PWI	A Register 2	(MSB)					xxxx xxxx	uuuu uuuu
1Dh (2)	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
1Eh	ADRESH	A/D Resul	t Register Hi	gh Byte		•			•	xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000

TABLE 2-1: PIC16F917/916/914/913 SPECIAL REGISTERS SUMMARY BANK 0

Legend: -= Unimplemented locations read as <u>'0', u</u> = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: PIC16F914/917 only.

PIC16F917/916/914/913

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR Reset	Value on all other Resets ⁽¹⁾
Bank '	1										
80h	INDF	Addressing register)	g this locatio	on uses con	tents of FSR	to address	data memor	y (not a phy	sical	XXXX XXXX	XXXX XXXX
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL	Program C	Counter's (P	C) Least Sig	gnificant Byt	е				0000 0000	0000 0000
83h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR	Indirect Da	ata Memory	Address Po	inter					xxxx xxxx	uuuu uuuu
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
88h	TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
89h	TRISE		_		_	TRISE3 ⁽⁵⁾	TRISE2 ⁽²⁾	TRISE1(2)	TRISE0 ⁽²⁾	1111	1111
8Ah	PCLATH		_		Write Buffe	er for the upp	er 5 bits of t	the Program	Counter	0 0000	0 0000
8Bh	INTCON	GIE P	EIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	x000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	—	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
8Eh	PCON	_	_	_	SBOREN	_	_	POR	BOR	1qq	uuu
8Fh	OSCCON	-	IRCF2	IRCF1	IRCF0	OSTS ⁽⁴⁾	HTS	LTS	SCS	-110 q000	-110 x000
90h	OSCTUNE	_	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
91h	ANSEL	ANS7 ⁽³⁾	ANS6 ⁽³⁾	ANS5 ⁽³⁾	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	1111 1111
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C mod	e) Address	Register				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	0000	0000
97h	CMCON1	_	_	_	_	_	_	T1GSS	C2SYNC	10	10
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	SPBRG7	SPBRG6	SPBRG5	SPBRG4	SPBRG3	SPBRG2	SPBRG1	SPBRG0	0000 0000	0000 0000
9Ah	_	Unimpleme	ented							_	_
9Bh	_	Unimpleme	ented							_	_
9Ch	CMCON0	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Dh	VRCON	VREN	—	VRR	—	VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000
9Eh	ADRESL	A/D Result	t Register Lo	ow Byte						xxxx xxxx	uuuu uuuu
9Fh	ADCON1	_	ADCS2	ADCS1	ADCS0	_	_		_	-000	-000

TABLE 2-2: PIC16F917/916/914/913 SPECIAL FUNCTION REGISTERS SUMMARY BANK 1

Legend: -= Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: PIC16F914/917 only.

3: PIC16F914/917 only, forced '0' on PIC16F913/916.

4: The value of the OSTS bit is dependent on the value of the Configuration Word (CONFIG) of the device. See Section 4.0 "Clock Sources".

5: Bit is read-only; TRISE = 1 always.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR Reset	Value on all other Resets ⁽¹⁾
Bank	2	-									
100h	INDF	Addressing	this location	uses conte	nts of FSR to	address dat	a memory (n	ot a physical	l register)	XXXX XXXX	XXXX XXXX
101h	TMR0	Timer0 Mod	dule Registe	r						xxxx xxxx	uuuu uuuu
102h	PCL	Program C	ounter's (PC) Least Sign	ificant Byte					0000 0000	0000 0000
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
104h	FSR	Indirect Dat	ndirect Data Memory Address Pointer								uuuu uuuu
105h	WDTCON	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	0 1000	0 1000
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
108h	LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	0000 0000	0000 0000
109h	LVDCON	-	—	IRVST	LVDEN	-	LVDL2	LVDL1	LVDL0	00 -100	00 -100
10Ah	PCLATH	-	—		Write Bu	ffer for the up	oper 5 bits of	the Program	Counter	0 0000	0 0000
10Bh	INTCON	GIE P	EIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
10Ch	EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0	0000 0000	0000 0000
10Dh	EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	0000 0000	0000 0000
10Eh	EEDATH	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
10Fh	EEADRH		_		EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0 0000	0 0000
110h	LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	XXXX XXXX	uuuu uuuu
111h	LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	XXXX XXXX	uuuu uuuu
112h	LCDDATA2 ⁽²⁾	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	XXXX XXXX	uuuu uuuu
113h	LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	XXXX XXXX	uuuu uuuu
114h	LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	XXXX XXXX	uuuu uuuu
115h	LCDDATA5 ⁽²⁾	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	XXXX XXXX	uuuu uuuu
116h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	uuuu uuuu
117h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu
118h	LCDDATA8 ⁽²⁾	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu
119h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu
11Ah	LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu
11Bh	LCDDATA11 ⁽²⁾	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	uuuu uuuu
11Ch	LCDSE0(3)	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	uuuu uuuu
11Dh	LCDSE1(3)	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	uuuu uuuu
11Eh	LCDSE2 ^(2,3)	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	uuuu uuuu
11Fh		Unimpleme	ented						•	_	_

TABLE 2-3:	PIC16F917/916/914/913 SPECIAL REGISTERS SUMMARY BANK 2

Legend: - = Unimplemented locations read as $\underline{0', u}$ = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Note

Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. 1:

PIC16F914/917 only. 2:

3: This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR/BOR Reset	Value on all other Resets ⁽¹⁾
Bank 3											
180h	INDF	Addressing register)	Addressing this location uses contents of FSR to address data memory (not a physical register)								XXXX XXXX
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
182h	PCL	Program C	ounter (PC)) Least Sig	nificant Byte					0000 0000	0000 0000
183h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
184h	FSR	Indirect Da	ta Memory	Address Po	inter					XXXX XXXX	uuuu uuuu
185h	_	Unimpleme	ented								_
186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
187h	_	Unimpleme	ented							_	_
188h	_	Unimpleme	ented							_	_
189h	_	Unimpleme	ented							_	_
18Ah	PCLATH	_	_	_	Write Buffe	er for the up	per 5 bits of	the Program	m Counter	0 0000	0 0000
18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	x000 0000	0000 000x
18Ch	EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD	0 x000	0 q000
18Dh	EECON2	EEPROM	Control Reg	ister 2 (not	a physical r	egister)	•	•	•		

TABLE 2-4: PIC16F917/916/914/913 SPECIAL FUNCTION REGISTERS SUMMARY BANK 3

- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation. Legend:

Note 1:

2.2.2.1 Status Register

The Status register, shown in Register 2-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

· the bank select bits for data memory (SRAM)

The S tatus regi ster c an b e th e d estination fo r an y instruction, like any other register. If the Status register is the destination for an instruction that affects the Z, DC or C b its, t hen t he w rite to t hese t hree b its is disabled. These bits are set or deared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the Status register as des tination m ay be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the Status register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bi ts (se e Section 17.0 "In struction Set Summary").

Note 1: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 2-1: STATUS - STATUS REGISTER (ADDRESS: 03h, 83h, 103h OR 183h)

	R/W-0	R/W-0	R/W-0	、 R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
bit 7	-		-	d for indired	t addressing)								
		1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh)											
bit 6-5	RP<1:0>: Register Bank Select bits (used for direct addressing)												
	01 = Bank 10 = Bank	0 (00h-7Fh) 1 (80h-FFh) 2 (100h-17F 3 (180h-1FF	- h)										
bit 4	$\overline{\mathbf{TO}}$: Time-c		""										
	1 = After p			ction or SLE	EP instruction								
bit 3	PD: Power-down bit												
	•	ower-up or t cution of the	•		on								
bit 2	Z: Zero bit												
		sult of an ari sult of an ari			on is zero on is not zero								
bit 1	DC: Digit C	arry/Borrow	bit (ADDWF	, ADDLW, SU	BLW, SUBWF ir	nstructions)	(1)						
	•	r-out from th ry-out from t			e result occurr he result	ed							
bit 0	C: Carry/Bo	orrow bit (AI	DDWF, ADDL	W, SUBLW,	SUBWF instr	uctions) ⁽¹⁾							
					the result occ								
	Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low-order bit of the source register.												
	Legend:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC16F917/916/914/913

2.2.2.2 Option Register

The Option register is a readable and writable register, which contains various control bits to configure:

- TMR0/WDT prescaler
- External RB0/INT interrupt
- •T MR0
- Weak pull-ups on PORTB

Note: To achieve a 1:1 prescaler assignment for TMR0, assign the prescaler to the WDT by setting PSA bit to '1' (OPTION_REG<3>). See Section 5.4 "Prescaler".

REGISTER 2-2: OPTION_REG – OPTION REGISTER (ADDRESS: 81h OR 181h)

ER 2-2:	OPTION_	REG – OP	TION REG	ISTER (AL	DRESS: 81	h OR 181	h)			
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU: PC)RTB Pull-u	o Enable bit							
		B pull-ups a B pull-ups a		oy individual	port latch val	ues				
bit 6	INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT/SEG0 pin 0 = Interrupt on falling edge of RB0/INT/SEG0 pin									
bit 5	TOCS: TMR0 Clock Source Select bit									
				CKI/SEG4 pi	in					
		al instruction	•	, ,						
bit 4		R0 Source E	•							
		•			4/C1OUT/T00 4/C1OUT/T00					
bit 3	PSA: Pres	caler Assigr	nment bit							
	1 = Presca	aler is assigr	ned to the W	/DT						
	0 = Presca	aler is assigr	ned to the Ti	imer0 modul	е					
bit 2-0	PS<2:0>:	Prescaler R	ate Select b	its						
	Bit	t Value T	MR0 Rate	WDT Rate	<u>)</u>					
		000	1:2	1:1						
		001 010	1:4 1:8	1:2 1:4						
		011	1:16	1:8						
		100	1:32	1:16						
		101 110	1 : 64 1 : 128	1 : 32 1 : 64						
		111	1:256	1 : 128						
			-							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

The IN TCON reg ister is a rea dable and w ritable register, which contains the various enable and flag bits for TM R0 reg ister ov erflow, POR TB ch ange an d external RB0/INT/SEG0 pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit t, GIE (IN TCON<7>). U ser software sh ould en sure the appropriate interrupt flag bit the appropriate clear p rior to enabling an interrupt.

REGISTER 2-3:	INTCON – 18Bh)	INTCON – INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh OR 18Bh)								
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x		
	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF		
	bit 7							bit 0		
bit 7	GIE: Globa	I Interrupt E	nable bit							
	 1 = Enables all unmasked interrupts 0 = Disables all interrupts 									
bit 6	PEIE: Perip	heral Interr	upt Enable	bit						
	1 = Enables	s all unmasl	ked periphe	ral interrupts	;					

	 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
bit 5	T0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt
bit 4	INTE: RB0/INT/SEG0 External Interrupt Enable bit
	 1 = Enables the RB0/INT/SEG0 external interrupt 0 = Disables the RB0/INT/SEF0 external interrupt
bit 3	RBIE: PORTB Change Interrupt Enable bit ⁽¹⁾
	 1 = Enables the PORTB change interrupt 0 = Disables the PORTB change interrupt
bit 2	T0IF: TMR0 Overflow Interrupt Flag bit ⁽²⁾
	 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INTF: RB0/INT/SEG0 External Interrupt Flag bit
	 1 = The RB0/INT/SEG0 external interrupt occurred (must be cleared in software) 0 = The RB0/INT/SEG0 external interrupt did not occur
bit 0	RBIF: PORTB Change Interrupt Flag bit
	 1 = When at least one of the PORTB <5:0> pins changed state (must be cleared in software) 0 = None of the PORTB <7:4> pins have changed state
	Note 1: IOCB register must also be enabled.
	 T0IF bit is set when Timer0 rolls over. Timer0 is unchanged on Reset and should be initialized before clearing T0IF bit.
	· · · · · · · · · · · · · · · · · · ·
	Logond

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.4 PIE1 Register

The PIE1 register contains the interrupt enable bits, as shown in Register 2-1.

Note: Bit PEIE (INTCON <6>) m ust be s et to enable any peripheral interrupt.

						•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE				
	bit 7							bit 0				
bit 7	EEIE: EE V	EEIE: EE Write Complete Interrupt Enable bit										
	1 = Enable											
	0 = Disabl		_									
bit 6		Converter I	nterrupt Ena	able bit								
	1 = Enable											
bit 5	bit 5 RCIE: USART Receive Interrupt Enable bit											
		1 = Enabled 0 = Disabled										
bit 4		eu RT Transmi	t Intorrupt E	nabla bit								
DIL 4	1 = Enable											
	1 = Disable 0 = Disable											
bit 3	SSPIE: Synchronous Serial Port (SSP) Interrupt Enable bit											
	1 = Enabled											
	0 = Disable	ed										
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	oit								
	1 = Enable	ed										
	0 = Disable	ed										
bit 1	TMR2IE: ⊤	MR2 to PR2	2 Match Inte	errupt Enable	e bit							
	1 = Enable											
	0 = Disable											
bit 0		MR1 Overfl	ow Interrup	t Enable bit								
	1 = Enable											
	0 = Disable	ed										
	Legend:											
	R = Reada			Vritable bit	•		oit, read as '					
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is ur	nknown				

REGISTER 2-4: PIE1 – PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

2.2.2.5 PIE2 Register

The PIE2 register contains the interrupt enable bits, as shown in Register 2-5.

- n = Value at POR

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-5:	PIE2 – PERIPHERAL INTERRUPT ENABLE REGISTER 2 (ADDRESS: 8Dh)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0		
	OSFIE	C2IE	C1IE	LCDIE	—	LVDIE	—	CCP2IE		
	bit 7							bit 0		
bit 7	OSFIE: Oscillator Fail Interrupt Enable bit									
	1 = Enabled 0 = Dsabled									
bit 6	C2IE: Comparator 2 Interrupt Enable bit									
		es Compara		•						
		es Compara		•						
bit 5		parator 1 In	•							
		es Compara es Compara		•						
bit 4		D Module Ir		•						
	1 = LCD ir	nterrupt is er	nabled							
	0 = LCD in	nterrupt is di	sabled							
bit 3	Unimplem	ented: Rea	d as '0'							
bit 2		•		ipt Enable b	it					
		es LVD Inter								
L :L 4		es LVD Inte								
bit 1	•	ented: Rea		• • • • •		4 (0 4 7)				
bit 0			-	it (only avai	able in 16F91	4/917)				
		es the CCP2	•							
	2.000									
	Legend:									
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented l	oit, read as '	כי		

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.6 PIR1 Register

The PIR1 register contains the interrupt flag bits, as shown in Register 2-6.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (IN TCON<7>). U ser software shou Id ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-6: PIR1 – PERIPHERAL INTERRUPT REQUEST REGISTER 1 (ADDRESS: 0Ch)

	R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF			
	bit 7							bit 0			
bit 7	EEIF: EE V	Vrite Operati	ion Interrup	t Flag bit							
		•		•	leared in soft	,					
h it C					has not starte	d					
bit 6		ADIF: A/D Converter Interrupt Flag bit 1 = The A/D conversion completed (must be cleared in software)									
	1 = The A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete										
bit 5	RCIF: USART Receive Interrupt Flag bit										
	1 = The USART receive buffer is full (cleared by reading RCREG)										
	0 = The USART receive buffer is not full										
bit 4		RT Transmit		0							
					red by writing	to IXREG)				
bit 3	 o = The USART transmit buffer is full SSPIF: Synchronous Serial Port (SSP) Interrupt Flag bit 										
bit o	-		-	-	(must be clea	red in softw	are)				
		g to Transmi		·	,		,				
bit 2	CCP1IF: C	CP1 Interrup	ot Flag bit								
	Capture Mo										
		TMR1 regist o TMR1 regi			ust be cleare	d in softwar	e)				
	Compare N		Ster Capture	e occurred							
	-		ter compare	e match occ	urred (must b	e cleared in	software)				
		o TMR1 regi	-				,				
	PWM mode										
		d in this mod									
bit 1		MR2 to PR2	-	-	- I	(t					
		IR2 to PR2 m IR2 to PR2 r			cleared in so	ntware)					
bit 0	TMR1IF: ⊤	MR1 Overflo	ow Interrupt	Flag bit							
		•		•	leared in soft	ware)					
	u = me m	MR1 register		eniow							
	Legend:										
	R = Reada	ble bit	VV = V	Vritable bit	U = Unim	plemented b	oit, read as '	0'			
	- n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	nknown			

2.2.2.7 **PIR2** Register

The PIR2 register contains the interrupt flag bits, as shown in Register 2-7.

Note:	Interrupt flag bits are set when an interrupt						
	condition occurs, regardless of the state of						
	its corresponding enable bit or the global						
	enable bit, GIE (IN TCON<7>). U ser						
	software shou Id ensure the appropriate						
	interrupt flag bits are clear prior to enabling						
	an interrupt.						

PIR2 - PERIPHERAL INTERRUPT REQUEST REGISTER 2 (ADDRESS: 0Dh) **REGISTER 2-7:**

	R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	U-0	R/W-0		
	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	_	CCP2IF		
	bit 7							bit 0		
bit 7	OSFIF: Oscillator Fail Interrupt Flag bit									
	1 = System oscillator failed, clock input has changed to INTOSC (must be deared in software)									
		n clock oper	•							
bit 6	C2IF: Comparator 2 Interrupt Flag bit 1 = Comparator output (C2OUT bit) has changed (must be cleared in software)									
		arator output arator output				cleared in s	software)			
bit 5	C1IF: Com	parator 1 Int	errupt Flag	bit						
					ged (must be	cleared in s	software)			
		arator output		it) has not c	hanged					
bit 4		D Module In								
		as generate								
h:4 0		as not gener		errupt						
bit 3	•	ented: Read								
bit 2		w Voltage De								
		as generated as not gener								
bit 1	Unimplem	ented: Read	d as '0'							
bit 0	CCP2IF: C	CP2 Interrup	ot Flag bit (only availab	le in 16F914/9	17)				
	Capture Mo	<u>ode</u>								
		•	•	•	lust be cleared	l in softwar	e)			
		o TMR1 regi	ster capture	e occurred						
	Compare N						<i>c</i> , , , ,			
		IMR1 regist o TMR1 regi	•		urred (must be curred	e cleared in	software)			
	PWM mode									
	Unuse	ed in this moo	de							
	Legend:									
	R = Reada	ble bit	W = V	Vritable bit	U = Unimp	lemented b	oit, read as '	0'		
			(4)				D · / ·			

- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

2.2.2.8 PCON Register

The Power Control (PCON) register (See Table 17-2) contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

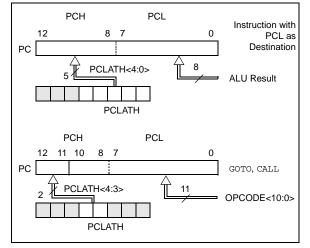
The PCON register also controls the software enable of the BOR.

The PCON register bits are shown in Register 2-8.

REGISTER 2-8: PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	R/W-1	U-0	U-0	R/W-0	R/W-x
_	—		SBOREN	_	—	POR	BOR
bit 7							bit 0

bit 7-5	Unimplemented: Read as '0'
bit 4	SBOREN: Software BOR Enable bit ⁽¹⁾
	1 = BOR enabled 0 = BOR disabled
bit 3-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	 1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	 1 = No Brown-out Reset occurred 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)


Note 1: BOREN<1:0> = 01 in the Configuration Word register for this bit to control the \overline{BOR} .

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.3 PCL and PCLATH

The Program Counter (PC) is 13 bits w ide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly rea dable or w ritable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-5 shows the two situations for the loading of the PC. The upper example in Figure 2-5 sho ws how the PC is loaded on a write to PC L (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 2-5 shows how the PC is loaded dur ing a CALL or GOTO in struction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-5: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556, *"Implementing a Table Read"* (DS00556).

2.3.2 STACK

The PI C16F917/916/914/913 f amily ha s a n 8-level x 13-bit wide hardware stack (see Figures 2-1 and 2-2). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PU SHed onto the s tack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

- **Note 1:** There are no Status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no ins tructions/mnemonics called PUSH or PO P. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the ve ctoring to a n in terrupt address.

2.4 Program Memory Paging

All PIC 16F917/916/914/913 de vices are ca pable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When do ing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the de sired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is POPed off the s tack. Therefore, manipulation of the PCLATH<4:3> b its is not required for the RETURN instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH register are							
	unchanged af ter a RETURN or RETFIE							
	instruction is executed. The user must							
	rewrite the contents of the PCLATH regis-							
	ter for any subsequent subroutine calls or							
	GOTO instructions.							

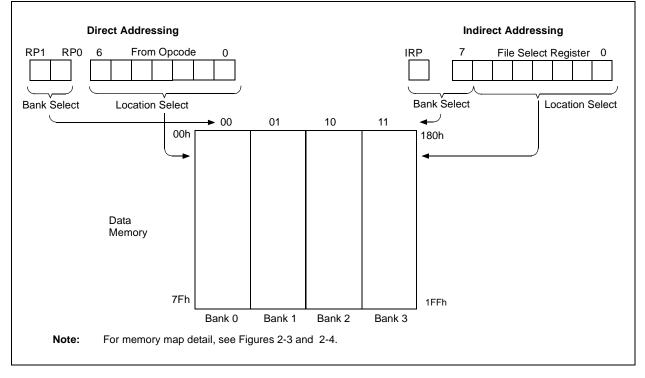
Example 2-1 sh ows the calling of a su broutine in page 1 of the program memory. This example assumes that PC LATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG 0x500	
	BCF PCLATH,4	
	BSF PCLATH,3	;Select page 1 ;(800h-FFFh)
	CALL SUB1 P1	;Call subroutine in
	:	;page 1 (800h-FFFh)
	:	
	ORG 0x900	;page 1 (800h-FFFh)
SUB1_P1		
	:	;called subroutine
		;page 1 (800h-FFFh)
	:	
	RETURN	;return to
		;Call subroutine
		;in page 0
		; (000h-7FFh)

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect add ressing i s po ssible b y us ing th e IN DF register. Any i nstruction usi ng the IN DF reg ister actually accesses da ta pointed to by the File Select Register (F SR). Re ading INDF i tself i ndirectly wi II produce 00h. W riting t o th e IN DF re gister ind irectly results in a no operation (although Status bits may be affected). An effective 9-bit add ress is obtained b y concatenating the 8-bit FSR register and the IR P bit (STATUS<7>), as shown in Figure 2-6.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAMPLE 2-2: INDIRECT ADDRESSING

MOVLW	0x20	;initialize pointer
MOVWF	FSR	;to RAM
NEXTCLRF	INDF	clear INDF register;
INCF	FSR	;inc pointer
BTFSS	FSR,4	;all done?
GOTO	NEXT	;no clear next
CONTINUE		;yes continue

FIGURE 2-6: DIRECT/INDIRECT ADDRESSING PIC16F917/916/914/913

3.0 I/O PORTS

This device includes four 8-bit port registers along with their corresponding TRIS registers and one four bit port:

- PORTA and TRISA
- PORTB and TRISB
- PORTC and TRISC
- PORTD and TRISD
- PORTE and TRISE

PORTA, PORTB, PORTC and RE3/MCLR/VPP ar e implemented on all devices. PORTD and RE<2:0> are implemented only on the PIC16F914 and PIC16F917.

3.1 PORTA and TRISA Registers

PORTA is a 8 -bit w ide, bi directional port. T he corresponding dat a direct ion re gister is TR ISA (Register 3-2). Setting a TR ISA bit (= 1) will make the corresponding POR TA pin an input (i. e., put t he corresponding output driver in a High-impedance mode). Clearing a TR ISA bit (= 0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin). Example 3-1 shows how to initialize PORTA.

Five of the pins of PORTA can be configured as analog inputs. These pins, RA5 and RA<3:0>, are configured as ana log inputs on device power-up and must be reconfigured by the user to be used as I/O's. This is done by writing the appropriate values to the CMCON0 and ANSEL registers (see Example 3-1).

Reading the PORTA register (R egister 3-1) reads the status of the pins, whereas writing to it will write to the port I atch. All write o perations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the port data latch.

The TR ISA regi ster c ontrols the dire ction of the PORTA pins, even when they are being used as analog inputs. The u ser m ust en sure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

Note 1:	The CMCON 0 (9 Ch) re gister must b e initialized to configure an analog channel as a di gital i nput. Pi ns co nfigured a s analog inputs will read '0'.
2:	Analog lines that carry LCD signals (i.e., SEGx, C OMy, w here x and y a re segment and com mon ide ntifiers) are shown as direct connections to the device pins. Th e s ignals a re o utputs from th e LCD module a nd may b e tr i-stated, depending on th e configuration o f th e LCD module.

EXAMPLE 3-1: INITIALIZING PORTA

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTA	;Init PORTA
BSF	STATUS, RP0	;Bank 1
BCF	STATUS,RP1	;
MOVLW	07h	;Set RA<2:0> to
MOVWF	CMCON0	;digital I/O
CLF	ANSEL	;Make all PORTA I/O
MOVLW MOVWF		;Set RA<7:4> as inputs ;and set RA<3:0>
		; as outputs
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

PIC16F917/916/914/913

REGISTER 3-1: PORTA – PORTA REGISTER (ADDRESS: 05h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 RA<7:0>: PORTA I/O Pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-2: TRISA – PORTA TRI-STATE REGISTER (ADDRESS: 85h)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

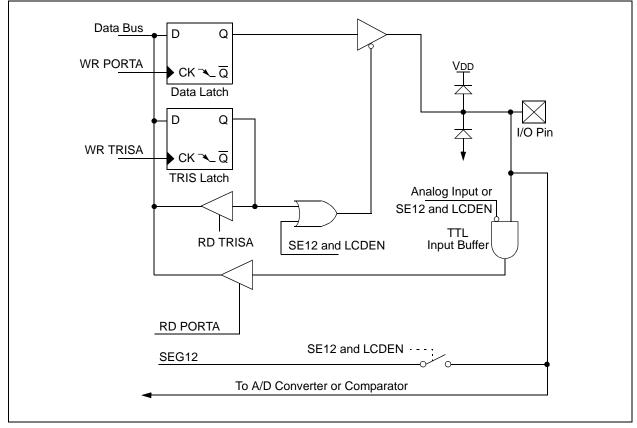
bit 7-0 TRISA<7:0>: PORTA Tri-State Control bits

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

TRISA<7:6> always reads '1' in XT, HS and LP OSC modes. Note:

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	


3.1.1 PIN DESCRIPTIONS AND DIAGRAMS

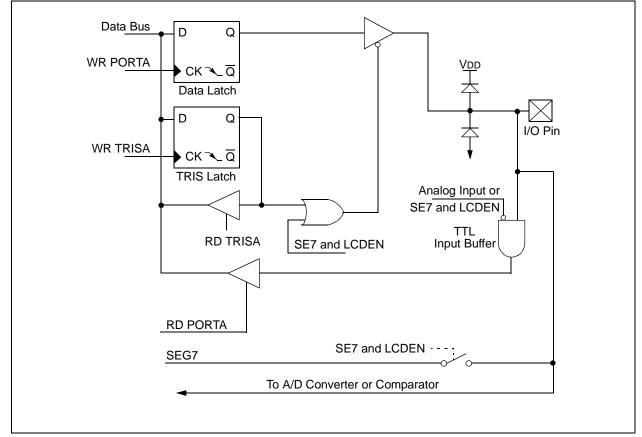
Each PORTA pin is multiplexed with other functions. The pins and their combined functions are bri efly described here. For specific information about individual functions, refer to the appropriate section in this data sheet.

3.1.1.1 RA0/AN0/C1-/SEG12

Figure 3-1 s hows th e d iagram fo r thi s pin. Th e RA0/AN0/C1-/SEG12 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D
- an analog input for Comparator 1
- an analog output for the LCD

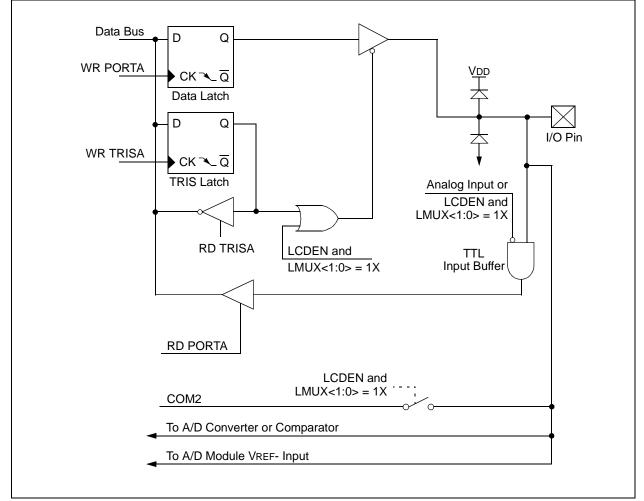
FIGURE 3-1: BLOCK DIAGRAM OF RA0/AN0/C1-/SEG12


© 2005 Microchip Technology Inc.

3.1.1.2 RA1/AN1/C2-/SEG7

Figure 3-2 s hows th e d iagram for thi s pin. The RA1/AN1/C2-/SEG7 pin is configurable to function as one of the following:

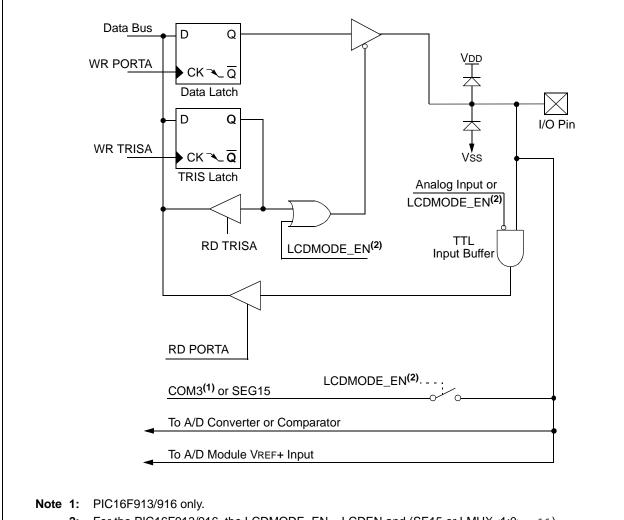
- a general purpose I/O
- an analog input for the A/D
- an analog input for Comparator 2
- an analog output for the LCD



3.1.1.3 RA2/AN2/C2+/VREF-/COM2

Figure 3-3 s hows th e d iagram fo r thi s pin. Th e RA2/AN2/C2+/VREF-/COM2 pi n is configurable to function as one of the following:

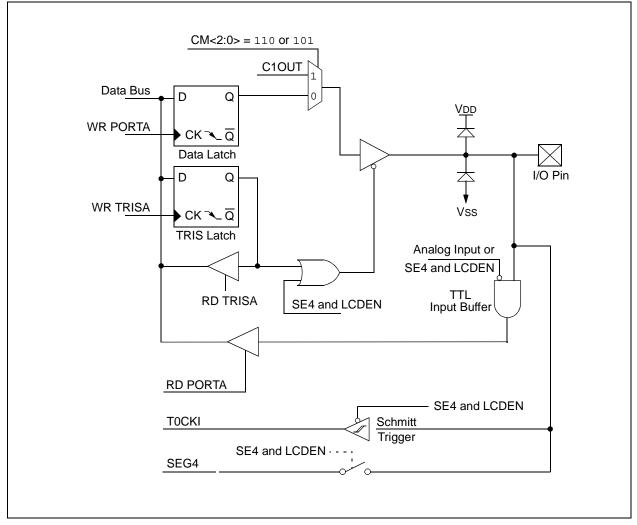
- a general purpose I/O
- an analog input for the A/D
- an analog input for Comparator 2
- a voltage reference input for the A/D
- an analog output for the LCD



3.1.1.4 RA3/AN3/C1+/VREF+/COM3/SEG15

Figure 3-4 s hows the d iagram for this pin. The RA3/AN3/C1+/VREF+/COM3/SEG15 pi n is configurable to function as one of the following:

- a general purpose input
- an analog input for the A/D
- an analog input from Comparator 1
- a voltage reference input for the A/D
- · analog outputs for the LCD

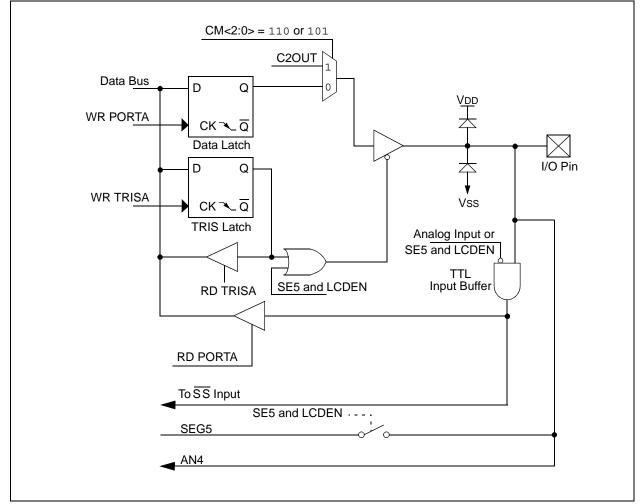

2: For the PIC16F913/916, the LCDMODE_EN = LCDEN and (SE15 or LMUX<1:0> = 11). For the PIC16F914/917, the LCDMODE_EN = LCDEN and SE15.

3.1.1.5 RA4/C1OUT/T0CKI/SEG4

Figure 3-5 s hows the d iagram for this pin. The RA4/C1OUT/T0CKI/SEG4 pin is c onfigurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator 1
- a clock input for TMR0
- an analog output for the LCD

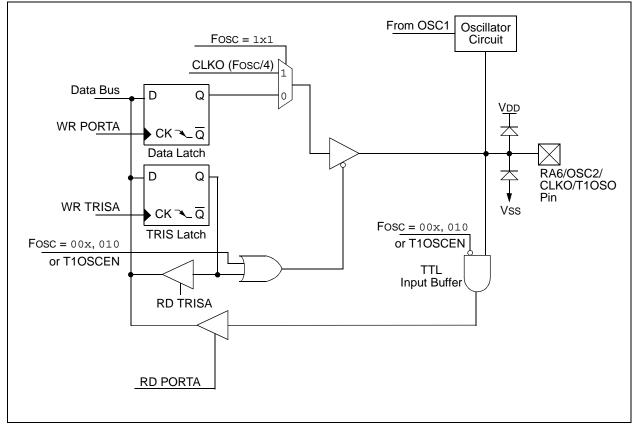
FIGURE 3-5: BLOCK DIAGRAM OF RA4/C1OUT/T0CKI/SEG4



3.1.1.6 RA5/AN4/C2OUT/SS/SEG5

Figure 3-6 s hows th e d iagram for thi s pin. Th e RA5/AN4/C2OUT/SS/SEG5 p in i s c onfigurable to function as one of the following:

- a general purpose I/O
- a digital output from Comparator 2
- · a slave select input
- an analog output for the LCD
- an analog input for the A/D

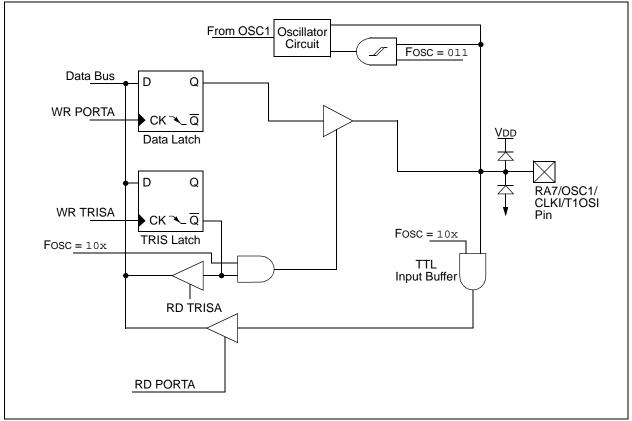


3.1.1.7 RA6/OSC2/CLKO/T1OSO

Figure 3-7 s hows the d iagram for this pin. The RA6/OSC2/CLKO/T1OSO pin is c onfigurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock output
- a TMR1 oscillator connection

FIGURE 3-7: BLOCK DIAGRAM OF RA6/OSC2/CLKO/T1OSO



3.1.1.8 RA7/OSC1/CLKI/T1OSI

Figure 3-8 s hows th e d iagram for thi s pin. The RA7/OSC1/CLKI/T1OSI pin is configurable to function as one of the following:

- a general purpose I/O
- a crystal/resonator connection
- · a clock input
- a TMR1 oscillator connection

FIGURE 3-8: BLOCK DIAGRAM OF RA7/OSC1/CLKI/T1OSI

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx xxxx	uuuu uuuu
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000 0000	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
81h/181h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
9Ch	CMCON0	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
11Ch	LCDSE0 ⁽¹⁾	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	uuuu uuuu
11Dh	LCDSE1 ⁽¹⁾	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note 1: This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

3.2 PORTB and TRISB Registers

PORTB is a g eneral pur pose I/ O port w ith similar functionality as the PIC16F77. All PORTB pins can have a weak pull-up feature, and PORTB<7:4> implements an interrupt-on-input change function.

PORTB is also used for the Serial Flash programming interface.

Note: Analog lines that carry LCD signals (i.e., SEGx, COMy, where x and y are segment and common identifiers) are shown as direct connections to the de vice pins. The si gnals are out puts from the LC D module and may be tri-stated, depending on the configuration of the LCD module.

EXAMPLE 3-2:	INITIALIZING PORTB

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTB	;Init PORTB
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	FFh	;Set RB<7:0> as inputs
MOVWF	TRISB	;
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

3.3 Additional PORTB Pin Functions

RB<7:6> are used as data and clock signals, respectively, for both serial programming and the in-circuit debugger features on the device. Also, RB0 can be configured as an external interrupt input.

3.3.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up. Refer to Register 3-6. Each weak pull-up is a utomatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset by the RBPU bit (OPTION_REG<7>).

3.3.2 INTERRUPT-ON-CHANGE

Four of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:4> enable or di sable the interrupt function for eac h pin. Refer to Register 3-5. The interrupt-on-change feature is disabled on a Power-on Reset.

For enabled in terrupt-on-change pins, the values are compared with the old value latched on the last read of PORTB. The 'mismatch' outputs of the last read are OR'd together to set the PORTB Change Interrupt flag bit (RBIF) in the INTCON register (Register 2-3).

This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, clears the interrupt by:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear the flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading or writing PORTB will end the mismatch condition and allow flag bit RBIF to be cleared. The latch holding the last read value is not affected by a MCLR nor Brown-out Reset. After these Resets, the RBIF flag will continue to be set if a mismatch is present.

Note:	If a cha nge on the I/O pi n should o ccur when the read operation is being executed
	(start of the Q2 cy cle), then the R BIF
	interrupt flag may not get set. Furthermore,
	since a read or wite on a port afects all bits
	of that port, care must be taken when using
	multiple pins in Interrupt-on-change mode.
	Changes on one pin may not be seen while
	servicing changes on another pin.

PIC16F917/916/914/913

REGISTER 3-3:	PORTB -	PORTB RI	EGISTER (ADDRESS	: 06h OR 1	l06h)		
	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
	bit 7							bit 0
bit 7-0	RB<7:0>: [PORTB I/O	Pin bits					
	1 = Port pir	n is >Vıн						
	0 = Port pir	n is <vı∟< th=""><th></th><th></th><th></th><th></th><th></th><th></th></vı∟<>						
	Legend:							
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown
REGISTER 3-4:	TRISB – P	ORTB TRI	-STATE R	EGISTER (6: 86h, 186	ŝh)	
	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0
	bit 7							bit 0
bit 7-0	TRISB<7:0)>: PORTB	Tri-State Cor	ntrol bits				
			ired as an in		ed)			
	0 = PORTE	3 pin configu	ired as an o	utput				
	Note:	TRISB<7:6>	> always rea	ds '1' in XT,	HS and LP	OSC mode	S.	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-5: IOCB – PORTB INTERRUPT-ON-CHANGE REGISTER (ADDRESS: 96h)

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—	—	—	—
bit 7							bit 0

bit 7-4 **IOCB<7:4>:** Interrupt-on-Change bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

bit 3-0 Unimplemented: Read as '0'

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-6: WPUB – WEAK PULL-UP REGISTER (ADDRESS: 95h)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

0 = Pull-up disabled

Note 1: Global RBPU must be enabled for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISB<7:0> = 0).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

^{1 =} Pull-up enabled

3.3.3 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTB pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the LCD or interrupts, refer to the a ppropriate section in this data sheet.

3.3.3.1 RB0/INT/SEG0

Figure 3-9 s hows the d iagram for this pin. The RB0/INT/SEG0 pin is configurable to function as one of the following:

- a general purpose I/O
- an external edge triggered interrupt
- an analog output for the LCD

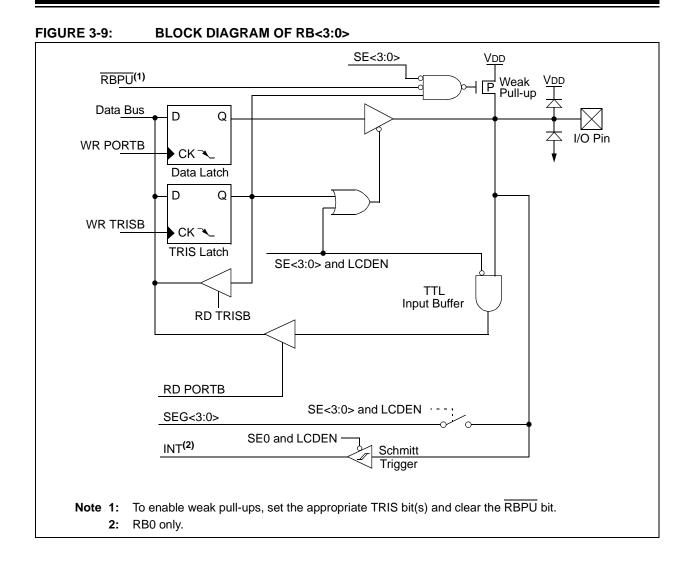
3.3.3.2 RB1/SEG1

Figure 3-9 s hows the d iagram for this pin. The RB1/SEG1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.3.3.3 RB2/SEG2

Figure 3-9 s hows the d iagram for this pin. The RB2/SEG2 pin is configurable to function as one of the following:

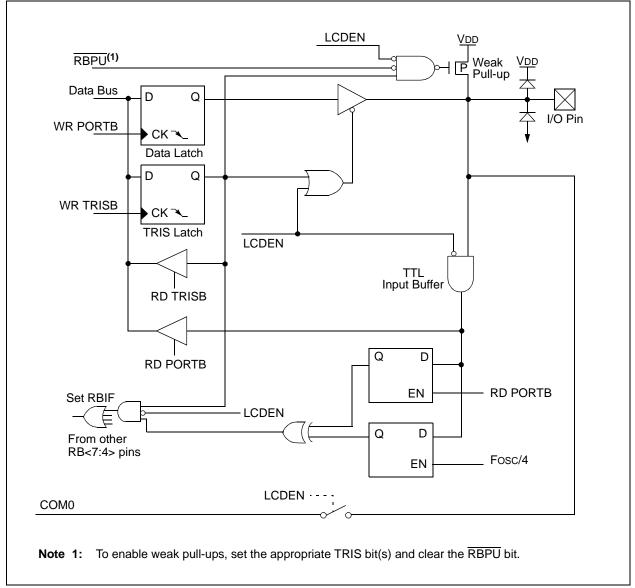

- a general purpose I/O
- an analog output for the LCD

3.3.3.4 RB3/SEG3

Figure 3-9 s hows the d iagram for this pin. The RB3/SEG3 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

PIC16F917/916/914/913

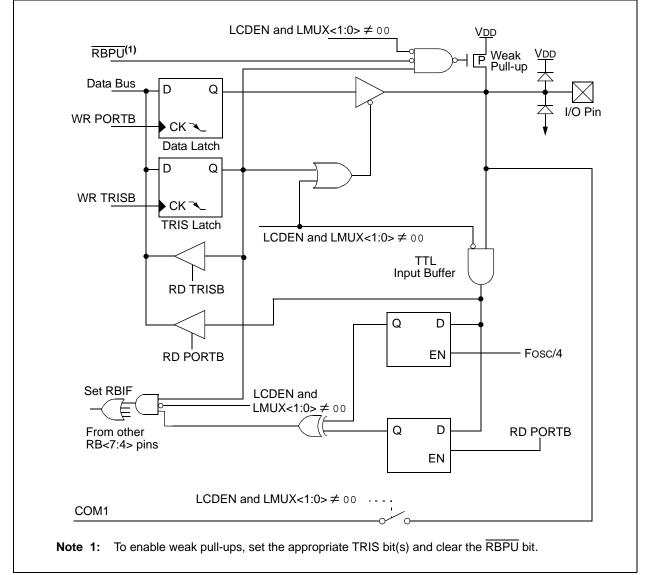


3.3.3.5 RB4/COM0

Figure 3-10 s hows t he diagram for th is pin . The RB4/COM0 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

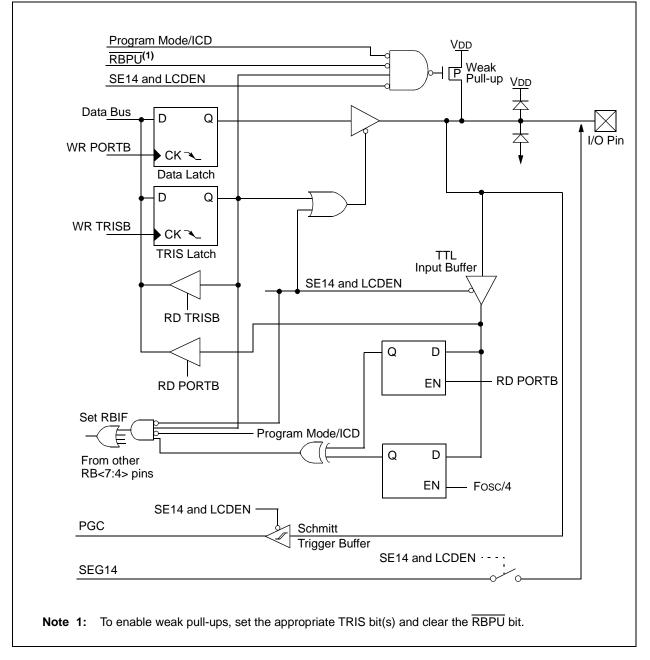
FIGURE 3-10: BLOCK DIAGRAM OF RB4/COM0



3.3.3.6 RB5/COM1

Figure 3-11 shows the dia gram for thi s pin . The RB5/COM1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

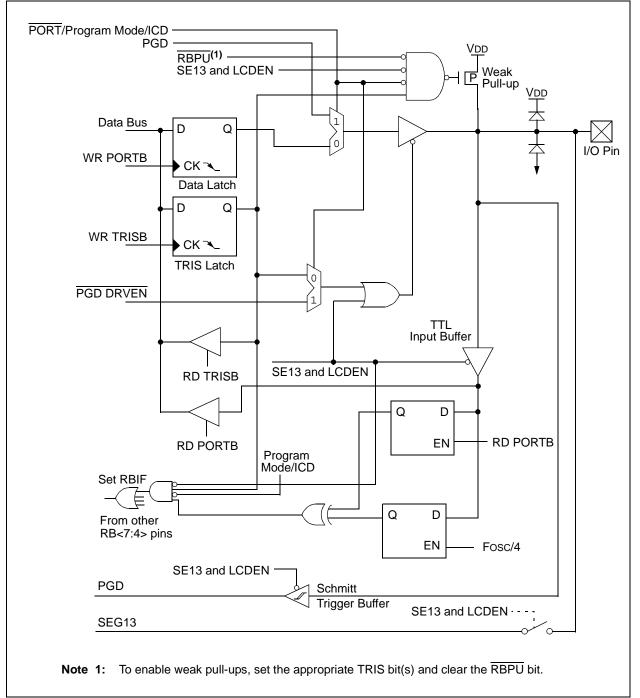

© 2005 Microchip Technology Inc.

3.3.3.7 RB6/ICSPCLK/ICDCK/SEG14

Figure 3-12 s hows t he diagram for th is pin . The RB6/ICSPCLK/ICDCK/SEG14 pin is configurable to function as one of the following:

- a general purpose I/O
- an In-Circuit Serial Programming[™] clock
- an ICD clock I/O
- an analog output for the LCD

FIGURE 3-12: BLOCK DIAGRAM OF RB6/ICSPCLK/ICDCK/SEG14



3.3.3.8 RB7/ICSPDAT/ICDDAT/SEG13

Figure 3-13 s hows t he diagram for th is pin . The RB7/ICSPDAT/ICDDAT/SEG13 p in is configurable to function as one of the following:

- a general purpose I/O
- an In-Circuit Serial Programming™ I/O
- an ICD data I/O
- an analog output for the LCD

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
06h/106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	uuuu uuuu
86h/186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
95h	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
96h	IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	_	_	_	0000	0000
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
11Ch	LCDSE0 ⁽¹⁾	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	uuuu uuuu
11Dh	LCDSE1 ⁽¹⁾	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	uuuu uuuu

Legend: Note 1: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB. This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

3.4 **PORTC and TRISC Registers**

PORTC is an 8 -bit bidi rectional p ort. P ORTC is multiplexed with several per ipheral functions. POR TC pins have Schmitt Trigger input buffers.

All PO RTC pi ns hav e I atch bi ts (P ORTC regi ster). They, w hen w ritten, w ill mo dify th e co ntents of th e PORTC latch; thus, modifying the value driven out on a pin if the corresponding TRISC bit is configured for output.

Note: Analog lines that carry LCD signals (i.e., SEGx, VL CDy, where x and y a re segment and LCD bias voltage identifiers) are s hown a s d irect connections t o th e device pins. The signals are outputs from the LC D module and m ay be tri-stated, depending on the configuration of the LCD module.

EXAMPLE 3-3: INITIALIZING PORTC

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTC	;Init PORTC
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	FFh	;Set RC<7:0> as inputs
MOVWF	TRISC	;
BCF	STATUS, RPO	;Bank 2
BSF	STATUS, RP1	;
CLRF	LCDCON	;Disable VLCD<3:1>
		;inputs on RC<2:0>
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

REGISTER 3-7: PORTC – PORTC REGISTER (ADDRESS: 07h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 RC<7:0>: PORTC I/O Pin bits

1 = Port pin is >VIH

0 = Port pin is <VIL

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented	d bit, read as '0'		
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

REGISTER 3-8: TRISC – PORTC TRI-STATE REGISTER (ADDRESS: 87h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	
bit 7 bi								

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

Note: TRISC<7:6> always reads '1' in XT, HS and LP OSC modes.

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

3.4.1 PIN DESCRIPTIONS AND DIAGRAMS

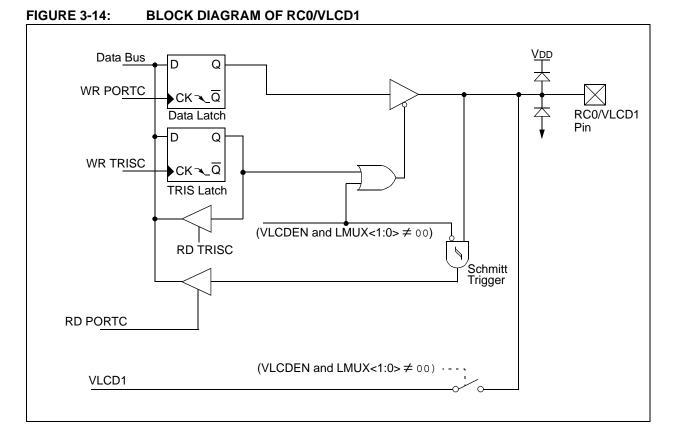
Each PORTC pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the LCD or SSP, refer to the appropriate section in this data sheet.

3.4.1.1 RC0/VLCD1

Figure 3-14 s hows t he diagram for th is pin . The RC0/VLCD1 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the LCD bias voltage

3.4.1.2 RC1/VLCD2


Figure 3-15 s hows t he diagram for th is pin . The RC1/VLCD2 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the LCD bias voltage

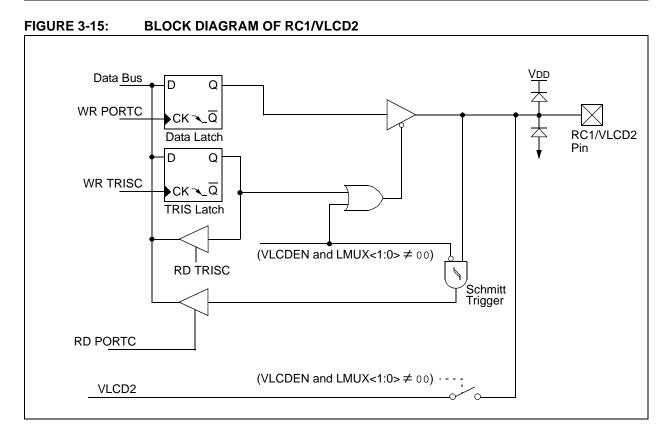
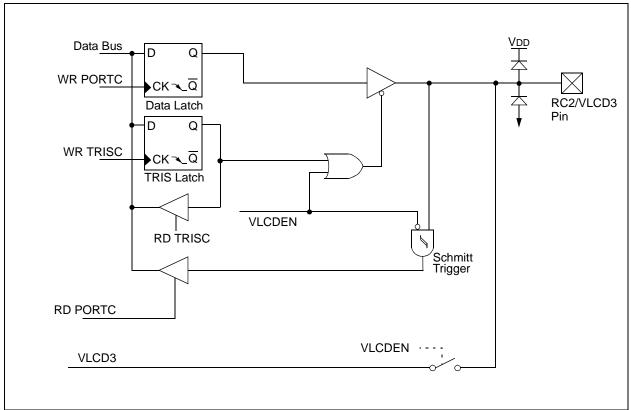
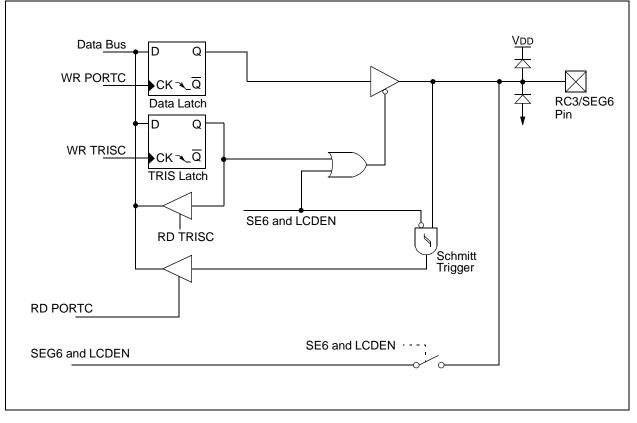

3.4.1.3 RC2/VLCD3

Figure 3-16 s hows t he d iagram for thi s pin. The RC2/VLCD3 pin is c onfigurable to function as one of the following:


- a general purpose I/O
- an analog input for the LCD bias voltage

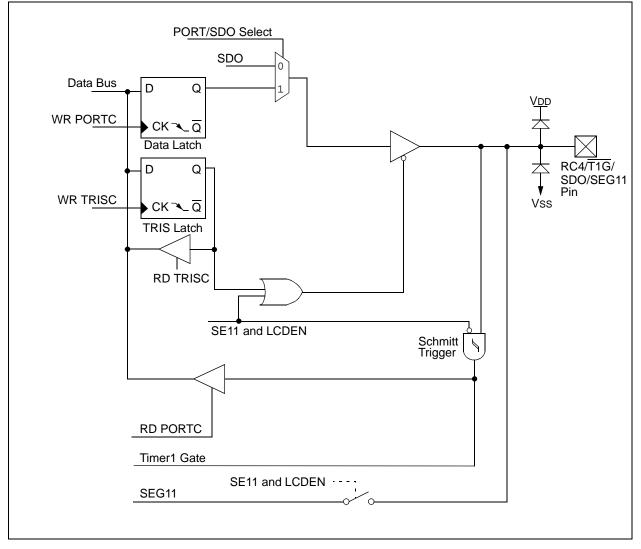
PIC16F917/916/914/913



3.4.1.4 RC3/SEG6

Figure 3-17 s hows t he diagram for th is pin . The RC3/SEG6 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

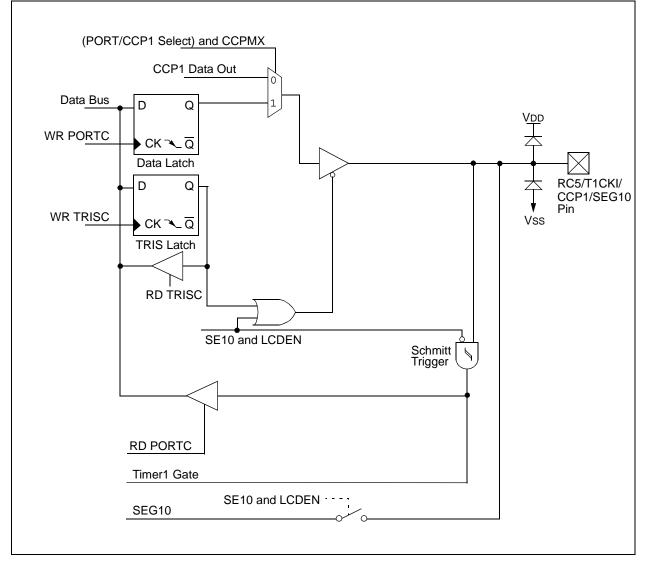


3.4.1.5 RC4/T1G/SDO/SEG11

Figure 3-18 shows the diagram for this pin. The RC4//T1G/SDO/SEG11pin is configurable to function as one of the following:

- a general purpose I/O
- a TMR1 gate input
- a serial data output
- an analog output for the LCD

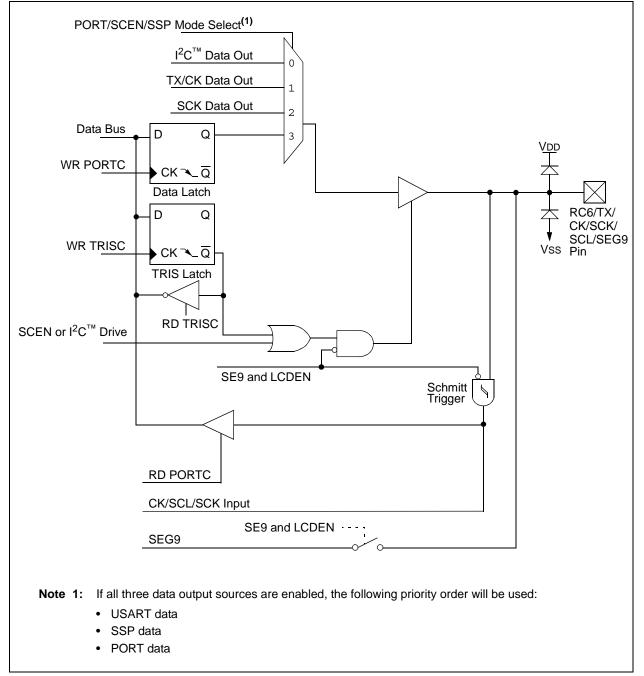
FIGURE 3-18: BLOCK DIAGRAM OF RC4/T1G/SD0/SEG11



3.4.1.6 RC5/T1CKI/CCP1/SEG10

Figure 3-19 s hows t he diagram for th is pin . The RC5/T1CKI/CCP1/SEG10 pi n is configurable to function as one of the following:

- a general purpose I/O
- •a TMR1 clock input
- a Capture input, Compare output or PWM output
- an analog output for the LCD

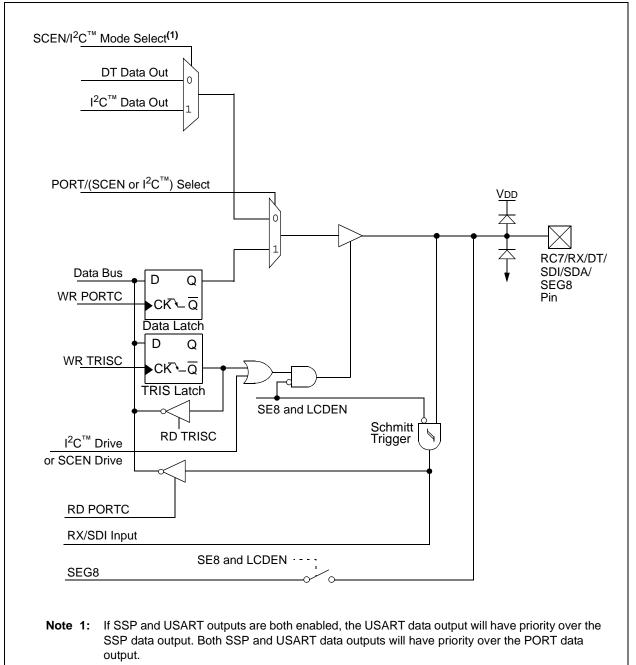


3.4.1.7 RC6/TX/CK/SCK/SCL/SEG9

Figure 3-20 s hows t he diagram for th is pin . The RC6/TX/CK/SCK/SCL/SEG9 p in i s configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial output
- a synchronous clock I/O
- a SPI clock I/O
- •a n ²C data I/O
- an analog output for the LCD

FIGURE 3-20: BLOCK DIAGRAM OF RC6/TX/CK/SCK/SCL/SEG9



3.4.1.8 RC7/RX/DT/SDI/SDA/SEG8

Figure 3-21 s hows t he diagram for th is pin . The RC7/RX/DT/SDI/SDA/SEG8 p in i s configurable to function as one of the following:

- a general purpose I/O
- an asynchronous serial input
- a synchronous serial data I/O
- a SPI data I/O
- •a n I²C data I/O
- an analog output for the LCD

FIGURE 3-21: BLOCK DIAGRAM OF RC7/RX/DT/SDI/SDA/SEG8

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets	
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu	
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu	
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000	
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000	
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x	
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111	
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011	
11Ch	LCDSE0 ⁽¹⁾	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	uuuu uuuu	
11Dh	LCDSE1 ⁽¹⁾	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	uuuu uuuu	

SUMMARY OF REGISTERS ASSOCIATED WITH PORTC **TABLE 3-3:**

x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC. This register is only initialized by a POR or BOR reset and is unchanged by other Resets. Legend: Note 1

1:

3.5 PORTD and TRISD Registers

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configured as an input or output.

PORTD is o nly a vailable on the PIC16F914 and PIC16F917.

Note: Analog lines that carry LCD signals (i.e., SEGx, COMy, where x and y are segment and common identifiers) are shown as direct connections to the de vice pins. The si gnals are out puts from the LC D module and may be tri-stated, depending on the configuration of the LCD module.

EXAMPLE 3-4: INITIALIZING PORTD

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTD	;Init PORTD
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	FFh	;Set RD<7:0> as inputs
MOVWF	TRISD	;
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

REGISTER 3-9: PORTD – PORTD REGISTER (ADDRESS: 08h)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RD0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 RD<7:0>: PORTD I/O Pin bits

1	= F	Port	pin	is	>Vih
0	= F	Port	pin	is	<vil< td=""></vil<>

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

REGISTER 3-10: TRISD – PORTD TRI-STATE REGISTER (ADDRESS: 88h)

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits

1 = PORTD pin configured as an input (tri-stated)

0 = PORTD pin configured as an output

Note: TRISD<7:6> always reads '1' in XT, HS and LP OSC modes.

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

3.5.1 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTD pin is multiplexed with other functions. The pins and their combined functions are bri efly described here. For specific information about i ndividual functions such as the comp arator or the A/D, refer to the appropriate section in this data sheet.

3.5.1.1 RD0/COM3

Figure 3-22 s hows t he diagram for th is pin . The RD0/COM3 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D

3.5.1.2 RD1

Figure 3-23 shows the diagram for this pin. The RD1 pin is configurable to function as one of the following:

• a general purpose I/O

3.5.1.3 RD2/CCP2

Figure 3-24 s hows t he diagram for th is pin . The RD2/CCP2 pin is configurable to function as one of the following:

- a general purpose I/O
- a Capture input, Compare output or PWM output

3.5.1.4 RD3/SEG16

Figure 3-25 s hows t he diagram for th is pin . The RD3/SEG16 pin is c onfigurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.5.1.5 RD4/SEG17

Figure 3-25 s hows t he diagram for th is pin . The RD4/SEG17 pin is c onfigurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

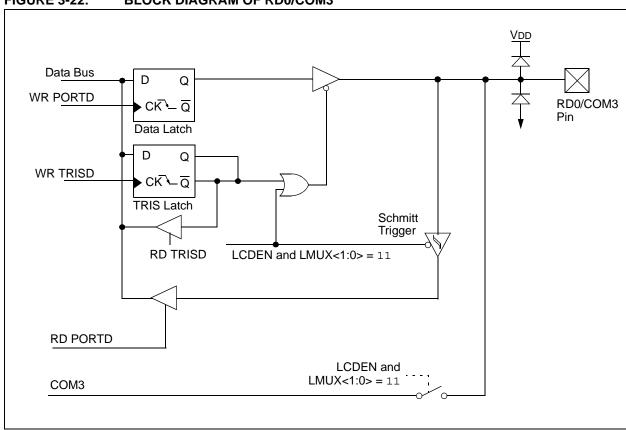
3.5.1.6 RD5/SEG18

Figure 3-25 s hows t he diagram for th is pin . The RD5/SEG18 pin is c onfigurable to function as one of the following:

- a general purpose I/O
- an analog output for the LCD

3.5.1.7 RD6/SEG19

Figure 3-25 s hows t he d iagram for thi s pin. The RD6/SEG19 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog output for the LCD

3.5.1.8 RD7/SEG20

Figure 3-25 s hows t he d iagram for thi s pin. The RD7/SEG20 pin is configurable to function as one of the following:


- a general purpose I/O
- an analog output for the LCD

PIC16F917/916/914/913

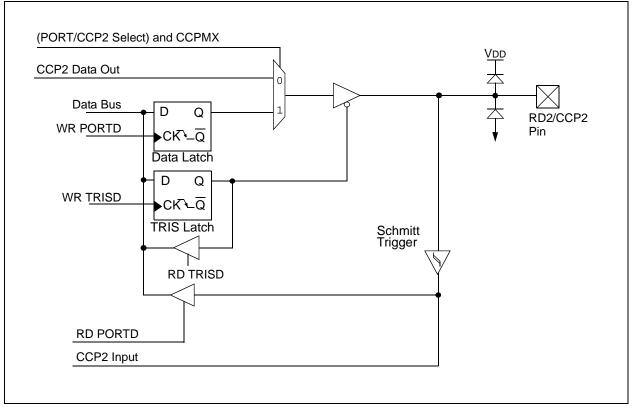
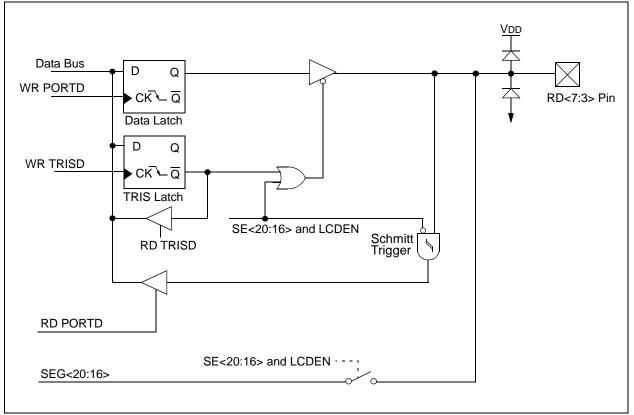


FIGURE 3-22: BLOCK DIAGRAM OF RD0/COM3



Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
1Dh ⁽²⁾	CCP2CON	—	-	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000
88h	TRISD ⁽²⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	1111 1111
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
11Eh	LCDSE2 ^(1,2)	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	uuuu uuuu

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTD

x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC. This register is only initialized by a POR or BOR reset and is unchanged by other Resets. Legend:

Note 1:

PIC16F914/917 only. 2:

3.6 **PORTE and TRISE Registers**

PORTE is a 4-bit port with Schmitt Trigger input buffers. RE<2:0> are individually configured as inputs or outputs. RE3 is only available as an input if MCLRE is '0' in Configuration Word (Register 16-1).

RE<2:0> are only a vailable on the PIC 16F914 and PIC16F917.

Note: Analog lines that carry LCD signals (i.e., SEGx, where x are segment identifiers) are s hown as direct connections to the device pins. The signals are outputs from th e LC D module and may be tri-stated, depending on the configuration of the LCD module.

EXAMPLE 3-5: INITIALIZING PORTE

BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;
CLRF	PORTE	;Init PORTE
BSF	STATUS, RPO	;Bank 1
BCF	STATUS, RP1	;
MOVLW	0Fh	;Set RE<3:0> as inputs
MOVWF	TRISE	;
CLRF	ANSEL	;Make RE<2:0> as I/O's
BCF	STATUS, RPO	;Bank 0
BCF	STATUS, RP1	;

REGISTER 3-11: PORTE – PORTE REGISTER (ADDRESS: 09h)

	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x		
				_	RE3	RE2	RE1	RE0		
	bit 7							bit 0		
bit 7-4	Unimplem	ented: Read	d as '0'							
bit 3-0	RE<3:0>: PORTE I/O Pin bits									
	1 = Port pin is >VIH 0 = Port pin is <vil< td=""></vil<>									
	Legend:									
	R = Readal	R = Readable bit		W = Writable bit		U = Unimplemented		'0'		
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	Inknown		
R 3-12:	TRISE – P		STATE RE	EGISTER (ADDRESS	5: 89h)				
	U-0	U-0	U-0	U-0	R-1	R/W-1	R/W-1	R/W-1		

REGISTER 3-1

U-0	U-0	U-0	U-0	R-1	R/W-1	R/W-1	R/W-1
_	—	—	—	TRISE3	TRISE2	TRISE1	TRISE0
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 TRISE3: Data Direction bit. RE3 is always an input, so this bit always reads as a '1'
- bit 2-0 TRISE<2:0>: Data Direction bits

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.6.1 PIN DESCRIPTIONS AND DIAGRAMS

Each PORTE pin is multiplexed with other functions. The pins and their combined functions are briefly described here. For specific information about individual functions such as the comp arator or the A/D, re fer to the appropriate section in this data sheet

3.6.1.1 RE0/AN5/SEG21

Figure 3-26 s hows t he diagram for th is pin . The RE0/AN5/SEG21pin is configurable to function as one of the following:

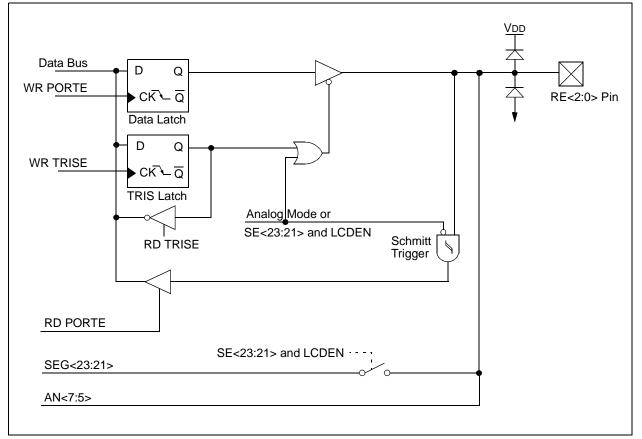
- a general purpose I/O
- an analog input for the A/D
- an analog output for the LCD

3.6.1.2 RE1/AN6/SEG22

Figure 3-26 s hows t he diagram for th is pin . The RE1/AN6/SEG22 pin is configurable to function as one of the following:

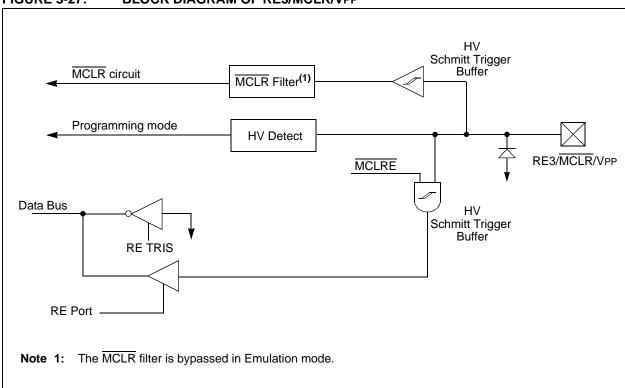
- a general purpose I/O
- an analog input for the A/D
- an analog output for the LCD

3.6.1.3 RE2/AN7/SEG23


Figure 3-26 s hows t he d iagram fo r thi s pin. Th e RE2/AN7/SEG23 pin is configurable to function as one of the following:

- a general purpose I/O
- an analog input for the A/D
- an analog output for the LCD

3.6.1.4 RE3/MCLR/VPP


Figure 3-27 s hows t he diagram for this pin. The RE3/MCLR/VPP pin is configurable to function as one of the following:

- · a digital input only
- · as Master Clear Reset with weak pull-up
- a programming voltage reference input

FIGURE 3-26: BLOCK DIAGRAM OF RE<2:0>

PIC16F917/916/914/913

BLOCK DIAGRAM OF RE3/MCLR/VPP **FIGURE 3-27:**

TABLE 3-5: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
09h	PORTE	_		_	_	RE3	RE2	RE1	RE0	xxxx	uuuu
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
89h	TRISE			_	_	TRISE3 ⁽³⁾	TRISE2(2)	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾	1111	1111
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
11Eh	LCDSE2 ^(1,2)	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	uuuu uuuu

Legend: Note 1 x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

1: This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

PIC16F914/917 only. 2:

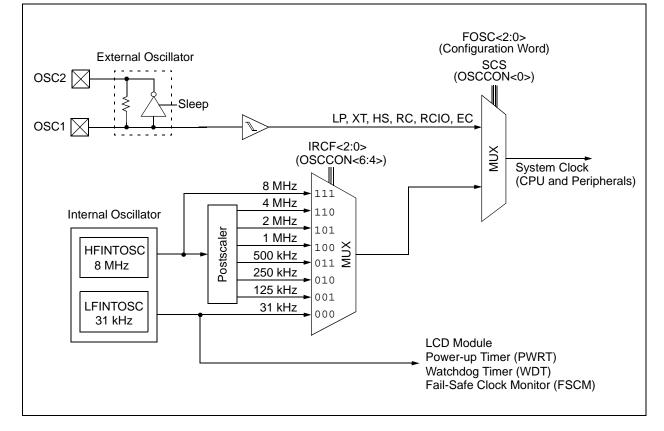
Bit is read-only; TRISE = 1 always. 3:

NOTES:

4.0 CLOCK SOURCES

4.1 Overview

The PIC16F917/916/914/913 has a wide variety of clock sources and selection features to allow it to be used in a wide range of applications while maximizing performance a nd mi nimizing po wer consumption. Figure 4-1 i llustrates a block d iagram o f th e PIC16F917/916/914/913 clock sources.


Clock sources can be configured from external oscillators, quartz crystal reso nators, c eramic reson ators, and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be configured from one of two internal oscillators, w ith a choice o f speeds se lectable via software. Additional clock features include:

- Selectable system clock source between external or internal via software.
- Two-Speed Clock Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, EC or RC modes) and switch to the Internal Oscillator.

The PIC16F917/916/914/913 can be configured in one of eight clock modes.

- 1. EC External clock with I/O on RA6.
- 2. LP L ow-gain C rystal or C eramic Resonator Oscillator mode.
- 3. XT Medium-gain Crystal or Ceramic Resonator Oscillator mode.
- 4. HS H igh-gain C rystal or C eramic R esonator mode.
- 5. RC Ex ternal R esistor-Capacitor (R C) w ith Fosc/4 output on RA6.
- RCIO External Resistor-Capacitor with I/O on RA6.
- 7. INTOSC Internal oscillator with Fosc/4 output on RA6 and I/O on RA7.
- 8. INTOSCIO Internal oscillator with I/O on RA6 and RA7.

Clock source modes are configured by the FOSC<2:0> bits in t he C onfiguration W ord re gister (se e **Section 16.0 "Special Features of the C PU"**). The internal clock can be generated by two oscillators. The HFINTOSC is a hig h-frequency c alibrated o scillator. The LFIN TOSC is a low -frequency un calibrated oscillator.

FIGURE 4-1: PIC16F917/916/914/913 SYSTEM CLOCK BLOCK DIAGRAM

	U-0 R/ W-1	R/W-1	R/W-0 R-		R-0	R-0 R/W	-0
	— IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HTS	LTS	SCS
	bit 7						bit 0
	Unimplemented: Read	d as '0'					
	IRCF<2:0>: Internal Os	scillator Frequ	ency Sele	ct bits			
	000 = 3 1 kHz						
	001 =1 25 kHz 010 =2 50 kHz						
	010 = 2 00 kHz						
	100 =1 MHz						
	101 = 2 MHz						
	110 =4 MHz 111 =8 MHz						
	OSTS: Oscillator Start-	up Time-out S	tatus bit				
	1 = Device is running f	•		clock define	ed by FOSC	C<2:0>	
	0 = Device is running f		•		•		
	HTS: HFINTOSC (High	Frequency –	8 MHz to	125 kHz) Sta	atus bit		
	1 =H FINTOSC is stab						
	0 = HFINTOSC is not s						
bit 1 LTS: LFINTOSC (Low Frequency – 31 kHz) Stable bit							
	 1 = LFINTOSC is stable 0 = LFINTOSC is not stable 						
	SCS: System Clock Se						
	1 = Internal oscillator is		tem clock				
	0 = Clock source defin	ed by FOSC<	2:0>				
	on a device	of the OSTS to on Word (CON Power-on Res peed Start-up	NFIG) of th set (POR)	ne device. The or any autor	ne value of natic clock s	the OSTS bit witch, which	will be '0' may occur
	true:	¢.					
	OSTS = 0 i FOSC<2:05	r: > = 000 (LP) o	r 001 (XT)	or 010 (HS)		
	and	= 000 (Li) 0	1 001 (71))		
		r FSCM = 1					
	•	be enabled au	•		,		
		e above condi ' OR. S ee S					
		"Fail-Safe C		-		•	
	Lagandi						
	Legend: R = Readable bit	W = Writ	able hit	II – I Inim	nlemented	bit, read as '0)'

Legend:								
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'					
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
q = value depends on condition								

4.2 Clock Source Modes

Clock source modes can be classified as external or internal.

- External clock modes rely on external circuitry for the clock source. Examples are oscillator modules (EC mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes), and Resistor-Capacitor (RC mode) circuits.
- Internal clock sources are contained internally within the PIC16F917/916/914/913. The PIC16F917/916/914/913 has two internal oscillators: the 8 MHz High-Frequency Internal Oscillator (HFINTOSC) and 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit (see **Section 4.5 "Clock Switching"**).

4.3 External Clock Modes

4.3.1 OSCILLATOR START-UP TIMER (OST)

If the PIC16F917/916/914/913 is configured for LP, XT or H S mo des, the Os cillator S tart-up T imer (OST) counts 1024 oscillations from the OSC1 pin, following a Power-on Res et (POR), and the Power-up T imer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable s ystem clock t o th e PIC16F917/916/914/913. When s witching b etween clock sources a delay is required to allow the new clock to st abilize. Th ese os cillator de lays are s hown in Table 4-1.

4.3.1.1 Special Case

An exception to this is when the device is put to Sleep while the following conditions are true:

- LP is the selected primary oscillator mode.
- T1OSCEN = 1 (Timer1 oscillator is enabled).
- •S CS = 0 (oscillator mode is defined by FOSC<2:0>).
- OSTS = 1 (device is running from primary system clock).

For this case, the OST is not necessary after a wake-up from Sleep, since Timer1 continues to run during Sleep and u ses th e s ame LP o scillator c ircuit as its cl ock source. For these devices, this case is ty pically seen when the LCD module is running during Sleep.

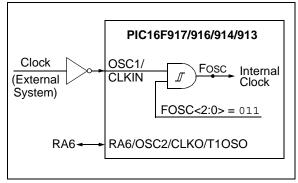
In applications where the OSCTUNE register is used to shift the FINTOSC frequency, the application should not expect the FINTOSC frequency to stabilize immediately. In this case, the frequency may shift gradually toward the new value. The time for this frequency shift is less than eight cycles of the base frequency.

Note:	When the OST is invoked, the WDOG is
	held in Reset, because the WDOG ripple
	counter is used by the OST to perform the
	oscillator delay cou nt. Wh en the OST
	count has expired, the WDOG will begin
	counting (if enabled).

Table 4-1 shows examples where the oscillator delay is invoked.

In order to minimize latency between external oscillator start-up an d cod e ex ecution, th e T wo-Speed Clock Start-up mo de can be selected (se e **Section 4.6 "Two-Speed Clock Start-up Mode"**).

TADLE 4-1.	USCILLATOR DELATERAINFLES							
System Clock Source	Frequency	Switching From	Oscillator Delay (Тоsт)	Comments				
LFIOSC	31 kHz	Sleep	10 μs internal delay	Following a wake-up from Sleep mode or POR, an internal delay is invoked to allow the memory bias to stabilize before program execution can begin.				
HFIOSC	125 kHz-8 MHz	Hz-8 MHz Sleep 10 μs internal delay Following a wake-up from or POR, an internal delay allow the memory bias to		Following a wake-up from Sleep mode or POR, an internal delay is invoked to allow the memory bias to stabilize before program execution can begin.				
XT or HS	4-20 MHz	INTOSC or Sleep	1024 clock cycles	Following a change from INTOSC, an OST of 1024 cycles must occur.				
LP	32 kHz	INTOSC or Sleep	1024 clock cycles	Following a change from INTOSC, an OST of 1024 cycles must occur. See Section 4.3.1.1 "Special Case" for special case conditions.				
LP with T1OSC enabled	32 kHz	Sleep	10 μs internal delay	Following a wake-up from Sleep mode, an internal delay is invoked to allow the memory bias to stabilize before program execution can begin. See Section 4.3.1.1 "Special Case" for details about this special case.				
EC, RC	0-20 MHz	Sleep	10 μs internal delay	Following a wake-up from Sleep mode or POR, an internal delay is invoked to allow the memory bias to stabilize before program execution can begin.				
EC, RC	0-20 MHz	LFIOSC	10 μs internal delay	Following a switch from a LFIOSC or POR, an internal delay is invoked to allow the memory bias to stabilize before program execution can begin.				


TABLE 4-1: OSCILLATOR DELAY EXAMPLES

4.3.2 EC MODE

The External C lock (EC) m ode al lows a n externally generated I ogic le vel as the s ystem clock source. When operating in this mode, an external clock source is c onnected to the OSC1 pin a nd the R A6 p in i s available for general purpose I/O. Figure 4-2 shows the pin connections for EC mode.

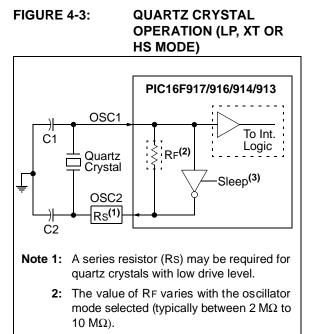
The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Pow er-on Reset (POR) or w ake-up from Sleep. B ecause t he P IC16F917/916/914/913 design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data i ntact. U pon r estarting t he e xternal c lock, t he device will resume operation as if no time had elapsed.

FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION

4.3.3 LP, XT, HS MODES

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to the OSC1 and OSC2 pins (Figures 4-3 and 4-4). The mode selects a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

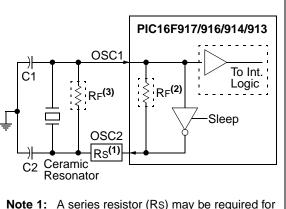
LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is best suited to drive resonators with a low drive level specification, for example, tuning fork type crystals.


Note:	In the past, the sources for the LP oscilla- tor and Timer1 oscillator have been sepa- rate circuits. In this family of devices, the LP oscillator and Timer1 oscillator use the same os cillator ci rcuitry. When us ing a device configured for the LP oscillator and with T1 OSCEN = 1, th e s ource of th e clock for ea ch function comes from the
	clock for ea ch fun ction comes from the same oscillator block.

XT Oscillator mo de se lects the in termediate gain setting of the internal inv erter-amplifier. XT mode current consumption is the medium of the three modes. This mo de is be st suited to d rive re sonators with a medium d rive I evel specification, fo r ex ample, low-frequency/AT-cut quartz crystal resonators.

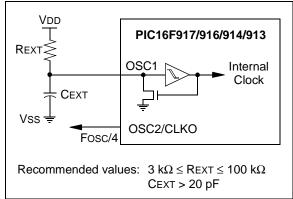
HS Oscillator mode selects the highest gain setting of the int ernal in verter-amplifier. HS m ode c urrent consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive se tting, fo r example, hi gh-frequency/AT-cut quartz crystal resonators or ceramic resonators.

Figures 4-3 a nd 4-4 s how ty pical ci rcuits for q uartz crystal and ceramic resonators, respectively.


PIC16F917/916/914/913

- **3:** If using LP mode and T1OSC in enable, the LP oscillator will continue to run during Sleep.
- Note 1: Quartz cr ystal ch aracteristics v ary according to type, package and manufacturer. Th e u ser s hould c onsult th e manufacturer da ta s heets for sp ecifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.

OPERATION (XT OR HS MODE)


- Note 1: A series resistor (Rs) may be required for ceramic resonators with low drive level.
 - 2: The value of RF varies with the oscillator mode selected (typically between 2 M Ω to 10 M Ω).
 - An additional parallel feedback resistor (RP) may be required for proper ceramic resonator operation (typical value 1 MΩ).

4.3.4 EXTERNAL RC MODES

The External Resistor-Capacitor (RC) modes support the u se of an external R C c ircuit. T his al lows th e designer maximum flexibility in frequency choice while keeping costs to a minimum when clock accuracy is not required. There are two modes, RC and RCIO.

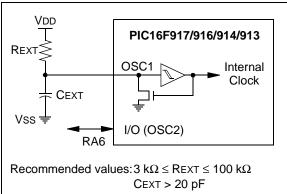

In RC mode, the RC circuit connects to the OSC1 pin. The OS C2/CLKO pi n o utputs t he R C o scillator frequency divided by 4. This signal may be used to provide a clock for external circuitry, synchronization, calibration, t est or othe r ap plication req uirements. Figure 4-5 shows the RC mode connections.

FIGURE 4-5: RC MODE

In RCIO mode, the RC circuit is connected to theOSC1 pin. The O SC2 pin becomes an add itional ge neral purpose I/O pin. The I/O pin becomes bit 4 of PORTA (RA4). Figure 4-6 shows the RCIO mode connections.

FIGURE 4-6: RCIO MODE

The RC oscillator frequency is a function of the supply voltage, the res istor (REXT) and c apacitor (C EXT) values and the op erating tem perature. In addition to this, the oscillator frequency will vary from unit to unit due to normal th reshold vo Itage. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency or for low CEXT values. The user also needs to take into account variation due to tolerance of external RC components used.

4.4 Internal Clock Modes

The PIC 16F917/916/914/913 has two in dependent, internal oscillators that can be configured or selected as the system clock source.

- The HFINTOSC (H igh-Frequency Int ernal Oscillator) is factory calibrated and operates at 8 MHz. The frequency of the HFINTOSC can be user adjusted ±12% vi a softw are us ing the OSCTUNE register (Register 4-2).
- 2. The **LFINTOSC** (Lo w-Frequency Int ernal Oscillator) is uncalibrated and operates at approximately 31 kHz.

The system clock speed can be selected via software using the Internal Oscillator Frequency Select (IRCF) bits.

The system clock can be selected between external or internal clock sources via the System Clock Selection (SCS) bit (see **Section 4.5 "Clock Switching**").

4.4.1 INTOSC AND INTOSCIO MODES

The IN TOSC and IN TOSCIO modes c onfigure the internal oscillators as the system clock source when the device is program med using the O scillator Selection (FOSC) bits in the C onfiguration W ord register (Register 16-1).

In **INTOSC** mode, the OSC1 pin is available for general purpose I/O. The OSC2/CLKO pin outputs the selected internal oscillator frequency divided by 4. Th e CLKO signal may be used to provide a c lock for external circuitry, sy nchronization, ca libration, test or oth er application requirements.

In **INTOSCIO** mode, the OSC1 and OSC2 pins are available for general purpose I/O.

4.4.2 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 8 MHz internal clock source. The frequency of t he HFINTOSC c an be al tered approximately $\pm 12\%$ via software using the OSCTUNE register (Register 4-2).

The output of the HFINTOSC connects to a postscaler and m ultiplexer (see Fi gure 4-1). O ne of se ven frequencies can be s elected vi a so ftware using th e IRCF bits (see **Section 4.4.4 "Frequency Select Bits** (**IRCF**)").

The HFINTOSC is enabled by selecting any frequency between 8 MHz and 1 25 kHz (IRCF \neq 000) as the System Clock Source (SCS = 1), or when Two-Speed Start-up is enabled (IESO = 1 and IRCF \neq 000).

The H F In ternal O scillator (H TS) bit (O SCCON<2>) indicates whether the HFINTOSC is stable or not.

4.4.2.1 OSCTUNE Register

bit 7-5 bit 4-0

The H FINTOSC is fac tory ca librated b ut c an b e adjusted i n software b y wri ting to the OSCTUNE register (Register 4-2).

The OSCTUNE register has a tuning range of $\pm 12\%$. The default value of the OSCTUNE register is '0'. The value is a 5-b it tw o's complement num ber. Due to process variation, the monotonicity and frequency step cannot be specified. When the QSCTUNE register ismodified, theHFINTOSC frequency will begin shifting to the new frequency. The HFINTOSC clock w ill st abilize within 1 ms. C ode execution cont inues d uring this shift. The re is no indication that the shifthas occurred.

OSCTUNE does not affect the LFIN TOSC frequency. Operation of features that dep end on the LFIN TOSC clock source frequency, such as the Power-up Timer (PWRT), W atchdog Timer (WD T), Fai I-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

REGISTER 4-2: OSCTUNE – OSCILLATOR TUNING RESISTOR (ADDRESS: 90h)

U-0	U-0	U-0	R/W-0 R/\	N -0 R/	W -0 R/	W -0	R/W-0
	—	—	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7			· · · · ·				bit 0
Unimplem	ented: Rea	d as '0'					
TUN<4:0>	: Frequency	Tuning bits					
	laximum fre	•					
01110 =							
•							
•							
•							
00001 =							
	enter freque	ency. Oscilla	tor module is	running at	the calibrate	ed frequency	y.
11111 =							
•							
•							
•							
10000 = N	linimum freq	luency					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.4.3 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated (approximate) 31 kHz i nternal c lock source.

The output of the LFINTOSC connects to a postscaler and m ultiplexer (s ee Fi gure 4-1). 31 kHz can be selected vi a so ftware using the IRCF bi ts (se e **Section 4.4.4 "Frequency Select Bits (IRCF)"**). The LFINTOSC is al so the fr equency f or the Pow er-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The L FINTOSC is enabled by selecting 31 kHz (IRCF = 000) as the System Clock Source (SCS = 1), or when any of the following are enabled:

- Two-Speed Start-up (IESO = 1 and IRCF = 000)
- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)
- Selected as LCD module clock source

The LF Internal Oscillator (LTS) b it (OSCCO N<1>) indicates whether the LFINTOSC is stable or not.

4.4.4 FREQUENCY SELECT BITS (IRCF)

The outp ut of the 8 MHz H FINTOSC and 31 kHz LFINTOSC connect to a post scaler and multiplexer (see Figure 4-1). The Internal Os cillator Fre quency select bits, IRCF<2:0> (OSCCON<6:4>), se lect the frequency output of the internal oscillators. One of eight frequencies can be selected via software:

•8 MHz

- 4 MHz (Default after Reset)
- •2 MHz
- •1 MHz
- 500 kHz
- 250 kHz
- 125 kHz
- •3 1 kHz

Note: Following any Reset, the IRCF bits are set to '110' and the frequency selection is set to 4 MHz. The user can modify the IRCF bits to select a different frequency.

4.4.5 HF AND LF INTOSC CLOCK SWITCH TIMING

When sw itching be tween the LFI NTOSC and the HFINTOSC, the new os cillator may already be shut down to save power. If this is the case, there is a 10 μ s delay af ter th e IR CF bits a re mo dified bef ore th e frequency selection takes place. The LTS/HTS bits will reflect the current active status of the LFINTOSC and the HFINTOSC oscillators. The timing of a fre quency selection is as follows:

- 1. IRCF bits are modified.
- 2. If the new clock is shut do wn, a 10 μ s clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. CLKO is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. CLKO is now connected with the n ew clock. HTS/LTS bits are updated as required.
- 6. Clock switch is complete.

If the i nternal os cillator s peed s elected is be tween 8 MHz and 125 kHz, there is no start-up delay before the new frequency is selected. This is because the old and the new freq uencies are derived from the HFINTOSC via the postscaler and multiplexer.

4.5 Clock Switching

The s ystem clock so urce c an be sw itched b etween external and internal clock sources via software using the System Clock Select (SCS) bit.

4.5.1 SYSTEM CLOCK SELECT (SCS) BIT

The Sy stem Clock Select (SCS) bit (OSCC ON<0>) selects the sy stem clock source that is u sed for the CPU and peripherals.

- When SCS = 0, the system clock source is determined by configuration of the FOSC<2:0> bits in the Configuration Word register (CONFIG).
- When SCS = 1, the system clock source is chosen by the internal oscillator frequency selected by the IRCF bits. After a Reset, SCS is always cleared.
 - Note: Any a utomatic cl ock s witch, w hich may occur from T wo-Speed S tart-up or Fail-Safe Clock Monitor, does not update the SC S bit. Th e u ser c an monitor th e OSTS (O SCCON<3>) to det ermine the current system clock source.

4.5.2 OSCILLATOR START-UP TIME-OUT STATUS BIT

The O scillator S tart-up T ime-out S tatus (O STS) b it (OSCCON<3>) indicates whether the system clock is running from the external clock source, as defined by the FO SC bits, or from the internal clock source. In particular, OSTS indicates that the Oscillator Start-up Timer (OST) has timed out for LP, XT or HS modes.

4.6 Two-Speed Clock Start-up Mode

Two-Speed Start-up mo de provides additional po wer savings b y m inimizing the la tency bet ween ext ernal oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up w ill rem ove the external os cillator s tart-up time from the time spent awake and can red uce the overall power consumption of the device.

This m ode al lows the application to wake-up from Sleep, p erform a few instructions using the INTOSC as the c lock s ource and go back to SI eep w ithout waiting for the primary oscillator to become stable.

Note: Executing a SLEEP instruction will abort the oscillator start-up time and will cause the O STS bit (OSC CON<3>) to rem ain clear.

When the PIC16F917/916/914/913 is configured for LP, XT or HS modes, the O scillator S tart-up T imer (OST) is enabled (see Section 4.3.1 "Oscillator Start-up Timer (OST)"). The OST timer will suspend program execution until 1024 oscillations are counted. Two-Speed Start-up mode minimizes the delay in code execution by operating from the internal oscillator as the OST is counting. When the OST count reac hes 1024 and the OSTS bit (OSCCON<3>) is set, program execution switches to the external oscillator.

4.6.1 TWO-SPEED START-UP MODE CONFIGURATION

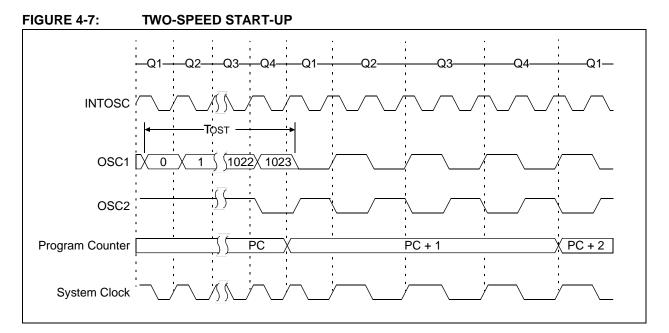
Two-Speed S tart-up m ode is configured by the following settings:

- IESO = 1 (CONFIG<10>) Internal/External Switchover bit.
- •S CS = 0.
- FOSC configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after PWRT has expired, or
- Wake-up from Sleep.

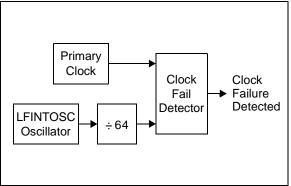
If the external clock oscillator is configured to be anything other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.


4.6.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions b egin e xecution by the int ernal oscillator at the frequency set in the IRCF bits (OSCCON<6:4>).
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed ou t, wait fo r fa lling ed ge of th e internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System cl ock is sw itched to ex ternal cl ock source.

4.6.3 CHECKING EXTERNAL/INTERNAL CLOCK STATUS

Checking the state of the OSTS bit (OSCCON<3>) will confirm if the PIC16F917/916/914/913 is running from the external clock source as defined by the FOSC bits in the C onfiguration W ord (C ONFIG) or the internal oscillator.


PIC16F917/916/914/913

4.7 Fail-Safe Clock Monitor

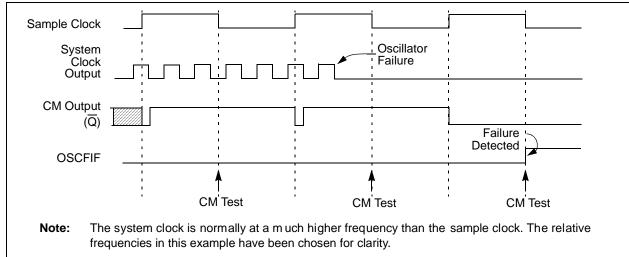
The Fa il-Safe C lock M onitor (FSC M) is designed to allow the device to continue to operate in the event of an os cillator f ailure. The FS CM can detect oscillator failure at any point after the device has exited a Reset or Sle ep c ondition and the O scillator S tart-up T imer (OST) has expired.

FIGURE 4-8: FSCM BLOCK DIAGRAM

The FSCM function is enabled by setting the FCMEN bit in the Configuration Word (CONFIG). It is applicable to all external clock options (LP, XT, HS, EC or RC modes).

In the event of an external clock failure, the FSCM will set the OSFIF bit (PIR2<7>) and generate an oscillator fail in terrupt if the OSFIE bit (PI E2<7>) is set. The device will then switch the system clock to the internal oscillator. The system clock will continue to come from the internal oscillator unless the external clock recovers and the Fail-Safe condition is exited. The frequency of the internal oscillator will depend upon the value contained in the IRCF bits (OSCCON<6:4>). Upon entering the Fail-Safe condition, the OSTS bit (OSCCON<3>) is automa tically cleared to reflect that the internal oscillator is active and the WDT is cleared. The SCS bit (OSC CON<0>) is not updated. Enabling FSCM does not affect the LTS bit.

The FSCM sample clock is generated by dividing the INTOSC clock by 64. Th is will a llow en ough time between FSCM sample clocks for a system clock edge to occur. Figure 4-8 shows the FSCM block diagram.


On the rising edge of the sample clock, a monitoring latch (CM = 0) will be cleared. On a falling edge of the primary system clock, the monitoring latch will be set (CM = 1). In the event that a falling edge of the sample clock occurs, and the monitoring latch is not set, a clock failure ha s bee n det ected. The as signed int ernal oscillator is e nabled w hen FSCM is en abled a s reflected by the IRCF.

Note 1:	Two-Speed S tart-up is a utomatically enabled when the Fail-Safe Clock Monitor mode is enabled.
2:	Primary clocks with a frequency $\leq \sim$ 488 Hz will be considered failed by the FSCM. A slow starting os cillator ca n ca use an FSCM interrupt.

4.7.1 FAIL-SAFE CONDITION CLEARING

The Fail-Safe condition is cleared after a Reset, the execution of a SLEEP instruction, or a modification of the SCS bit. While in Fa il-Safe condition, the PIC16F91X uses the internal oscillator as the system without exiting the Fail-Safe condition.

The F ail-Safe c ondition must be cleared b efore the OSFIF flag can be cleared.

4.7.2 RESET OR WAKE-UP FROM SLEEP

The FSC M is designed to d etect o scillator failure at any point after the device has exited a Reset or Sleep condition and the Oscillator Start-up Timer (OST) has expired. If the external clock is EC or R C mode, monitoring w ill be gin im mediately following these events.

For LP, XT o r H S mo de the e xternal os cillator may require a s tart-up t ime considerably l onger th an th e FSCM sample clock time, a false clock failure may be detected (see Figure 4-9). To prevent this, the internal oscillator i s automatically c onfigured as the s ystem clock and functions until the external clock is stable (the O ST has timed ou t). Thi s is ide ntical to Two-Speed S tart-up m ode. Once th e ext ernal oscillator is stable, the LFINTOSC returns to its role as the FSCM source. Note: Due to the wide range of oscillator start-up times, the Fail-Safe cir cuit is not ac tive during oscillator start-up (i.e., after exiting Reset o r Sle ep). After a n ap propriate amount of time, the user should check the OSTS b it (OSCCON<3>) to ve rify th e oscillator st art-up an d sy stem cl ock switchover has successfully completed.

TABLE 4-2:	SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES
IADLL 4-2.	SUMMART OF REGISTERS ASSOCIATED WITH GEOCR SOURCES

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
8Fh	OSCCON	_	IRCF2	IRCF1	IRCF0	OSTS ⁽²⁾	HTS	LTS	SCS	-110 q000	-110 x000
90h	OSCTUNE			_	TUN4	TUN3	TUN2	TUN1	TUN0	0 0000	u uuuu
2007h ⁽¹⁾	CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0	—	—

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: See Register 16-1 for operation of all Configuration Word bits.

2: See Register 4-1 for details.

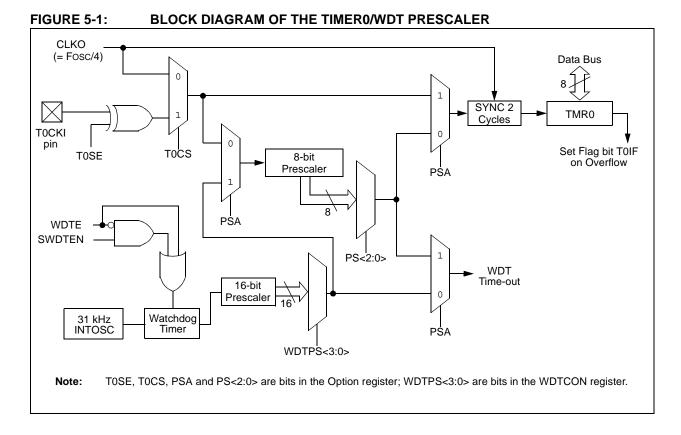
5.0 TIMER0 MODULE

The T imer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Note:	Additional i nformation on the T imer0						
	module is a vailable in the " PICmicro®						
	Mid-Range MC U Fa mily R eferend						
	Manual" (DS33023).						


5.1 Timer0 Operation

Timer mode is sel ected by clearing the TOC S bit (OPTION_REG<5>). In T imer m ode, the T imer0 module will increment every instruction cycle (without prescaler). If TMR0 is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register. Counter mode is selec ted by setting the T0CS bit (OPTION_REG<5>). In this mode, the T imer0 module will increment either on every rising or fallingedge of pin RA4/C1OUT/T0CKI/SEG4. The incrementing edge is determined by the source edge (T0SE) con trol bit (OPTION_REG<4>). Clearing the T0SE bit selects the rising edge.

Note:	Counter mode has specific external clock requirements. Additional in formation on								
	these re quirements is available in the								
	"PICmicro [®] Mid-Range MCU Family								
	Reference Manual' (DS33023).								

5.2 Timer0 Interrupt

A T imer0 interrupt is gen erated w hen the TM R0 register timer/counter overflows from FFh to 00h. This overflow sets the T0IF bit (INTCON<2>). The interrupt can be masked by clearing the T0IE bit (INTCON<5>). The T0IF bit must be cleared in software by the Timer0 module Interrupt Se rvice Routine b efore re-e nabling this in terrupt. The T imer0 in terrupt c annot wake th e processor from Sleep, since the timer is shut off during Sleep.

© 2005 Microchip Technology Inc.

5.3 Using Timer0 with an External Clock

When no pescaler is used, the external clock input is the same as the prescaler output. The syn chronization of TOCKI, with the internal phaseclocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for TOCKI to be highfor at least 2TOSC (and asmall RC delay of 20 ns) and lowfor at least2 TOSC (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1					
	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0					
	bit 7							bit (
7	RBPU: PORTB Pull-up Enable bit 1 = PORTB pull-ups are disabled 0 = PORTB pull-ups are enabled by individual port latch values in WPUA register												
6	1 = Interru	 INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT/SEG0 pin 0 = Interrupt on falling edge of RB0/INT/SEG0 pin 											
5	1 = Transit	TOCS: TMR0 Clock Source Select bit 1 = Transition on RA4/C1OUT/T0CKI/SEG4 pin 0 = Internal instruction cycle clock (CLKO)											
4	1 = Increm	TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on RA4/C1OUT/T0CKI/SEG4 pin 0 = Increment on low-to-high transition on RA4/C1OUT/T0CKI/SEG4 pin											
3	1 = Presca		ned to the V	/DT imer0 modul	Э								
2-0	PS<2:0>:	Prescaler F	Rate Select b	oits									
		Bit Value	TMR0 Rate	WDT Rate ⁽¹)								
	-	000 001 010 011 100 101 110 111	1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128									

REGISTER 5-1: OPTION_REG – OPTION REGISTER (ADDRESS: 81h OR 181h)

Note 1: A dedicated 16-bit WDT postscaler is available for the PIC16F917/916/914/913. See **Section 16.6 "Watchdog Timer (WDT)"** for more information.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

5.4 Prescaler

An 8-bit co unter is available as a pre scaler for the Timer0 module, or as a postscaler for the Watchdog Timer. For simplicity, this counter will be referred to as "prescaler" throughout this data sheet. The prescaler assignment is controlled in software by the control bit PSA (O PTION_REG<3>). Clearing the PSA bit will assign the prescaler to Timer0. Pre scale v alues a re selectable via the PS<2:0> bits (OPTION_REG<2:0>).

The pre scaler is not tread able or writable. When assigned to the Timer0 module, all instructions writing to the TM R0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT in struction will clear the prescaler along with the Watchdog Timer.

5.4.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can b e cha nged "on -the-fly" du ring pro gram execution). To avoid an un intended device Reset, the following inst ruction se quence (Example 5-1 an d Example 5-2) must b e execu ted w hen cha nging the prescaler assignment from Timer0 to WDT.

EXAMPLE 5-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

		/
BCF CLRWDT	STATUS, RPO	;Bank 0 ;Clear WDT
CLRF	TMR0	;Clear TMR0 and ; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'00101111'	;Required if desired
MOVWF	OPTION_REG	; PS2:PS0 is
CLRWDT		; 000 or 001 ;
MOVLW	b'00101xxx'	;Set postscaler to
MOVWF	OPTION_REG	; desired WDT rate
BCF	STATUS, RPO	;Bank 0

To change prescaler from the WD T to the TM R0 module, use the sequence shown in Example 5-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 5-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

CLRWDT		;Clear WDT and ; prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	b'xxxx0xxx'	;Select TMR0, ; prescale, and ; clock source
MOVWF BCF	OPTION_REG STATUS,RP0	; ;Bank 0

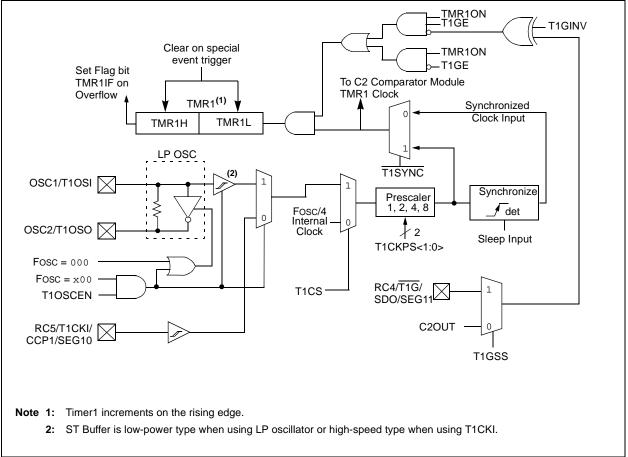
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
01h	TMR0	Timer0 M	odule Regi	ster						XXXX XXXX	uuuu uuuu
0Bh/10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Legend: -= Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the Timer0 module.

NOTES:

6.0 TIMER1 MODULE WITH GATE CONTROL


The PIC16F917/916/914/913 h as a 16-bit ti mer. Figure 6-1 shows the basic block diagram of the Timer1 module. Timer1 has the following features:

- 16-bit timer/counter (TMR1H:TMR1L)
- Readable and writable
- Internal or external clock selection
- Synchronous or asynchronous operation
- Interrupt-on-overflow from FFFFh to 0000h
- Wake-up upon overflow (Asynchronous mode)
- Optional external enable input:
 - Selectable gate source: T1G or C2 output (T1GSS)
 - Selectable gate polarity (T1GINV)
- · Optional LP oscillator

The Timer1 Control re gister (T1 CON), s hown i n Register 6-1, is used to en able/disable T imer1 and select the various features of the Timer1 module.

Note: Additional information on timer modules is available in the "*PICmicro® Mid-Range MCU Family Reference Manual*" (DS33023).

FIGURE 6-1: TIMER1 ON THE PIC16F917/916/914/913 BLOCK DIAGRAM

6.1 Timer1 Modes of Operation

Timer1 can operate in one of three modes:

- 16-bit timer with prescaler
- 16-bit synchronous counter
- 16-bit asynchronous counter

In T imer mode, T imer1 is incr emented on ever y instruction cycle. In Counter mode, Timer1 is incremented on the rising edge of the external clock input T1CKI. In addition, the Counter mode clock can be synchronized to the microcontoller system clock or run asynchronously.

In the Timer1 module, the module clock can be gated by the Timer1 gate, which can be selected as either the T1G pin or Comparator 2 output.

If an ex ternal cl ock os cillator i s n eeded (a nd th e microcontroller i s u sing the INTOSC without C LKO), Timer1 can use the LP oscillator as a clock source.

Note:	In Counter mode, a falling edge must be
	registered by the counter prior to the first
	incrementing rising edge.

6.2 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 Interrupt Flag bit (PIR1<0>) is set. To enable the interrupt on rollover, you must set these bits:

- Timer1 Interrupt Enable bit (PIE1<0>)
- PEIE bit (INTCON<6>)
- GIE bit (INTCON<7>)

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

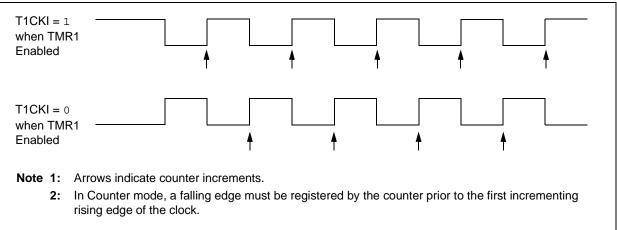
Note: The TMR1H:TTMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

FIGURE 6-2: TIMER1 INCREMENTING EDGE

Timer1 has four prescaler options allowing 1, 2, 4 or 8

6.3

divisions of the c lock in put. The T1 CKPS bit s (T1CON<5:4>) c ontrol the prescale c ounter. The prescale c ounter is not d irectly re adable or w ritable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.


Timer1 Prescaler

6.4 Timer1 Gate

Timer1 gate source is software configurable to be the $\overline{T1G}$ pin or the output of Comparator 2. This allows the device to directly time external events using $\overline{T1G}$ or analog events using C omparator 2. See C MCON1 (Register 8-2) for selecting the Timer1 gate source. This feature can simplify the software for a Delta-Sigma A/D converter and many other applications. For more information on D elta-Sigma A/D c onverters, see the Microchip web site (www.microchip.com).

Note:	T1GE bit (T1CON<6>) must be set to use									
	either $\overline{T1G}$ or C2OUT as the Timer1 gate									
	source. See R egister 8-2 fo r mo re									
	information on selecting the Timer1 gate									
	source.									

Timer1 ga te can be inverted u sing the T1G INV b it (T1CON<7>), whether it originates from the T1G pin or Comparator 2 out put. This configures T imer1 to measure either the active-high or ac tive-low time between events.

REGISTER 6-1:	T1CON -	TIMER1 (CONTROL	REGISTER	(ADDRES	S: 10h)					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7							bit 0			
bit 7			e Invert bit ⁽¹⁾								
	1 = Timer1 0 = Timer1	-									
bit 6	<u>If TMR101</u> This bit is i <u>If TMR101</u> 1 = Timer1	<u>N = 0:</u> gnored. <u>N = 1:</u> gate is en									
bit 5-4	 0 = Timer1 gate is disabled T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale Value 10 = 1:4 Prescale Value 01 = 1:2 Prescale Value 00 = 1:1 Prescale Value 										
bit 3	T1OSCEN: LP Oscillator Enable Control bit If INTOSC without CLKO oscillator is active: 1 = LP oscillator is enabled for Timer1 clock 0 = LP oscillator is off Else: This bit is ignored.										
bit 2	TISYNC: Timer1 External Clock Input Synchronization Control bit TMR1CS = 1: 1 = Do not synchronize external clock input 0 = Synchronize external clock input TMR1CS = 0: This bit is ignored. Timer1 uses the internal clock.										
bit 1	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from RC5/T1CKI/CCP1/SEG10 pin or T1OSC (on the rising edge) 0 = Internal clock (Fosc/4)										
bit 0											
	Note 1:	T1GINV k	pit inverts the	e Timer1 gate	e logic, regar	dless of sou	ırce.				
	2: T1GE bit must be set to use either T1G pin or C2OUT, as selected by the T1GSS bit (CMCON1<1>), as a Timer1 gate source.										
	Legend: R = Reada	able bit	\W = \	Writable bit		nlemented	bit, read as	·0'			

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

6.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt-on-overflow, which will wake-up the processor . H owever, special precautions in software are nee ded to read/w rite the t imer (see Section 6.5.1 "Reading and W riting T imer1 in Asynchronous Counter Mode").

- Note: The ANSEL (9 1h) a nd CMCON0 (9 Ch) registers must be initialized to configure an analog cha nnel as a digital input. Pins configured as analog inputs will read '0'.
- 6.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external as ynchronous clock, will en sure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the tim er and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-b it value requires som e care. Examples in the "*PICmicro[®] Mid-Range MCU Family Reference Manual*" (DS33023) show how to read and write Timer1 when it is running in Asynchronous mode.

6.6 TIMER1 OSCILLATOR

To minimize the multiplexing of peripherals on the I/O ports, the dedicated TMR1 oscillator, which is normally used for TMR1 real-time clockapplications, is eliminated Instead, the TMR1 module canenable the LP oscillator.

If t he m icrocontroller i s p rogrammed to ru n from INTOSC with no CLKO or LP oscillator:

- Setting the T1OSCEN and TMR1CS bits to '1' will enable the LP oscillator to dock TMR1 while the m icrocontroller is c locked from e ither the INTOSC or LP oscillator. Note that the T1OSC and LP os cillators sh are th e sa me circuitry. Therefore, when LP oscillator is s elected an d T1OSC is enabled, both the microcontroller and the T imer1 m odule share the s ame cl ock source.
- Sleep mode does not shut off the LP oscillator operation (i.e., if the INTOSC oscillator runs the microcontroller, and T1 OSCEN = 1 (TM R1 is running from the LP os cillator), t hen the LP oscillator will continue to run during Sleep mode.

In all os cillator m odes **except** f or INT OSC with n o CLKOUT and LP, the T1OSC enable option is unavailable and is ignored.

Note:	When IN TOSC without CLKO oscillator is								
	selected and T1OSCEN = 1, the LP								
	oscillator will run continuously independent								
	of the TMR1ON bit.								

6.7 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to g enerate a "sp ecial eve nt tr igger" (CCP1M<3:0> = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1								
	and CCP2 modules will not set interrupt								
	flag bit, TMR1IF (PIR1<0>).								

Timer1 must be configured for either Timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in As ynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

6.8 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 and CCP2 special event triggers.

T1CON register is reset to 00h on a Power-on Reset, or a Bro wn-out R eset, which s huts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

6.9 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or c lock source can be used to in crement the counter. To set up the timer to wake the device:

- Timer1 must be on (T1CON<0>)
- TMR1IE bit (PIE1<0>) must be set
- PEIE bit (INTCON<6>) must be set

The device will wake-up on an overflow. If the GIE bit (INTCON<7>) is set, the device will wake-up and jump to the Interrupt Service Routine (0004h) on an overflow. If the GIE bit is clear, execution will continue with the next instruction.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		Value on all other Resets	
0Bh/ 8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Eh	TMR1L	Holding F	Register fo	r the Least	Significant E	Byte of the 1	6-bit TMR	1 Register		xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding F	Register fo	r the Most S	Significant B	yte of the 16	6-bit TMR1	Register		xxxx	xxxx	uuuu	uuuu
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	0000	0000	uuuu	uuuu
1Ah	CMCON1	—	—	_	_	—	—	T1GSS	C2SYNC		10		10
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

7.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- 8-bit period register (PR2)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on TMR2 match with PR2

Timer2 h as a control register s hown in R egister 7-1. TMR2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) t o m inimize pow er con sumption. Figure 7-1 is a simplified block diagram of the Timer2 module. The pres caler and pos tscaler se lection of Timer2 are controlled by this register.

7.1 Timer2 Operation

Timer2 can be used as the PW M time base for th e PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on an y device Reset. The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:1 6, selected by control bits T2CKPSx (T2CON<1:0>). T he match o utput of T MR2 goes through a 4-b it postscaler (which gives a 1:1 to 1:1 6 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The p rescaler and pos tscaler co unters are cleared when any of the following occurs:

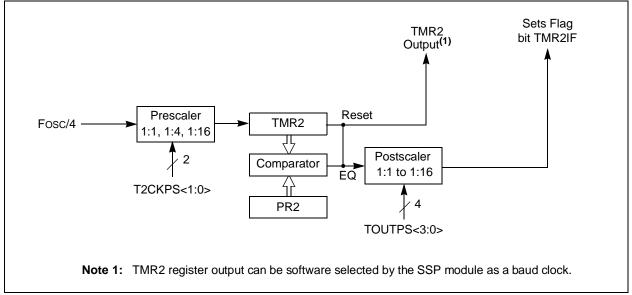
- · A write to the TMR2 register
- · A write to the T2CON register
- Any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset, or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 7-1: T2CON – TIMER2 CONTROL REGISTER (ADDRESS: 12h)

< <i>I</i> − 1.										
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0		
	bit 7							bit 0		
bit 7	Unimplemented: Read as '0'									
bit 6-3	TOUTPS	<3:0>: Time	r2 Output Po	stscale Selec	ct bits					
	0000 =1	:1 Postscale								
	0001 =1	:2 Postscale								
	•									
	•									
	1111 =1	:16 Postscale	Э							
bit 2	TMR2ON	I: Timer2 On	bit							
	1 = Time	er2 is on								
	0 = Time	er2 is off								
bit 1-0	T2CKPS	<1:0>: Time	r2 Clock Pres	scale Select b	oits					
	00 =Pres	scaler is 1								
	01 =Prescaler is 4									
	1x =Pres	scaler is 16								
	F									
	Legend:									

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


7.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

FIGURE 7-1: TIMER2 BLOCK DIAGRAM

7.3 Timer2 Output

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate the shift clock.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/ 8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
11h	TMR2	Holding F	Register for t	the 8-bit TM	R2 Register					0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
92h	PR2	Timer2 P	imer2 Period Register								1111 1111

TABLE 7-1:REGISTERS ASSOCIATED WITH TIMER2

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

NOTES:

8.0 COMPARATOR MODULE

The comparator module contains t wo anal og comparators. The inputs to the comparators ar e multiplexed with I/O port pins RA<3:0>, while the outputs are multiplexed to pins RA<5:4>. An on-chip Comparator Voltage R eference (CVREF) can a lso be applied to the inputs of the comparators.

The CMCON0 r egister (Re gister 8-1) controls the comparator i nput an d o utput m ultiplexers. A bl ock diagram of the various comparator configurations i s shown in Figure 8-3.

REGISTER 8-1:	CMCON0 – COMPARATOR CONFIGURATION REGISTER (ADDRESS: 9Ch)
REGISTER OI.	CIVICONU - COMPARATOR CONFIGURATION REGISTER (ADDRESS. 901)

	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0
	bit 7							bit 0
oit 7	C2OUT: Co	omparator 2	Output bit					
	0 = 0	2 1√1+>C2 2 1√1+ <c2< td=""><td></td><td></td><td></td><td></td><td></td><td></td></c2<>						
		<u>1V</u> =1: 2 1√1+>C2 2 1√1+ <c2< td=""><td></td><td></td><td></td><td></td><td></td><td></td></c2<>						
oit 6	C1OUT: Co	omparator 1	Output bit					
	0 = 0 <u>When C1IN</u> $0 = 0$	î Wi+>C1 î Wi+ <c1< td=""><td>Vin- Vin-</td><td></td><td></td><td></td><td></td><td></td></c1<>	Vin- Vin-					
oit 5		mparator 2 (rsion bit				
	1 = C2 Ou	tput inverted	ł					
bit 4	1 = C1 Ou	mparator 1 (tput inverted tput not inve	k	rsion bit				
bit 3	$\frac{\text{When CM} <}{1 = 0}$ $0 = 0$ C $\frac{\text{When CM} <}{1 = 0}$ $0 = 0$ $\frac{\text{When CM} <}{1 = 0}$ $1 = 0$	2 VIN- conne 2 VIN- conne 2 VIN- conne (2:0) = 001: 3 W- conne (2:0) = 101: 2 W+ conne 2 W+ conne	ects to RA3/ ects to RA2/ ects to RA0/ ects to RA1/ ects to RA3/ ects to RA3/ ects to RA0/	AN2/C2+/VF AN0/C1-/SE AN1/C2-/SE AN3/C1+/VF AN0/C1-/SE nal 0.6V refe	G12 G7 REF+/SEG15 G12 erence			
oit 2-0		2 ₩+ conn Comparator			REF-/COM2			
π ∠- 0		•			<2:0> bit set	ttings.		
	-	Setting a p weak pull-ເ	in to an an ups, and int	alog input a errupt-on-ch	utomatically ange if ava	disables th	ne digital inp correspondir	ng TRIS bit

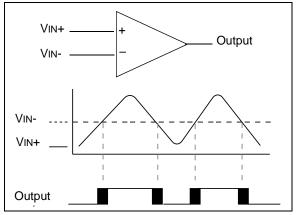
Logena.			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.1 Comparator Operation

A single comparator is shown in Figure 8-1 along with the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the ou tput of the comparator is a digital high level. The shaded areas of the output of the comparator in Figure 8-1 represent the uncertainty due to input offsets and response time.

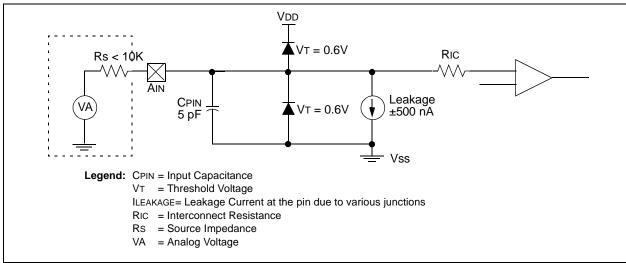
Note:	To use CIN+ an d C IN- p ins as an alog
	inputs, the ap propriate bi ts m ust be
	programmed in the C MCON0 (9Ch)
	register.

The polarity of the comparator output can be inverted by setting the C xINV bits (C MCON0<5:4>). C learing CxINV results in a no n-inverted out put. A c omplete table showing the output state versus input conditions and the polarity bit is shown in Table 8-1.


TABLE 8-1: OUTPUT STATE VS. INPUT CONDITIONS

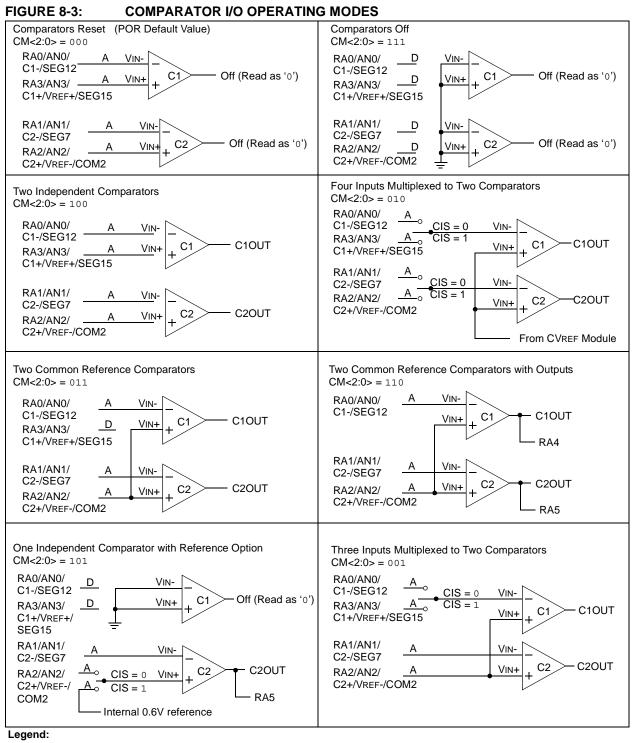
Input Conditions	CINV	CxOUT
VIN- > VIN+	00	
VIN- < VIN+	01	
VIN- > VIN+	11	
VIN- < VIN+	1	0

FIGURE 8-2: ANALOG INPUT MODEL


FIGURE 8-1:

SINGLE COMPARATOR

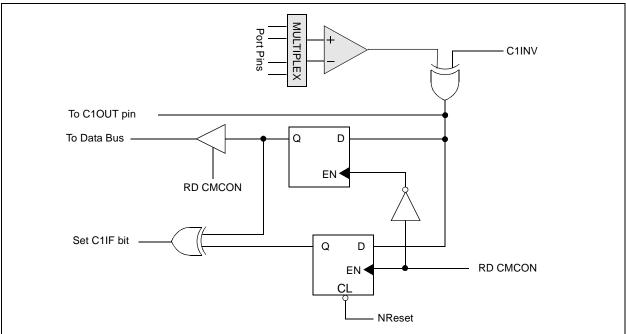
8.2 Analog Input Connection Considerations


A simplified c ircuit for an a nalog input is s hown in Figure 8-2. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the an alog s ources. Any ex ternal component connected to an analog input pin, such as a capacitor or a Ze ner diode, should ha ve very l ittle l eakage.

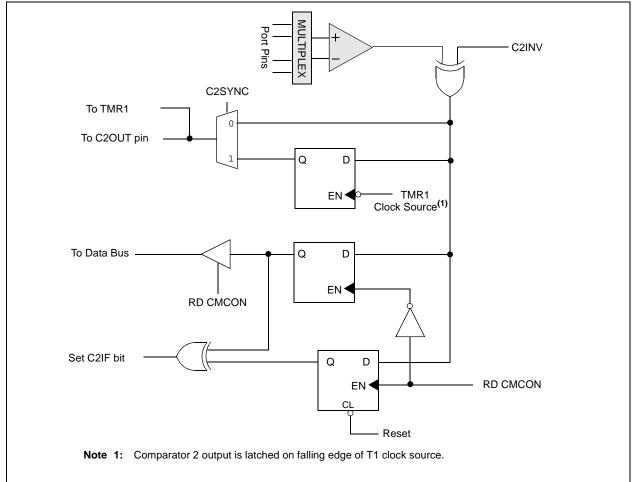
8.3 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON0 register is used to select these modes. Figure 8-3 shows the eight possible modes. If the Comparator mode is changed, the comparator output level may not be v alid for the specified mode change delays hown in Section 19.0 "Ele ctrical Specifications".

Note: Comparator interrupts should be disabled during a C omparator mode change. Otherwise, a false interrupt may occur.


A = Analog Input, port reads zeros always.

D = Digital Input.


CIS (CMCON0<3>) is the computer Input Switch.

PIC16F917/916/914/913

FIGURE 8-4: COMPARATOR C1 OUTPUT BLOCK DIAGRAM

JIJ I LIN 0-2.		MCONT - COMPARATOR CONTIGURATION REGISTER (ADDRESS. 571)								
	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0		
	—	—	_	—	—	—	T1GSS	C2SYNC		
	bit 7							bit 0		
bit 7-2:	Unimplemente	ed : Read	as '0'							
bit 1	T1GSS: Timer	TIGSS: Timer1 Gate Source Select bit								
	•	1 = Timer1 gate source is $\overline{T1G}$ pin (RC4 must be configured as digital input) 0 = Timer1 gate source is Comparator 2 Output								
bit 0	C2SYNC: Com	nparator 2	2 Synchroni	ze bit						
		 1 = C2 output synchronized with falling edge of Timer1 clock 0 = C2 output not synchronized with Timer1 clock 								
	Legend:									
	R = Readable	bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'		

'1' = Bit is set

REGISTER 8-2:CMCON1 - COMPARATOR CONFIGURATION REGISTER (ADDRESS: 97h)

8.4 Comparator Outputs

The compar ator outputs ar e read th rough the CMCON0 re gister. These bits ar e re ad-only. The comparator outputs may also be directly output to the RA4 and RA5 I/O pins. When enabled, multiplexers in the output path of the RA4 and RA5 pins will switch and the output of each pin will be the unsynchronized output of the comparator. The uncertainty of each of the comparators is related to the input offset voltage and the response t ime g iven in the specifications. Figure 8-4 and Fi gure 8-5 show the out put b lock diagram for Comparator 1 and 2.

- n = Value at POR

The TR IS bit s w ill still func tion as an output enable/disable for the RA4 and RA5 pins while in this mode.

The polarity of the comparator outputs can be changed using the C1INV and C2INV bits (CMCON0<5:4>).

Timer1 gate source can be configured to use the $\overline{T1G}$ pin or Comparator 2 output as selected by the T1GSS bit (CMCON1<1>). This feature can be used to time the duration or interval of analog events. The output of Comparator 2 can also be synchronized w ith Timer1 by setting the C2SYNC b it (CMCON1<0>). When enabled, the output of Comparator 2 is latched on the falling edge of Timer1 clock sour ce. If a prescaler is used with Timer1, Comparator 2 is latched after the prescaler. To prevent a race condition, the Comparator 2 output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of it s clock s ource. See (Figure 8-5), C omparator 2 Block D iagram and (Figur e 6-1), T imer1 Block Diagram for more information.

It is recommended to synchronize Comparator 2 with Timer1 by setting the C2SYNC bit when Comparator 2 is used as the Timer1 gate source. This ensures Timer1 does not miss an increment if Comparator 2 changes during an increment.

8.5 Comparator Interrupts

'0' = Bit is cleared

The comparator interrupt flags are set whenever there is a change in the output value of its respective comparator. Software w ill ne ed to mai ntain in formation ab out the status of the output bits, as read from CMCON0<7:6>, to determine the actual change that has occurred. The CxIF bits, PIR2<6:5>, are the Comparator Interrupt flags. This bit must be reset in software by clearing it to '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

x = Bit is unknown

The C xIE bits (PIE2<6:5>) and the PEIE b it (INTCON<6>) must be set to enable the interrupts. In addition, the GIE bit must also be set. If any of these bits are cleared, the interrupt is not enabled, though the CxIF bits will still be set if an interrupt condition occurs.

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON0. This will end the mismatch condition.
- b) Clear flag bit CxIF

A mismatch condition will continue to set flag bit CxIF. Reading CMCON0 will end the mismatch condition and allow flag bits CxIF to be cleared.

Note: If a c hange in the CMCON0 register (CxOUT) should occur whe n a rea d operation is being executed (start of the Q2 cycle), then the CxIF (PIR2<6:5>) interrupt flag may not get set.

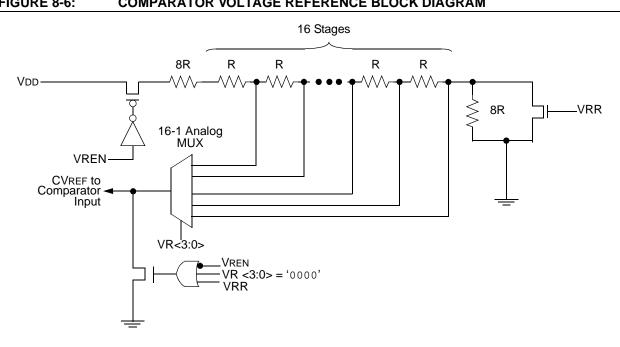
8.6 **Comparator Reference**

The comparator module also allows the selection of an internally generated voltage reference for one of the comparator inputs. The VRCON register, Register 8-3, controls the voltage re ference m odule s hown i n Figure 8-6.

8.6.1 CONFIGURING THE VOLTAGE REFERENCE

The voltage reference can output 32 distinct voltage levels; 16 in a high range and 16 in a low range.

The following equation determines the output voltages:


EQUATION 8-1:

VRR = 1 (low range): $CVREF = (VR3: VR0/24) \times VDD$ VRR = 0 (high range): $CVREF = (VDD/4) + (VR3:VR0 \times VDD/32)$

8.6.2 VOLTAGE REFERENCE ACCURACY/ERROR

The full range of Vss to VDD cannot be realized due to the construction of the module. The transistors on the top and bottom of t he r esistor l adder n etwork (Figure 8-6) k eep CV REF f rom ap proaching V ss or VDD. The exception is when the module is disabled by clearing the VREN bit (VRCON<7>). When disabled, the reference voltage is Vss when VR < 3:0 > = 0000. This allows the comparators to detect a zero-crossing and not consume CVREF module current.

The voltage reference is VDD derived and therefore, the CVREF output changes with fluctuations in V DD. The tested ab solute ac curacy of the c omparator voltage reference can be foun d in Section 19.0 "Ele ctrical Specifications".

FIGURE 8-6: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

8.7 Comparator Response Time

Response time is the minimum time, after selecting a new refe rence vol tage or inp ut s ource, befo re th e comparator output is ensured to have a valid level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered when u sing the comparator o utputs. O therwise, th e maximum de lay of the comparators should be used (Table 19-10).

8.8 Operation During Sleep

The comparators and voltage reference, if ena bled before en tering S leep mo de, remain ac tive du ring Sleep. This results in higher Sleep currents than shown in the po wer-down's pecifications. The add itional current consumed by the comparator and the voltage reference is shown separately in the specifications. To minimize power consumption while in Sleep mode, turn off the comparator, C M<2:0> = 111, and voltage reference, VRCON<7> = 0.

While the c omparator is en abled during Sleep, a n interrupt will w ake-up the de vice. If the GI E bit (INTCON<7>) is set, the device will jump to the interrupt vector (0004h), and if c lear, continues execution with the next instruction. If the device wakes up from Sleep, the c ontents of th e C MCON0, C MCON1 and VRCON registers are not affected.

8.9 Effects of a Reset

A device Reset forces the CMCO N0, CMCO N1 and VRCON registers to their Reset states. This forces the comparator module to be in the C omparator R eset mode, CM<2:0> = 000 and the voltage reference to its OFF state. Thus, all potential inputs are analog inputs with the comparator and voltage reference disabled to consume the smallest current possible.

51 ER 0-3.	VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 901)										
	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VREN	_	VRR	—	VR3	VR2	VR1	VR0			
	bit 7							bit 0			
bit 7	VREN: CVREF Enable bit 1 = CVREF circuit powered on 0 = CVREF circuit powered down, no IDD drain and CVREF = VSS.										
bit 6	Unimplemented: Read as '0'										
bit 5	1 = Low rar	VRR: CVREF Range Selection bit 1 = Low range 0 = High range									
bit 4	Unimplem	ented: Rea	d as '0'								
bit 3-0	When VRR	= 1: CVREF	= (VR<3:0	≤ VR<3: 0> >/24) * VDD (VR<3:0>/32							
	Legend:										
	R = Reada	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
	- n = Value	at POR	'1' = B	it is set	'0' = Bit i	s cleared	x = Bit is u	Inknown			

REGISTER 8-3: VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 9Dh)

TABLE 8-2: REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF	_	CCP2IF	0000 -0-0	0000 -0-0
9Ch	CMCON0	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
97h	CMCON1	_	_	_	_	_	_	T1GSS	C2SYNC	10	10
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
9Dh	VRCON	VREN		VRR		VR3	VR2	VR1	VR0	0-0- 0000	0-0- 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the comparator or Comparator Voltage Reference module.

9.0 LIQUID CRYSTAL DISPLAY (LCD) DRIVER MODULE

The Liquid Crystal Display (LCD) driver module generates the t iming cont rol to drive a st atic or mul tiplexed LC D panel. In the PIC16F914/917 devices (PIC16F914/917), the module drives the panels of up to four commons and up to 24 s egments and in the PI C16F913/916 devices (PIC16F913/916), the module drives the panels of up to four commons and up to 16 segments. It also provides control of the LCD pixel data.

The LCD driver module supports:

- Direct driving of LCD panel
- Three LCD clock sources with selectable prescaler
- Up to four commons:
 - Static
 - 1/2 multiplex
 - 1/3 multiplex
- 1/4 multiplex
- Up to 24 (in PIC16F914/917 devices)/16 (in PIC16F913/916 devices) segments
- Static, 1/2 or 1/3 LCD Bias

The module has 32 registers:

- LCD Control Register (LCDCON)
- LCD Phase Register (LCDPS)
- Three LCD Segment Enable Registers (LCDSE<2:0>)
- 24 LCD Data Registers (LCDDATA<11:0>)

The LCDCON register, shown in R egister 9-1, controls the operation of the LC D driver module. The LC DPS register, shown in R egister 9-2, configu res the LC D clock source pres caler and the type of w aveform; Type-A or Type-B. The LCDSE<2:0> registers configure the functions of the port pins

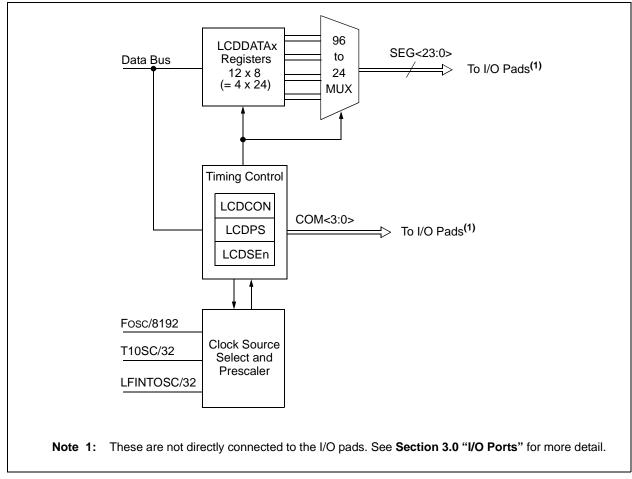
- LCDSE0 SE<7:0>
- LCDSE1 SE<15:8>
- LCDSE2 SE<23:16>

As an example, LCDSEn is detailed in Register 9-3.

Note:	The LCDSE2 register is not implemented
	in PIC16F913/916 devices.

Once the module is initialized for the LCD panel, the individual b its of th e L CDDATA<11:0> re gisters a re cleared/set to r epresent a cl ear/dark pi xel, respectively:

- LCDDATA0 SEG7COM0:SEG0COM0
- LCDDATA1 SEG15COM0:SEG8COM0
- LCDDATA2 SEG23COM0:SEG16COM0
- LCDDATA3 SEG7COM1:SEG0COM1
- LCDDATA4 SEG15COM1:SEG8COM1
- LCDDATA5 SEG23COM1:SEG16COM1
- LCDDATA6 SEG7COM2:SEG0COM2
- LCDDATA7 SEG15COM2:SEG8COM2
- LCDDATA8 SEG23COM2:SEG16COM2
- LCDDATA9 SEG7COM3:SEG0COM3
- LCDDATA10 SEG15COM3:SEG8COM3
- LCDDATA11 SEG23COM3:SEG16COM3


As an example, LCDDATAx is detailed in Register 9-4.

Once the m odule is c onfigured, t he LCDEN (LCDCON<7>) bit is used to enable or disable the LCD module. The LCD panel can also operate during Sleep by clearing the SLPEN (LCDCON<6>) bit.

Note: Writing into the registers LCDDATA2, LCDDATA5, LCDDATA8 and LCDDATA11 in PIC16F913/916 devices will not affect the status of any pixel and these registers can be used as General Purpose Registers.

PIC16F917/916/914/913

FIGURE 9-1: LCD DRIVER MODULE BLOCK DIAGRAM

	LMUX<1:0>	м	ultiplex	Number	mum of Pixels	Maximu Number of (PIC16E91/	Pixels	Bias			
bit 1-0	LMUX<1:0>: Commons Select bits										
	00 = Fosc/8192 01 = T1OSC (Timer1)/32 1x = LFINTOSC (31 kHz)/32										
bit 3-2	CS<1:0>: Clo	ck Source	e Select bits								
	1 = VLCD pins are enabled 0 = VLCD pins are disabled										
bit 4	VLCDEN: LCD Bias Voltage Pins Enable bit										
bit 5	WERR: LCD Write Failed Error bit 1 = LCDDATAx register written while LCDPS <wa> = 0 (must be cleared in software) 0 = No LCD write error</wa>										
	 1 = LCD driver module is disabled in Sleep mode 0 = LCD driver module is enabled in Sleep mode 										
bit 6	SLPEN: LCD	LPEN: LCD Driver Enable in Sleep mode bit									
		. = LCD driver module is enabled = LCD driver module is disabled									
bit 7	LCDEN: LCD	Driver Er	nable bit								
	bit 7							bit 0			
	LCDEN S	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0			
	R/W-0	R/W-0	R/C-0	R/W-1	R/W-0	R/W-0	R/W-1	R/W-1			

REGISTER 9-1: LCDCON - LIQUID CRYSTAL DISPLAY CONTROL REGISTER (ADDRESS: 107h)

LMUX<1:0>	Multiplex	Maximum Number of Pixels (PIC16F913/916)	Maximum Number of Pixels (PIC16F914/917)	Bias
00	Static (COM0)	16	24	Static
01	1/2 (COM<1:0>)	32	48	1/2 or 1/3
10	1/3 (COM<2:0>)	48	72	1/2 or 1/3
11	1/4 (COM<3:0>)	60 ⁽¹⁾	96	1/3

Note 1: On PIC16F913/916 devices, COM3 and SEG15 are shared on one pin, limiting the device from driving 64 pixels.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
C = Only clearable bit	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
- n = Value at POR			

PIC16F917/916/914/913

RW-0 RW-0 R-0 RW-0 RW-0 RW-0 RW-0 WFT BIASMD LCDA WA LP3 LP2 LP1 LP0 bit 7 WFT: BIASMD LCDA WA LP3 LP2 LP1 LP0 bit 7 WFT: Waveform Type Select bit 1 Type-B waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit When LMUX<10>= 00: 0 Static Bias mode (do not set this bit to '1') When LMUX<10>= 01: 1 = 1/2 Bias mode 0 = 1/3 Bias mode 0 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 1/3 Bias mode 0 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 1/3 Bias mode 0 1/3 Bias 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 1/3 Bias 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	REGISTER 9-2:	LCDPS –	LCD PRESC	CALER S	ELECT RE	GISTER (A	ADDRESS:	: 108h)	
bit 7 WFT: Waveform Type Select bit 1 = Type-B waveform (phase changes on each frame boundary) 0 = Type-A waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit When LMUX<1:0> = 0: 0 = Static Bias mode (do not set this bit to '1') When LMUX<1:0> = 0: 1 = 1/2 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is inactive 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP-3:0>: LCD Prescaler Select bits 1111 = 1:16 1100 = 1:13 1011 = 1:12 1000 = 1:9 0111 = 1:12 1000 = 1:9 0111 = 1:14 1000 = 1:9 0111 = 1:16 1100 = 1:1 1001 = 1:10 1000 = 1:9 0111 = 1:12 1010 = 1:11 1010 = 1:14 1000 = 1:9 0111 = 1:2 0010 = 1:1 1011 = 1:2 0010 = 1:1 1011 = 1:2 0010 = 1:1 1011 = 1:2 0011 = 1:4 1010 = 1:3 0011 = 1:2 0010 = 1:1		R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 WFT: Waveform Type Select bit 1 = Type-B waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit When LMUX<1:05 = 0:1 0 = Static Bias mode (do not set this bit to '1') When LMUX<1:05 = 0:1 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:05 = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:05 = 11: 0 = 1/3 Bias mode When LMUX<1:05 = 11: 0 = 1/3 Bias mode When LMUX<1:05 = 11: 0 = 1/3 Bias mode When LMUX<1:05 = 10: 1 = LCD driver module is active 0 = LCD driver module is active 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3.0 LP<3:05: LCD Prescaler Select bits 1111 = 1:16 110 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:7 0101 = 1:6 0100 = 1:5 0111 = 1:4 0010 = 1:3 0011 = 1:2 0000 = 1:1		WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0
<pre>1 = Type-B waveform (phase changes on each frame boundary) 0 = Type-A waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit When LMUX-(10-= 00: 0 = Static Bias mode (do not set this bit to '1') When LMUX-(10-= 01: 1 = 1/2 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP-3:0:: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:13 1001 = 1:13 1001 = 1:11 1001 = 1:14 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 1010 = 1:5 0101 = 1:4 0100 = 1:5 0101 = 1:4 0100 = 1:5 0101 = 1:2 0000 = 1:1</pre>		bit 7							bit 0
<pre>1 = Type-B waveform (phase changes on each frame boundary) 0 = Type-A waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit When LMUX-(10> = 00; 0 = Static Bias mode (do not set this bit to '1') When LMUX-(10> = 01; 1 = 1/2 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3 - LCD Prescaler Select bits 1111 = 1:16 1110 = 1:13 1001 = 1:14 1000 = 1:13 1011 = 1:16 1110 = 1:11 1001 = 1:11 1001 = 1:13 1011 = 1:16 1110 = 1:13 1011 = 1:16 1010 = 1:12 1010 = 1:12 1010 = 1:12 1010 = 1:12 1010 = 1:14 1000 = 1:5 1001 = 1:12 1000 = 1:11 1001 = 1:14 1000 = 1:12 1000 = 1:11 1001 = 1:14 1000 = 1:12 1000 = 1:11 1001 = 1:14 1001 = 1:14 1001 = 1:14 1001 = 1:14 1001 = 1:14 1001 = 1:15 1001 = 1:14 1001 = 1:15 1001 = 1:14 1001 = 1:15 1001 = 1:16 1001 = 1:16</pre>	b :4 7			ala at hit					
<pre>0 = Type-A waveform (phase changes within each common type) bit 6 BIASMD: Bias Mode Select bit</pre>	DIL 7				aes an eac	n frame hour	(dary)		
When LMUX<1:0> = 00: 0 = Static Bias mode (do not set this bit to '1') When LMUX<1:0> = 01: 1 = 1/2 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode 0 = LCD driver module is active 0 = LCD driver module is inactive bit 4 W Write LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LPA-3:0:: LCD Prescaler Select bits 1101 = 1:16 1101									
0 = Static Bias mode (do not set this bit to '1') When LMUX<1:0> = 01: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD Driver module is inactive bit 4 WK: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP-3:0>: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:15 1101 = 1:11 1000 = 1:11 1000 = 1:12 0010 = 1:13 0111 = 1:8 0110 = 1:7 0111 = 1:12 0101 = 1:14 0101 = 1:12 0101 = 1:2 0010 = 1:3 0111 = 1:2 0111 = 1:2	bit 6	BIASMD:	Bias Mode Se	lect bit					
When LMUX<1:0> = 01: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode When LCD Active Status bit 1 = LCD driver module is inactive 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is not allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP4:00 Prescaler Select bits 1111 = 1:16 1100 = 1:13 1001 = 1:14 1000 = 1:11 1001 = 1:12 1010 = 1:5 0111 = 1:4 0102 = 1:2 0001 = 1:2 0010 = 1:2		When LMI	UX<1:0> = 00:	<u>.</u>					
1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1100 = 1:13 1010 = 1:14 1100 = 1:13 1011 = 1:16 1111 = 1:16 1111 = 1:16 1111 = 1:17 1101 = 1:18 1010 = 1:11 1010 = 1:12 1010 = 1:14 1010 = 1:5 0111 = 1:4 0100 = 1:5 0111 = 1:4 0100 = 1:3 0101 = 1:1 0100 = 1:2 0000 = 1:1					is bit to '1')				
0 = 1/3 Bias mode When LMUX-1:0> = 10; 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX-1:0> = 11; 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP-3:0-5: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:13 1010 = 1:13 1011 = 1:12 1010 = 1:13 1011 = 1:16 1111 = 1:16 1111 = 1:16 1111 = 1:17 1010 = 1:13 1011 = 1:14 1000 = 1:11 1001 = 1:11 1010 = 1:7 0111 = 1:4 0110 = 1:3 0011 = 1:4 0010 = 1:3 0011 = 1:4 0010 = 1:1				<u>.</u>					
When LMUX<1:0> = 10: 1 = 1/2 Bias mode 0 = 1/3 Bias mode When LMUX<1:0> = 11: 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LPc3:0b: LCD Prescaler Select bits 1110 = 1:15 1100 = 1:13 1011 = 1:14 1000 = 1:3 0110 = 1:11 111 = 1:16 111 = 1:16 111 = 1:12 1010 = 1:13 1011 = 1:14 1000 = 1:3 0110 = 1:10 1000 = 1:3 0111 = 1:8 0110 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0001 = 1:1									
1 = 1/2 Bias mode 0 = 1/3 Bias mode (do not set this bit to '1') 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP43:0>: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:15 1010 = 1:13 1011 = 1:12 1000 = 1:13 1011 = 1:16 1011 = 1:12 1010 = 1:13 1011 = 1:14 1001 = 1:11 1001 = 1:13 1011 = 1:2 1010 = 1:13 1011 = 1:4 1010 = 1:5 0111 = 1:4 0102 = 1:5 0111 = 1:4 0101 = 1:2 0101 = 1:1 0101 = 1:2 0101 = 1:1				:					
When LMUX<1:0> = 11: 0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1100 = 1:13 1001 = 1:14 1000 = 1:13 1001 = 1:10 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:5 0101 = 1:4 0010 = 1:3 0010 = 1:3 0001 = 1:2 0000 = 1:1									
0 = 1/3 Bias mode (do not set this bit to '1') bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:15 1001 = 1:14 1000 = 1:13 1001 = 1:11 1001 = 1:12 1010 = 1:10 1000 = 1:9 0111 = 1:6 0100 = 1:5 0101 = 1:12 0010 = 1:3 0011 = 1:2 0001 = 1:2 0000 = 1:1 Legend:									
bit 5 LCDA: LCD Active Status bit 1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 110 = 1:15 1010 = 1:14 100 = 1:11 1001 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0100 = 1:7 0101 = 1:6 0100 = 1:3 0001 = 1:2 0000 = 1:1					h: (,)				
1 = LCD driver module is active 0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1100 = 1:15 1010 = 1:14 1000 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:3 0001 = 1:2 0000 = 1:1	6.9. F		-		DIT TO (1)				
0 = LCD driver module is inactive bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1100 = 1:15 1011 = 1:14 1000 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:3 0001 = 1:3 0001 = 1:2 0000 = 1:1	DIT 5								
bit 4 WA: LCD Write Allow Status bit 1 = Write into the LCDDATAx registers is allowed 0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 110 = 1:15 101 = 1:14 100 = 1:13 1011 = 1:12 1000 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0100 = 1:7 0101 = 1:6 0100 = 1:3 0010 = 1:3 0001 = 1:2 0000 = 1:1									
0 = Write into the LCDDATAx registers is not allowed bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1	bit 4	WA: LCD	Write Allow St	atus bit					
bit 3-0 LP<3:0>: LCD Prescaler Select bits 1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1		1 = Write i	into the LCDD	ATAx regis	ters is allow	/ed			
1111 = 1:16 1110 = 1:15 1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1		0 = Write i	into the LCDD	ATAx regis	ters is not a	llowed			
1110 = 1:15 $1101 = 1:14$ $1100 = 1:13$ $1011 = 1:12$ $1010 = 1:11$ $1001 = 1:10$ $1000 = 1:9$ $0111 = 1:8$ $0110 = 1:7$ $0101 = 1:6$ $0100 = 1:5$ $0011 = 1:4$ $0010 = 1:3$ $0001 = 1:2$ $0000 = 1:1$ Legend:	bit 3-0	LP<3:0>:	LCD Prescale	r Select bit	ts				
1101 = 1:14 1100 = 1:13 1011 = 1:12 1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1			-						
1100 = 1:13 $1011 = 1:12$ $1010 = 1:11$ $1001 = 1:10$ $1000 = 1:9$ $0111 = 1:8$ $0110 = 1:7$ $0101 = 1:6$ $0100 = 1:5$ $0011 = 1:4$ $0010 = 1:3$ $0001 = 1:2$ $0000 = 1:1$ Legend:									
1010 = 1:11 1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1									
1001 = 1:10 1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1									
1000 = 1:9 0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0111 = 1:8 0110 = 1:7 0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0101 = 1:6 0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0100 = 1:5 0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0011 = 1:4 0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0010 = 1:3 0001 = 1:2 0000 = 1:1 Legend:									
0001 = 1:2 0000 = 1:1 Legend:									
Legend:									
		0000 = 1:	1						
		Legend.]
		-	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as '	0'
- n = Value at POR $(1)^2$ = Bit is set $(0)^2$ = Bit is cleared x = Bit is unknown							•		

REGISTER 9-3: LCDSEn – LCD **SEGMENT REGISTERS (ADDRESS: 11Ch, 11Dh OR 11Eh)**

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SEn |
| bit 7 | | | | | | | bit 0 |

bit 7-0 SEn: Segment Enable bits

1 = Segment function of the pin is enabled

0 = I/O function of the pin is enabled

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-4:

: LCDDATAx – LCDDATA REGISTERS (ADDRESS: 110h-119h, 11Ah, 11Bh)

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SEGx- |
| COMy |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **SEGx-COMy:** Pixel On bits

1 = Pixel on (dark)

0 = Pixel off (clear)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

9.1 LCD Clock Source Selection

The LCD driver module has 3 possible clock sources:

- •F osc/8192
- •T 10SC/32
- LFINTOSC/32

The first clock source is the system clock divided by 8192 (F osc/8192). This divider rat io is chosen to provide about 1 kHz output when the system clock is 8 MHz. The divider is not programmable. Instead, the LCD prescaler bits, LCDPS<3:0>, are used to set the LCD frame clock rate.

The second clock source is the T1OSC/32. This also gives about 1 kHz when a 32.768 kHz crystal is used with the Timer1 oscillator. To use the Timer1 oscillator as a c lock so urce, t he T1OSCEN (T1CON<3>) bit should be set.

The third clock source is the 31 kHz LFIN TOSC/32, which provides approximately 1 kHz output.

The second and third clock sources may be used to continue run ning the LC D w hile the processor is in Sleep.

Using the bits, CS<1:0> (LCDCON<3:2>), any of these clock sources can be selected.

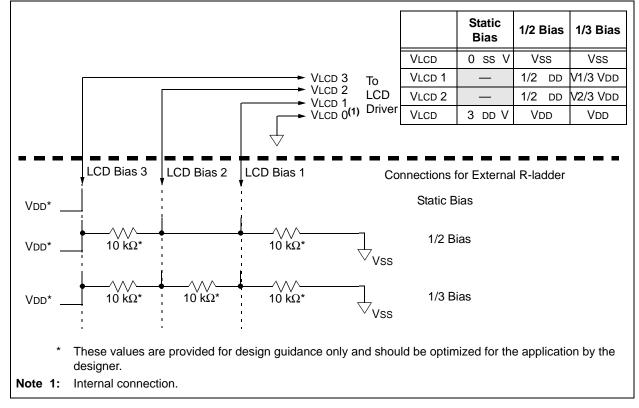
9.1.1 LCD PRESCALER

A 16-bit counter is available as a prescaler for the LCD clock. The prescaler is not directly readable or writable; its value is set by the LP<3:0> bits (LCDPS<3:0>), which determine the prescaler assignment and prescale ratio.

The prescale values from 1:1 through 1:16.

9.2 LCD Bias Types

The LCD driver module can be c onfigured into three bias types:


- Static Bias (2 voltage levels: Vss and VDD)
- 1/2 Bias (3 voltage levels: Vss, 1/2 VDD and VDD)
- 1/3 Bias (4 voltage levels: Vss, 1/3 VDD, 2/3 VDD and VDD)

This m odule uses a n e xternal re sistor I adder to generate the LCD bias voltages.

The external resistor ladder should be connected to the Bias 1 pin, Bias 2 pin, Bias 3 pin and Vss. The Bias 3 pin should also be connected to VDD.

Figure 9-2 sh ows the proper w ay to c onnect the resistor ladder to the Bias pins.

FIGURE 9-2: LCD BIAS RESISTOR LADDER CONNECTION DIAGRAM

Note: VLCD pins used to supply LCD bias voltage are enabled on po wer-up (POR) and m ust b e d isabled b y the user b y clearing L CDCON<4>, the VL CDEN b it, (see Register 9-1).

9.3 LCD Multiplex Types

The LC D driver module can be configured into four multiplex types:

- Static (only COM0 used)
- 1/2 multiplex (COM0 and COM1 are used)
- 1/3 multiplex (COM0, COM1 and COM2 are used)
- 1/4 multiplex (all COM0, COM1, COM2 and COM3 are used)

The LMUX<1:0> setting decides the function of RB5, RA2 or ei ther R A3 or R D0 pin s (s ee Table 9-1 for details).

If the p in is a digital I/O, the corresponding TRIS bit controls the data direction. If the pin is a C OM drive, then the TRIS setting of that pin is overridden.

Note:	On a Pow er-on Reset, the LM UX<1:0>	
	bits are '11'.	

TABLE 9-1: RA3, RA2, RB5 FUNCTION

LMUX <1:0>	RA3/RD0 ⁽¹⁾	RA2	RB5
0 0	Digital I/O	Digital I/O	Digital I/O
01	Digital I/O	Digital I/O	COM1 Driver
10	Digital I/O	COM2 Driver	COM1 Driver
11	COM3 Driver	COM2 Driver	COM1 Driver

Note 1: RA3 for PIC16F913/916, RD0 for PIC16F914/917

9.4 Segment Enables

The L CDSEn reg isters are used to select the pin n function for each segment pin. The selection allows each pin to operate as either an LCD segment driver or as one of the pin's alternate functions. To configure the pin as a segment pin, the corresponding bits in the LCDSEn registers must be set to '1'.

If the p in is a digital I/O, the corresponding TRIS bit controls the data direction. Any bit set in the LCDSEn registers overrides any bit settings in the corresponding TRIS register.

Note:	On a Power-on Reset, these pins are
	configured as digital I/O.

9.5 Pixel Control

The LCDDATAx registers contain bits which define the state of each pixel. Each bit defines one unique pixel.

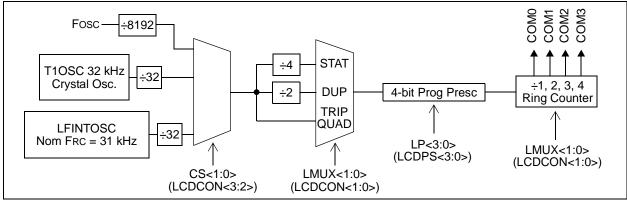
Register 9-4 shows the correlation of each bit in the LCDDATAx registers to the respective common and segment signals.

Any LCD pixel location not being used for display can be used as general purpose RAM.

9.6 LCD Frame Frequency

The rate at which the COM and SEG outputs change is called the LCD frame frequency.

TABLE 9-2: FRAME FREQUENCY FORMULAS


Multiplex	Frame Frequency =
Static	Clock source/(4 x 1 x (LP<3:0> + 1))
1/2	Clock source/(2 x 2 x (LP<3:0> + 1))
1/3	Clock source/(1 x 3 x (LP<3:0> + 1))
1/4	Clock source/(1 x 4 x (LP<3:0> + 1))
., .	$\frac{1}{2} Clock source/(1 \times 4 \times (LP<3:0>+1))}{2}$

Note: Clock source is FOSC/8192, T1OSC/32 or LFINTOSC/32.

TABLE 9-3:APPROXIMATE FRAME
FREQUENCY (IN Hz) USING
Fosc @ 8 MHz, TIMER1 @
32.768 kHz OR INTOSC

LP<3:0>	Static	1/2	1/3	1/4
2	85	85	114	85
36	4	64	85	64
45	1	51	68	51
54	3	43	57	43
63	7	37	49	37
73	2	32	43	32

FIGURE 9-3: LCD CLOCK GENERATION

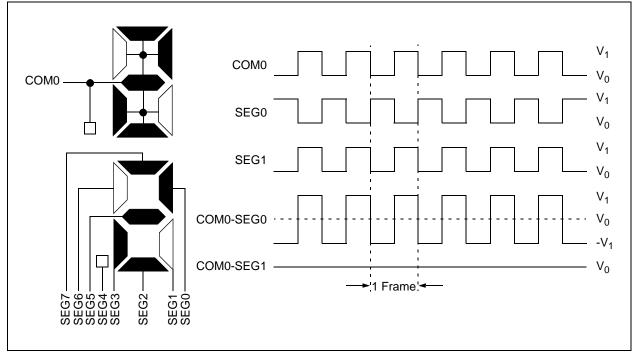
FIGUR	E 9-4:		LC	D S	5
	Viternate unctions	INT			

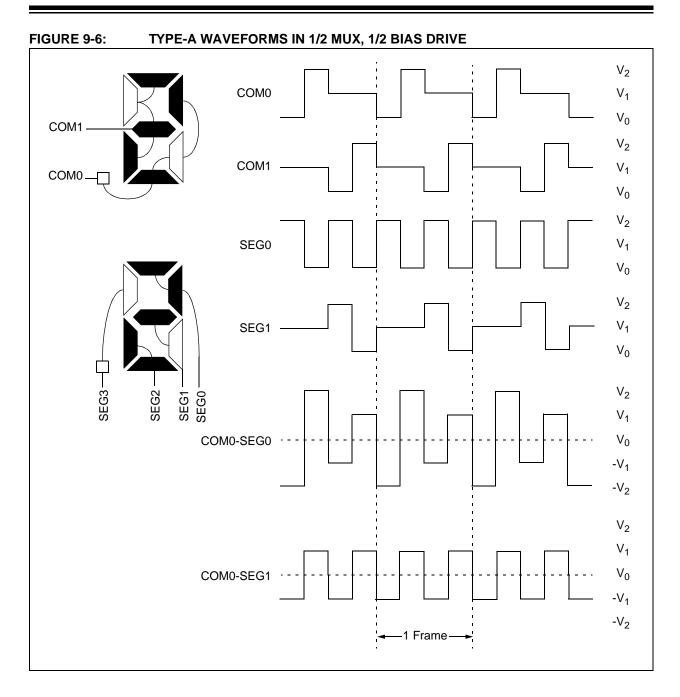
LCD	COMO	Q	COM1	Ξ	COM2	2	COM3	5	Pin No.	PORT	Alternate
	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	LCDDATAx Address	LCD Segment	28/40-pin		
SEGO	LCDDATA0, 0		LCDDATA3, 0		LCDDATA6, 0		LCDDATA9, 0		21/33	RBO	INI
SEG1	LCDDATA0, 1		LCDDATA3, 1		LCDDATA6, 1		LCDDATA9, 1		22/34	RB1	
SEG2	LCDDATA0, 2		LCDDATA3, 2		LCDDATA6, 2		LCDDATA9, 2		23/35	RB2	
SEG3	LCDDATA0, 3		LCDDATA3, 3		LCDDATA6, 3		LCDDATA9, 3		24/36	RB3	
SEG4	LCDDATA0, 4		LCDDATA3, 4		LCDDATA6, 4		LCDDATA9, 4		9/9	RA4	C10UT/T0CKI
SEG5	LCDDATA0, 5		LCDDATA3, 5		LCDDATA6, 5		LCDDATA9, 5		2/2	RA5	C2OUT/AN4/SS
SEG6	LCDDATA0, 6		LCDDATA3, 6		LCDDATA6, 6		LCDDATA9, 6		14/18	RC3	
SEG7	LCDDATA0, 7		LCDDATA3, 7		LCDDATA6, 7		LCDDATA9, 7		3/3	RA1	AN1
SEG8	LCDDATA1, 0		LCDDATA4, 0		LCDDATA7, 0		LCDDATA10, 0		18/26	RC7	RX/DT/SDI/SDA
SEG9	LCDDATA1, 1		LCDDATA4, 1		LCDDATA7, 1		LCDDATA10, 1		17/25	RC6	TX/CK/SCK/SCT
SEG10	LCDDATA1, 2		LCDDATA4, 2		LCDDATA7, 2		LCDDATA10, 2		16/24	RC5	T1CKI/CCP1
SEG11	LCDDATA1, 3		LCDDATA4, 3		LCDDATA7, 3		LCDDATA10, 3		15/23	RC4	<u>T1G</u> /SDO
SEG12	LCDDATA1, 4		LCDDATA4, 4		LCDDATA7, 4		LCDDATA10, 4		2/2	RA0	ONV
SEG13	LCDDATA1, 5		LCDDATA4, 5		LCDDATA7, 5		LCDDATA10, 5		28/40	RB7	ICSPDAT/ICDDAT
SEG14	LCDDATA1, 6		LCDDATA4, 6		LCDDATA7, 6		LCDDATA10, 6		27/39	RB6	ICSPCK/ICDCK
SEG15	LCDDATA1, 7		LCDDATA4, 7		LCDDATA7, 7		LCDDATA10, 7		2/2	RA3	AN3/VREF+
SEG16	LCDDATA2, 0		LCDDATA5, 0		LCDDATA8, 0		LCDDATA11, 0		-/26	RD3	
SEG17	LCDDATA2, 1		LCDDATA5, 1		LCDDATA8, 1		LCDDATA11, 1		-/27	RD4	
SEG18	LCDDATA2, 2		LCDDATA5, 2		LCDDATA8, 2		LCDDATA11, 2		-/28	RD5	
SEG19	LCDDATA2, 3		LCDDATA5, 3		LCDDATA8, 3		LCDDATA11, 3		-/29	RD6	
SEG20	LCDDATA2, 4		LCDDATA5, 4		LCDDATA8, 4		LCDDATA11, 4		-/30	RD7	
SEG21	LCDDATA2, 5		LCDDATA5, 5		LCDDATA8, 5		LCDDATA11, 5		-/8	REO	AN5
SEG22	LCDDATA2, 6		LCDDATA5, 6		LCDDATA8, 6		LCDDATA11, 6		6/-	RE1	ANG
SEG23	LCDDATA2, 7		LCDDATA5, 7		LCDDATA8, 7		LCDDATA11, 7		-/10	RE2	ZNA

9.7 LCD Waveform Generation

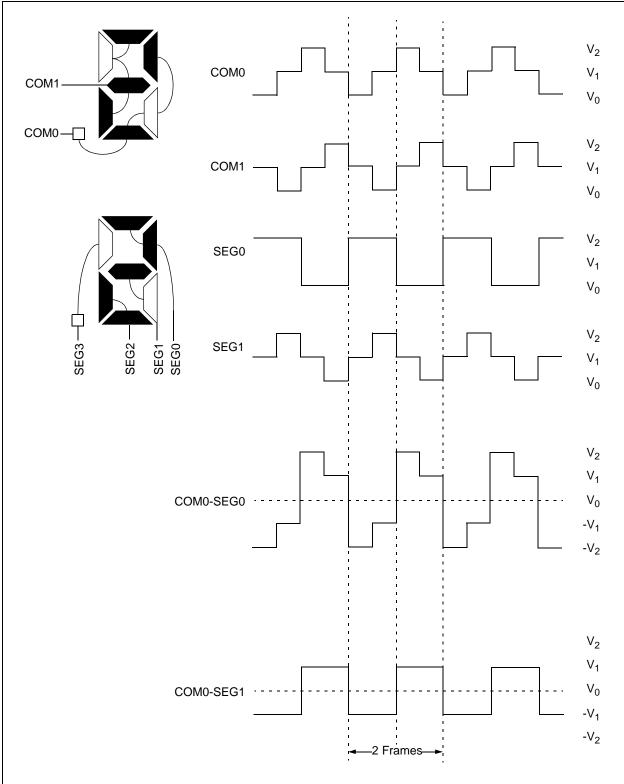
LCD waveforms are gen erated so that the net AC voltage across the dark pixel should be maximized and the net AC voltage across the clear pixel should be minimized. The net DC voltage across any pixel should be zero.

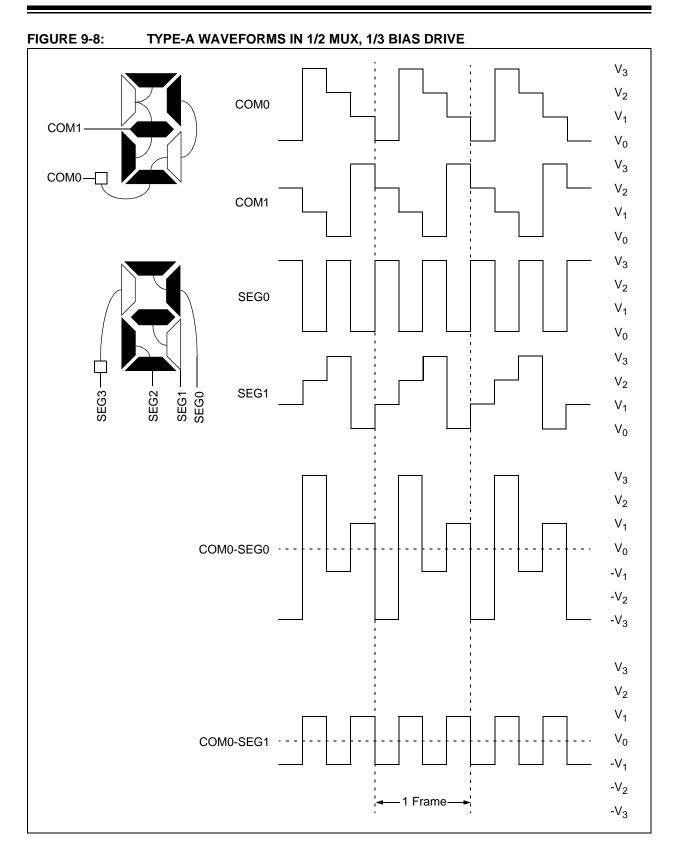
The C OM si gnal re presents the time s lice for each common, while the SEG contains the pixel data.

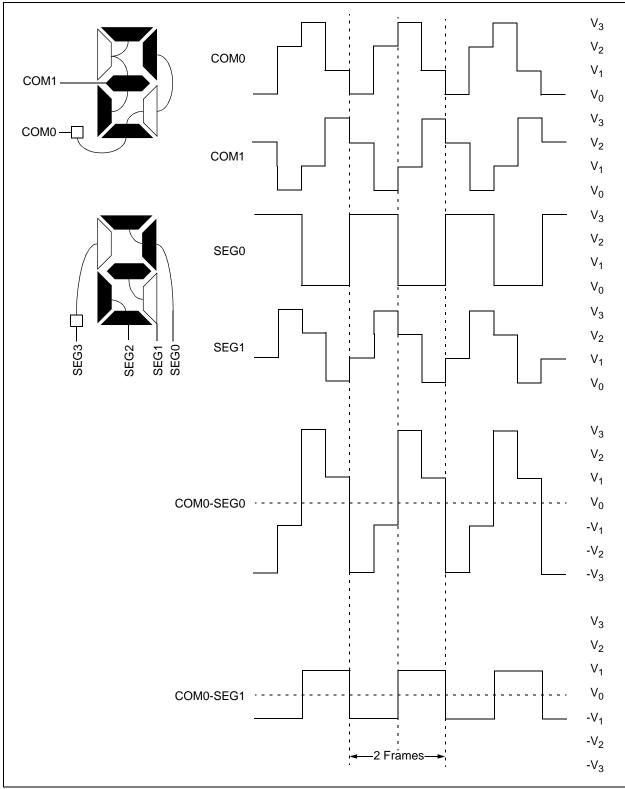

The pixel signal (COM-SEG) will have no DC component and it can take only one of the two rms values. The higher rms value will create a da rk pixel and a lo wer rms value will create a clear pixel.

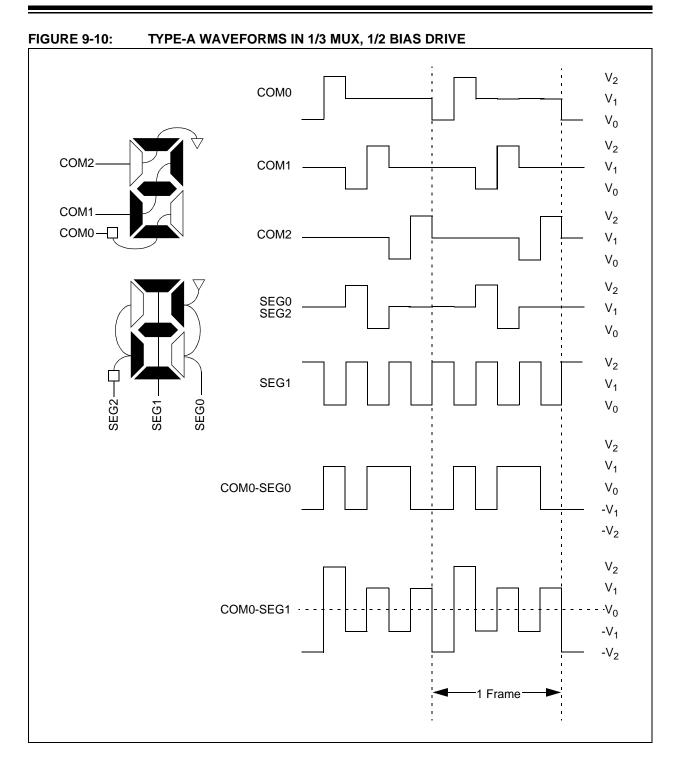

As the number of c ommons in creases, the d elta between t he two rms v alues de creases. The d elta represents the maximum contrast that the display can have. The LCDs can be driven by two types of waveform: Type-A and Type-B. In Type-A waveform, the ph ase changes within each common type, whereas in Type-B waveform, the pha se c hanges o n ea ch fram e boundary. Th us, Type-A w aveform maintains 0 VDC over a single frame, whereas Type-B waveform takes two frames.

- Note 1: If Sleep has to be executed with LCD Sleep enabled (L CDCON<SLPEN> i s '1'), then care must be taken to execute Sleep only when VDC on all the pixels is '0'.
 - 2: When the LCD clock source is Fosc/8192, if Sleep is ex ecuted, irrespective of the LCDCON<SLPEN> setting, the LCD goes into Sleep. Thus, take care to see that VDC on all pixels is '0' when Sleep is executed.


Figure 9-5 through Figure 9-15 provide waveforms for static, half-multiplex, on e-third-multiplex a nd quarter-multiplex d rives for T ype-A and T ype-B waveforms.


FIGURE 9-5: TYPE-A/TYPE-B WAVEFORMS IN STATIC DRIVE





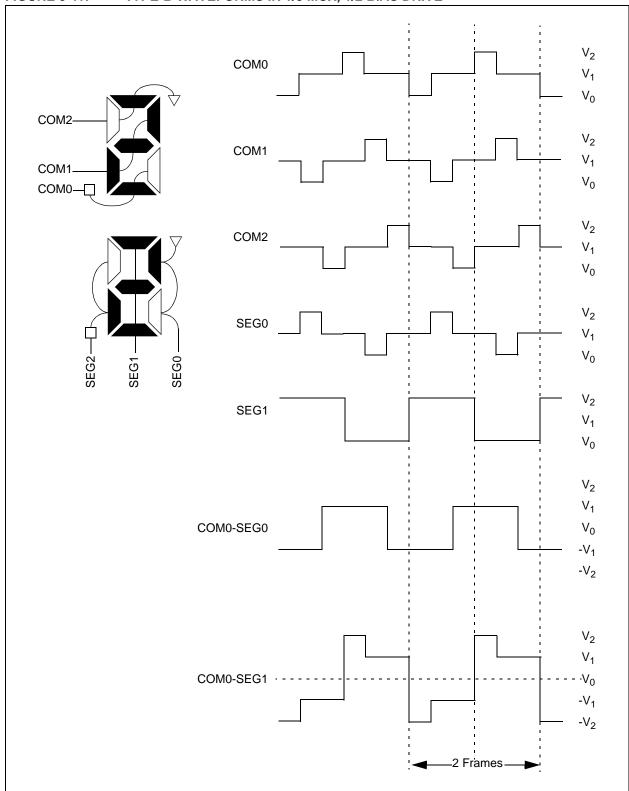
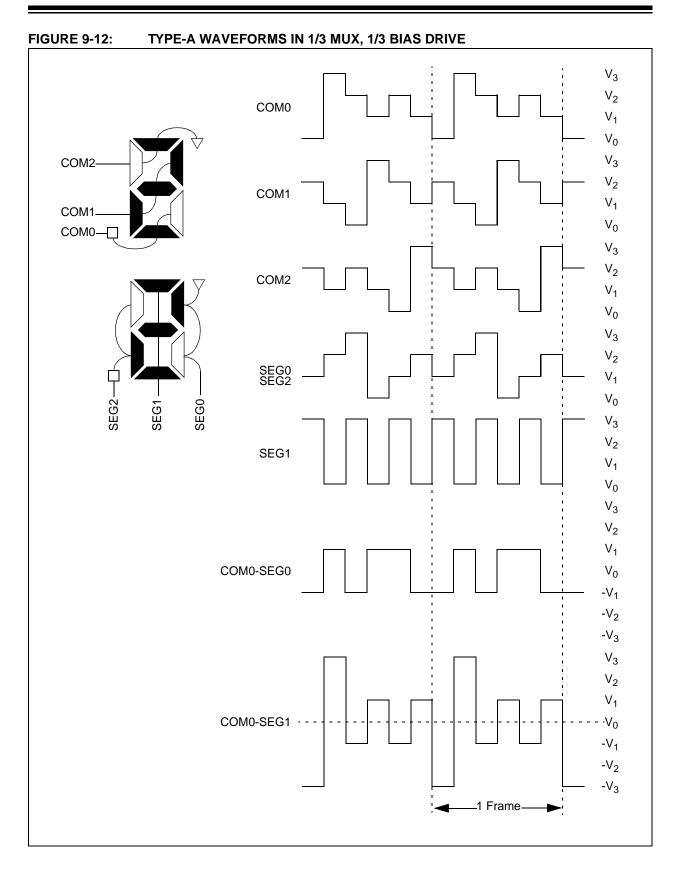
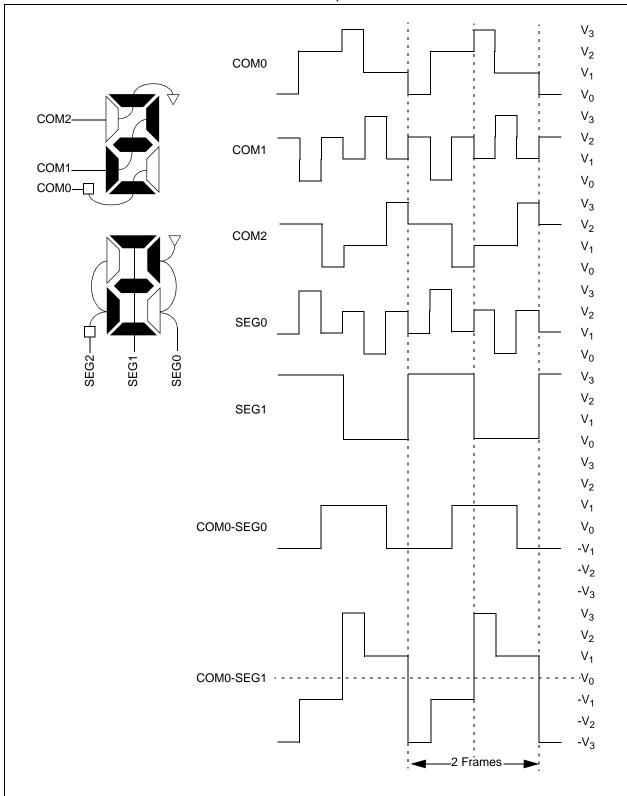
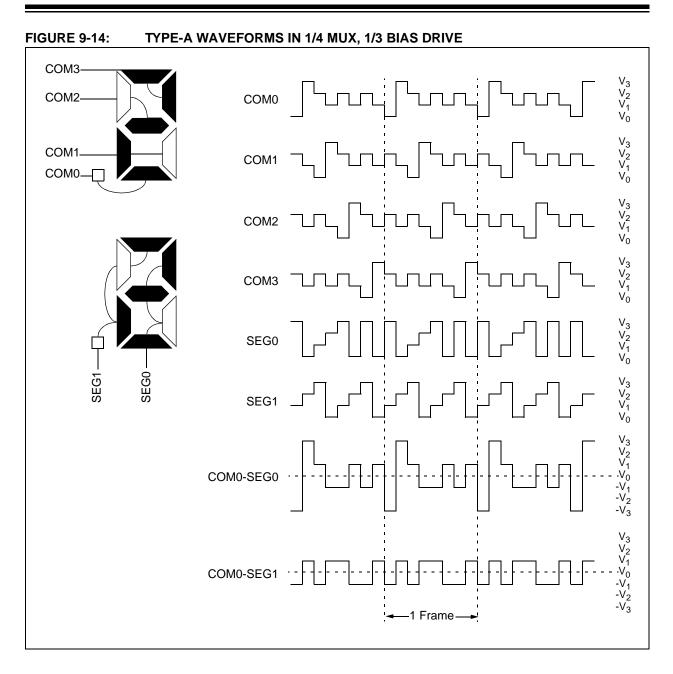


FIGURE 9-9: TYPE-B WAVEFORMS IN 1/2 MUX, 1/3 BIAS DRIVE





© 2005 Microchip Technology Inc.



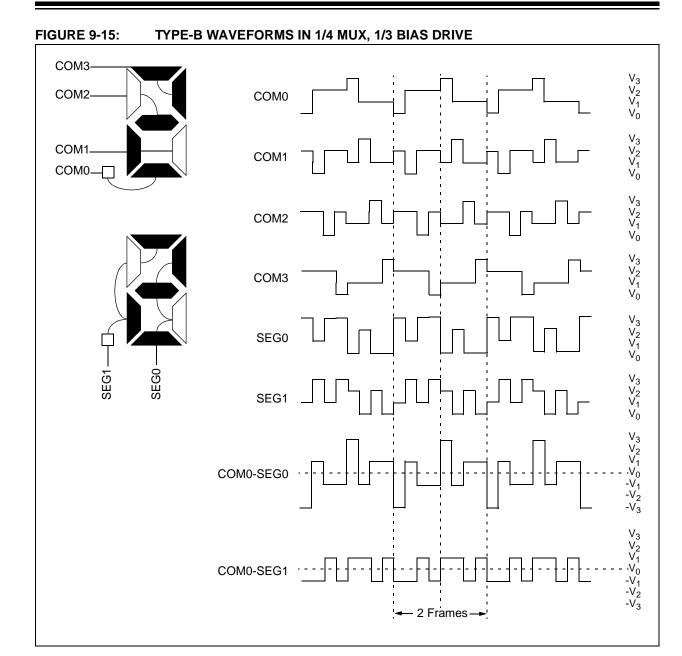
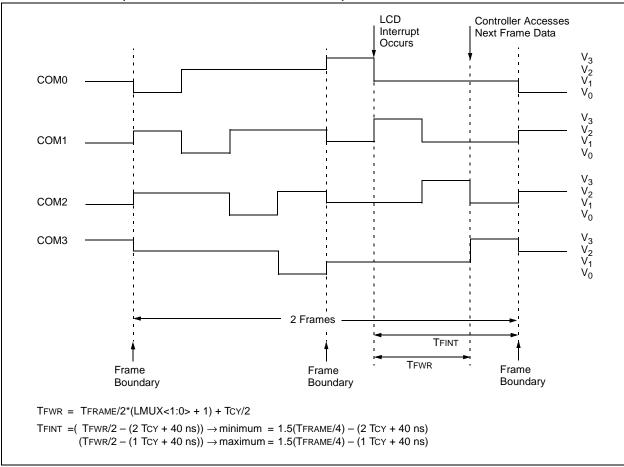

FIGURE 9-11: TYPE-B WAVEFORMS IN 1/3 MUX, 1/2 BIAS DRIVE

FIGURE 9-13: TYPE-B WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE

9.8 LCD Interrupts


The LCD timing generation provides an interrupt that defines the LCD frame timing. This in terrupt can be used to coordinate the writing of the pixel data with the start of a new frame. Writing pixel data at the frame boundary allows a visually crisp transition of the image. This interrupt can also be used to synchronize external events to the LCD.

A new frame is defined to begin at the leading edge of the C OM0 c ommon signal. The in terrupt will be s et immediately af ter the LC D controller co mpletes accessing all pixel data required for a frame. This will occur at a fi xed i nterval b efore the f rame b oundary (TFINT), as shown in Fi gure 9-16. The LCD controller will begin to access data for the next frame within the interval from the interrupt to when the controller begins to access data after the int errupt (TFWR). Ne w data must be written within TFWR, as this is when the LCD controller w ill beg in to ac cess the da ta for the next frame. When the LCD driver is running with Type-B waveforms and the LMUX<1:0> bits are not equal to '00', there are some additional issues that must be addressed. Since the DC voltage on the pixel takes two frames to maintain zero volts, the pixel data m ust n ot c hange b etween subsequent frames. If the pixel data were allowed to change, the waveform for the odd frames would not necessarily b et he complement of the waveform generated in the even frames and a DC component would be introduced int o the p anel. Therefore, when using Type-B waveforms, the user must synchronize the LCD pixel updates to occur within a subframe after the frame interrupt.

To corr ectly sequ ence w riting w hile in T ype-B, t he interrupt will only occur or complete phase intervals. If the user attempts to write when the write is disabled, the WERR (LCDCON<5>) bit is set.

Note: The interrupt is not generated when the Type-A waveform is selected and when the Type-B w ith n o multiplex (s tatic) i s selected.

FIGURE 9-16: WAVEFORMS AND INTERRUPT TIMING IN QUARTER-DUTY CYCLE DRIVE (EXAMPLE – TYPE-B, NON-STATIC)

9.9 Operation During Sleep

The LCD module can operate during Sleep. The selection is controlled by bit SLPEN (LCDCON<6>). Setting the SLPEN bit allows the LCD module to go to Sleep. Clearing the SLPEN bit allows the module to continue to operate during Sleep.

If a SLEEP instruction is executed and SLPEN = 1, the LCD module will cease all functions and go into a very low-current Consumption mode. The module will stop operation i mmediately a nd drive the m inimum LC D voltage on b oth seg ment a nd c ommon li nes. Figure 9-17 shows this operation.

To ensure that no DC component is introduced on the panel, the SLEEP instruction should be executed immediately after a LCD frame boundary. The LCD interrupt can be us ed to determine the fram e boundary. See **Section 9.8 "L CD Interrup ts**" for the form ulas to calculate the delay.

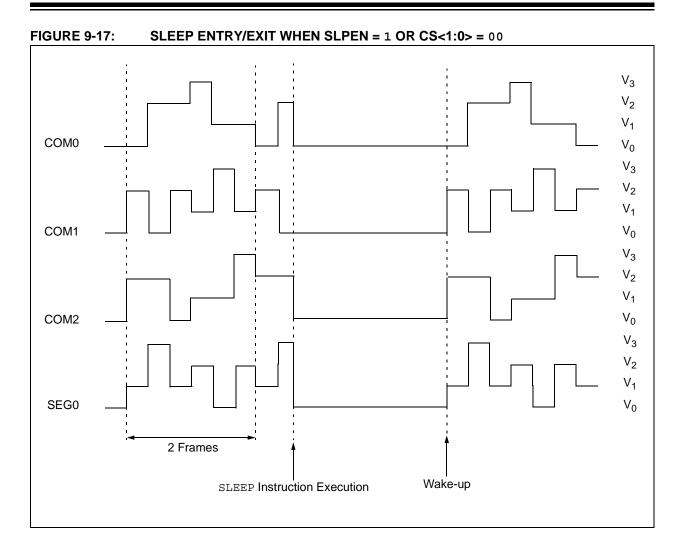

If a SLEEP instruction is executed and SLPEN = 0, the module will continue to display the current contents of the L CDDATA re gisters. T o a llow th e m odule to continue o peration w hile in SI eep, th e c lock so urce must be eit her the LFINTOSC or T1O SC ext ernal oscillator. While in Sleep, the LC D da ta ca nnot be changed. The LCD m odule c urrent consumption will not dec rease in thi s mo de; however, the ov erall consumption of th e de vice will be lower due to sh ut down of the core and other peripheral functions.

Table 9-4 shows the status of the LCD module during a Sleep while using each of the three available clock sources:

TABLE 9-4: LCD MODULE STATUS DURING SLEEP

Clock Source	SLPEN	Operation During Sleep?
T1OSC	0	Yes
11030	1	No
LFINTOSC	0	Yes
LFINTOSC	1	No
Fosc/4	0	No
FU3C/4	1	No

Note:	The LF	INTOSC or e	xternal T1O	SC
	oscillato	or must be used	to operate the l	LCD
	module	during Sleep.		

9.10 Configuring the LCD Module

The following is the sequence of steps to configure the LCD module.

- Select t he f rame c lock pr escale using b its LP<3:0> (LCDPS<3:0>).
- 2. Configure t he a ppropriate pi ns to f unction as segment drivers using the LCDSEn registers.
- Configure the LC D module f or the following using the LCDCON register:

-Multiplex and Bias mode, bits LMUX<1:0>

- -Timing source, bits CS<1:0>
- -Sleep mode, bit SLPEN

- 4. Write i nitial v alues to pixel d ata reg isters, LCDDATA0 through LCDDATA11.
- 5. Clear LCD Interrupt Flag, LCDIF (PIR2<4>) and if desired, en able the interrupt by s etting b it LCDIE (PIE2<4>).
- 6. Enable bias v oltage pi ns (VLCD<3:1>) b y setting VLCDEN (LCDCON<4>).
- 7. Enable the LCD module by setting bit LCDEN (LCDCON<7>).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	_	LVDIF		CCP2IF	0000 -0-0	0000 -0-0
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE		CCP2IE	0000 -0-0	0000 -0-0
107h	LCDCON	LCDEN	SLPEN	WERR	VLCDEN	CS1	CS0	LMUX1	LMUX0	0001 0011	0001 0011
108h	LCDPS	WFT	BIASMD	LCDA	WA	LP3	LP2	LP1	LP0	0000 0000	0000 0000
110h	LCDDATA0	SEG7 COM0	SEG6 COM0	SEG5 COM0	SEG4 COM0	SEG3 COM0	SEG2 COM0	SEG1 COM0	SEG0 COM0	XXXX XXXX	uuuu uuuu
111h	LCDDATA1	SEG15 COM0	SEG14 COM0	SEG13 COM0	SEG12 COM0	SEG11 COM0	SEG10 COM0	SEG9 COM0	SEG8 COM0	XXXX XXXX	uuuu uuuu
112h	LCDDATA2 ⁽²⁾	SEG23 COM0	SEG22 COM0	SEG21 COM0	SEG20 COM0	SEG19 COM0	SEG18 COM0	SEG17 COM0	SEG16 COM0	XXXX XXXX	uuuu uuuu
113h	LCDDATA3	SEG7 COM1	SEG6 COM1	SEG5 COM1	SEG4 COM1	SEG3 COM1	SEG2 COM1	SEG1 COM1	SEG0 COM1	XXXX XXXX	uuuu uuuu
114h	LCDDATA4	SEG15 COM1	SEG14 COM1	SEG13 COM1	SEG12 COM1	SEG11 COM1	SEG10 COM1	SEG9 COM1	SEG8 COM1	XXXX XXXX	uuuu uuuu
115h	LCDDATA5 ⁽²⁾	SEG23 COM1	SEG22 COM1	SEG21 COM1	SEG20 COM1	SEG19 COM1	SEG18 COM1	SEG17 COM1	SEG16 COM1	XXXX XXXX	uuuu uuuu
116h	LCDDATA6	SEG7 COM2	SEG6 COM2	SEG5 COM2	SEG4 COM2	SEG3 COM2	SEG2 COM2	SEG1 COM2	SEG0 COM2	XXXX XXXX	uuuu uuuu
117h	LCDDATA7	SEG15 COM2	SEG14 COM2	SEG13 COM2	SEG12 COM2	SEG11 COM2	SEG10 COM2	SEG9 COM2	SEG8 COM2	XXXX XXXX	uuuu uuuu
118h	LCDDATA8 ⁽²⁾	SEG23 COM2	SEG22 COM2	SEG21 COM2	SEG20 COM2	SEG19 COM2	SEG18 COM2	SEG17 COM2	SEG16 COM2	XXXX XXXX	uuuu uuuu
119h	LCDDATA9	SEG7 COM3	SEG6 COM3	SEG5 COM3	SEG4 COM3	SEG3 COM3	SEG2 COM3	SEG1 COM3	SEG0 COM3	XXXX XXXX	uuuu uuuu
11Ah	LCDDATA10	SEG15 COM3	SEG14 COM3	SEG13 COM3	SEG12 COM3	SEG11 COM3	SEG10 COM3	SEG9 COM3	SEG8 COM3	XXXX XXXX	uuuu uuuu
11Bh	LCDDATA11 ⁽²⁾	SEG23 COM3	SEG22 COM3	SEG21 COM3	SEG20 COM3	SEG19 COM3	SEG18 COM3	SEG17 COM3	SEG16 COM3	XXXX XXXX	uuuu uuuu
11Ch	LCDSE0(3)	SE7	SE6	SE5	SE4	SE3	SE2	SE1	SE0	0000 0000	uuuu uuuu
11Dh	LCDSE1 ⁽³⁾	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	0000 0000	uuuu uuuu
11Eh	LCDSE2 ^(2,3)	SE23	SE22	SE21	SE20	SE19	SE18	SE17	SE16	0000 0000	uuuu uuuu

TABLE 9-5: REGISTERS ASSOCIATED WITH LCD OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the LCD module.

Note 1: These pins may be configured as port pins, depending on the oscillator mode selected.

2: PIC16F914/917 only.

3: This register is only initialized by a POR or BOR reset and is unchanged by other Resets.

10.0 PROGRAMMABLE LOW-VOLTAGE DETECT (PLVD) MODULE

The Programmable Low-Voltage Detect module is an interrupt driven s upply lev el de tection. T he voltage detection monitors the internal power supply.

10.1 Voltage Trip Points

The PIC16F917/916/914/913 de vice s upports eight internal PLVD trip points. See Register 10-1 for av ailable PLVD trip point voltages.

10.1.1 PLVD CALIBRATION

The PIC16F91X stores the PLVD calibration values in fuses located in the Calibration Word 2 (20 09h). The Calibration Word 2 is not erased when using the specified bulk erase sequence in the "PIC16F91X *Memory Programming Specification*" (DS41244) and thus, does not require reprogramming.

REGISTER 10-1: LVDCON – LOW-VOLTAGE DETECT CONTROL REGISTER (ADDRESS: 109h)

U-0	U-0	R-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		IRVST	LVDEN	—	LVDL2	LVDL1	LVDL0
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5	IRVST: Internal Reference Voltage Stable Status Flag bit ⁽¹⁾
	 1 = Indicates that the PLVD is stable and PLVD interrupt is reliable 0 = Indicates that the PLVD is not stable and PLVD interrupt should not be enabled
bit 4	LVDEN: Low-Voltage Detect Power Enable bit
	 1 = Enables PLVD, powers up PLVD circuit and supporting reference circuitry 0 = Disables PLVD, powers down PLVD and supporting circuitry
bit 3	Unimplemented: Read as '0'
bit 2-0	LVDL<2:0>: Low-Voltage Detection Limit bits (nominal values)
	111 = 4.5 V
	110 = 4.2V
	101 = 4.0V
	100 = 2.3V (default)
	011 = 2.2V
	010 = 2.1V
	001 = 2.0V
	000 = 1.9V ⁽²⁾
	Note 1: The IRVST bit is us able on ly when the HFINTOSC is running. When using an external crystal to run the microcontroller, the PLVD settling time is expected to be $<50 \ \mu$ s when VDD = 5V and $<25 \ \mu$ s when VDD = 3V. Appropriate software delays should be used after enabling the PLVD module to ensure proper status readings of the module.
	2: Not tested and below minimum VDD.
	Legend:

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/8Bh/ 10Bh/18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	_	CCP2IF	0000 -0-0	0000 -0-0
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
109h	LVDCON	—	_	IRVST	LVDEN	_	LVDL2	LVDL1	LVDL0	00 -100	00 -100

TABLE 10-1: REGISTERS ASSOCIATED WITH PROGRAMMABLE LOW-VOLTAGE DETECT

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the PLVD module.

11.0 ADDRESSABLE UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The U niversal Sy nchronous As ynchronous R eceiver Transmitter (USART) module is one of the two serial I/O m odules. (U SART i s also k nown as a Serial Communications Interface or SCI.) The USART can be configured as a full-duplex asynchronous system that can communicate w ith pe ripheral d evices, s uch a s CRT terminals and pe rsonal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK/SCK/SCL/SEG9 and R C7/RX/DT/SDI/SDA/SEG8 a s the U niversal Synchronous Asynchronous Receiver Transmitter.

The U SART modu le also has a multi-proce ssor communication capability using 9-bit address detection.

REGISTER 11-1: TXSTA – TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

						•		,
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Cloc	k Source Se	elect bit					
	Asynchronou	<u>us mode:</u>						
	Don't care Synchronous	s modo:						
	1 = Master n		generated ir	nternally fro	m BRG)			
	0 = Slave me				,			
bit 6	TX9 : 9-bit Tr	ansmit Enal	ble bit					
	1 = Selects 9							
	0 = Selects 8							
bit 5	TXEN: Trans		bit					
	1 = Transmit 0 = Transmit							
			N overrides ⁻		nc mode			
					it moue.			
bit 4	SYNC: USA		elect bit					
	1 = Synchro 0 = Asynchro		<u>,</u>					
bit 3	Unimpleme							
bit 2	BRGH: High							
	Asynchrono							
	1 = High spe							
	0 = Low spe							
	Synchronous Unused in th							
bit 1	TRMT: Trans		aistar Statu	e hit				
bit i	1 = TSR em		gister otatu	5 510				
	0 = TSR full	F • 7						
bit 0	TX9D: 9th bi	it of Transm	it Data, can	be Parity bi	t			
	Legend:							
	R = Readab	le bit	W = Wri	table bit	U = Unimpl	emented b	it, read as '()'
	- n = Value a	at POR	'1' = Bit	is set	'0' = Bit is c	leared	x = Bit is ur	known

ER 11-2:	RCSTA – RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN ⁽¹⁾ : Serial Port Enable bit										
	RC6/T		l (configures SCL/SEG9 pi d			EG8 and					
bit 6	1 = Selects	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception									
bit 5		gle Receive									
	Asynchron Don't care	-									
	1 = Enable 0 = Disabl	<u>us mode – N</u> es single rec es single rec cleared after	eive	complete							
		us mode – S	-	•							
bit 4	CREN: Continuous Receive Enable bit										
	0 = Disable <u>Synchrono</u> 1 = Enable	s continuou es continuou <u>us mode:</u> s continuou	is receive s receive un	til enable bit	CREN is cle	eared (CRE	N overrides	SREN)			
bit 3		es continuou		+							
Dit 3	 ADDEN: Address Detect Enable bit <u>Asynchronous mode 9-bit (RX9 = 1):</u> 1 = Enables address detection, enables interrupt and load of the receive buffer when RSR<8> is set 0 = Disables address detection, all bytes are received and ninth bit can be used as parity bit 										
bit 2		ming Error b									
		g error (can	be updated	by reading	RCREG regi	ister and red	ceive next va	alid byte)			
bit 1	OERR: Ov	errun Error	bit								
	1 = Overru 0 = No ove		be cleared l	by clearing b	oit CREN)						
bit 0	RX9D: 9th	bit of Rece	ived Data (c	an be parity	bit but must	be calculat	ed by user f	irmware)			
	Note 1:	CCP2CON	used for Pl	C16F914/91	7 only.						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

11.1 USART Baud Rate Generator (BRG)

The BR G supports bo th the Asy nchronous an d Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a fre e ru nning 8-b it t imer. In Asynchronous mo de, bit BR GH (T XSTA<2>) also controls the baud rate . In Sy nchronous mo de, b it BRGH is ig nored. Table 11-1 sh ows the form ula for computation o f the ba ud ra te fo r di fferent U SART modes w hich on ly apply i n M aster m ode (int ernal clock).

Given the desired b aud rate and F osc, the ne arest integer value for the SPBRG register can be calculated using the formula in Table 11-1. From this, the error in baud rate can be determined. It may be a dvantageous to us e the high b aud ra te (BRGH = 1) ev en for sl ower baud cl ocks. This is because the FOSC/(16 (X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not w ait for a tim er ov erflow before outputting the new baud rate.

11.1.1 SAMPLING

The dat a on the RC7/RX/DT/SDI/SDA/SEG8 pin is sampled thre e tim es by a m ajority det ect circuit to determine if a high or a low level is present at the RX pin.

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64 (X + 1))	Baud Rate = Fosc/(16 (X + 1))
1	(Synchronous) Baud Rate = Fosc/(4 (X + 1))	N/A

TABLE 11-1: BAUD RATE FORMULA

Legend: X = value in SPBRG (0 to 255)

TABLE 11-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Valu all o Res	ther
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000	-010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000	000x
99h	SPBRG	Baud Ra	aud Rate Generator Register							0000 0000	0000	0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

BAUD	Fosc = 20 MHz			F	osc = 16 N	IHz	F	osc = 10 N	/Hz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3	—			—				-	
1.2	1.221	1.75	255	1.202	0.17	207	1.202	0.17	129
2.4	2.404	0.17	129	2.404	0.17	103	2.404	0.17	64
9.6 9	.766	1.73	31	9.615	0.16	25	9.766	1.73	15
19.2	19.531	1.72	15	19.231	0.16	12	19.531	1.72	7
28.8	31.250	8.51	9	27.778	3.55	8	31.250	8.51	4
33.6	34.722	3.34	8	35.714	6.29	6	31.250	6.99	4
57.6	62.500	8.51	4	62.500	8.51	3	52.083	9.58	2
HIGH	1.221	_	255	0.977	_	255	0.610	_	255
LOW 3	2.500	—	0	250.000	_	0	156.250	—	0

TABLE 11-3: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

BAUD		Fosc = 4 M	Hz	Fo	Fosc = 3.6864 MHz			
RATE (K)	KBAUD	% ERROR	value		% ERROR	SPBRG value (decimal)		
0.3	0.300	0	207	0.3	0	191		
1.2	1.202	0.17	51	1.2	0	47		
2.4	2.404	0.17	25	2.4	0	23		
9.6 8.	929	6.99	6	9.6	0	5		
19.2	20.833	8.51	2	19.2	0	2		
28.8	31.250	8.51	1	28.8	0	1		
33.6	_	_	_	_	_	_		
57.6	62.500	8.51	0	57.6	0	0		
HIGH	0.244	_	255	0.225	_	255		
LOW 6	2.500	_	0	57.6	_	0		

TABLE 11-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	F	Fosc = 20 MHz			osc = 16 M	Hz	F	osc = 10 M	Hz
RATE (K)	RATE		SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3				—	—			—	—
1.2	_			—	—			—	—
2.4	—	—	—	—	—	—	2.441	1.71	255
9.6 9.	615	0.16	129	9.615	0.16	103	9.615	0.16	64
19.2	19.231	0.16	64	19.231	0.16	51	19.531	1.72	31
28.8	29.070	0.94	42	29.412	2.13	33	28.409	1.36	21
33.6	33.784	0.55	36	33.333	0.79	29	32.895	2.10	18
57.6	59.524	3.34	20	58.824	2.13	16	56.818	1.36	10
HIGH	4.883	_	255	3.906	_	255	2.441	-	255
LOW 1	250.000	_	0	1000.000	_	0	625.000	-	0

BAUD	F	osc = 4 MH	lz	Fos	c = 3.6864	MHz
RATE (K)	KBAUD	% ERROR	SPBRG value (decimal)	KBAUD	% ERROR	SPBRG value (decimal)
0.3					_	_
1.2	1.202	0.17	207	1.2	0	191
2.4	2.404	0.17	103	2.4	0	95
9.6 9.	615	0.16	25	9.6	0	23
19.2	19.231	0.16	12	19.2	0	11
28.8	27.798	3.55	8	28.8	0	7
33.6	35.714	6.29	6	32.9	2.04	6
57.6	62.500	8.51	3	57.6	0	3
HIGH	0.977	_	255	0.9	_	255
LOW 25	0.000	_	0	230.4	_	0

11.2 USART Asynchronous Mode

In this mo de, th e U SART us es st andard Non-Return-to-Zero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8 bits. An on-chip, dedicated, 8-bit Baud Rate Generator can be used to derive standard baud rate fre quencies from th e os cillator. The U SART transmits and re ceives the LSb first. The transmitter and receiver are functionally independent but use the same da ta for mat and b aud rate. The ba ud ra te generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not su pported by the hardware, but ca n be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

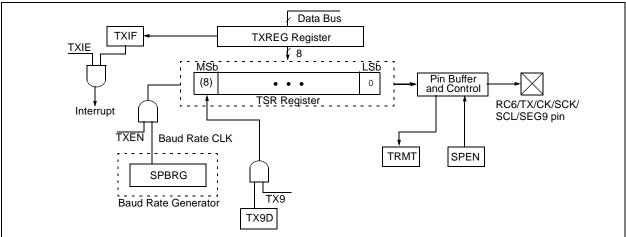
The U SART As ynchronous m odule consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

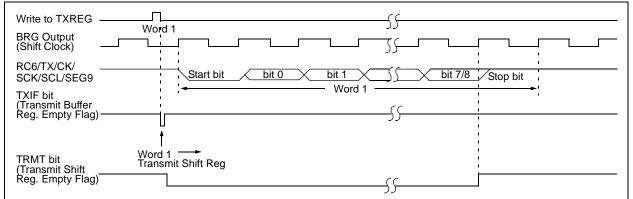
11.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter b lock di agram is s hown i n Figure 11-1. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit, TXIF (PIR1 <4>), is set. This interrupt can be enabled/disabled by setting/clearing enable bit, TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to d etermine if the TSR register is empty.

- Note 1: The TSR register is not mapped in da ta memory, so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set. TXIF is cleared by loading TXREG.


Transmission is ena bled by sett ing enable bit, TX EN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 11-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR re gister is empt y. A t that point, transfer to the TXREG register will result in an immediat e transfer to TSR, r esulting in an empty TXR EG. A back- to-back transfer is thus possible (Figure 11-3). Clearing enablebit TXEN during a transmission will cause the transmission to be aboted and will reset the transmitter. As aresult, the RC6/TX/CK/SCK/SCL/SEG9 pin will rev ert t o high-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit m ay b e I oaded in the TSR register.


When se tting up an Asy nchronous T ransmission, follow these steps:

- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set b it B RGH (Section 11.1 " USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.
- 5. Enable the transmission by s etting bit TXEN, which will also set bit TXIF.
- 6. If 9 -bit transmission is selected, the ni nth b it should be loaded in bit TX9D.
- 7. Load dat a to the TXR EG regi ster (s tarts transmission).
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

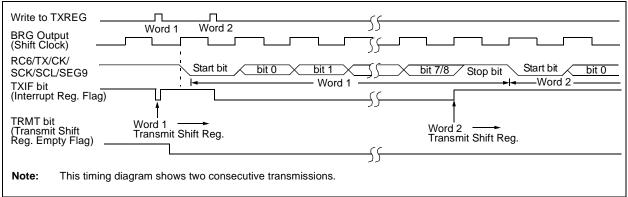

FIGURE 11-1: USART TRANSMIT BLOCK DIAGRAM

FIGURE 11-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 11-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK-TO-BACK)

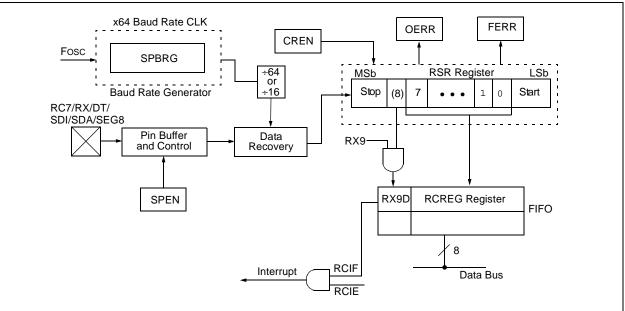
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit D	ata Regist	ter					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generat	0000 0000	0000 0000						

TABLE 11-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

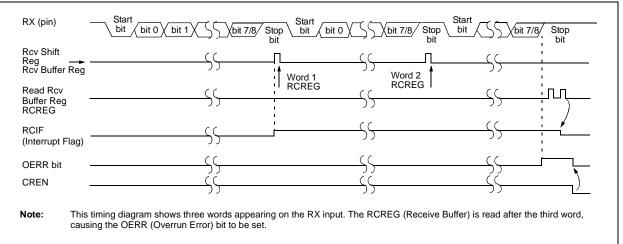
Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission.

11.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block di agram is shown in Figure 11-4. The da ta is received on the RC7/RX/DT/SDI/SDA/SEG8 pin and dri ves the da ta recovery block. The data recovery block is actually a high-speed shifter, ope rating at x16 times the bau d rate; whereas the main receive serial shifter operates at the bit rate or at Fosc.


Once A synchronous m ode is selected, r eception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (Serial) Shift Register (RSR). Aft ers ampling the S top bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit, RCIF (PIR1<5>), is set. The actual interrupt can be enabled/disabled by s etting/clearing enable bit, RCIE (PIE1<5>). Flag bit R CIF is a rea d-only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, the Overrun Error bit, OERR (RCSTA<1>), will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received. It is, therefore, essential to clear error bit OERR if it is set. Framing error bit, FERR (RCSTA<2>), is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading the RCREG register in order not to lose the old FERR and RX9D information.


When setting up an Asynchronous Reception, follow these steps:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set b it B RGH (Section 11.1 " USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts a re d esired, t hen s et enable b it RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and de termine if an y error occurred during reception.
- 8. Read t he 8 -bit rec eived da ta by rea ding th e RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using in terrupts, en sure that G IE and PEIE (bits 7 and 6) of the INTCON register are set.

FIGURE 11-5: ASYNCHRONOUS RECEPTION

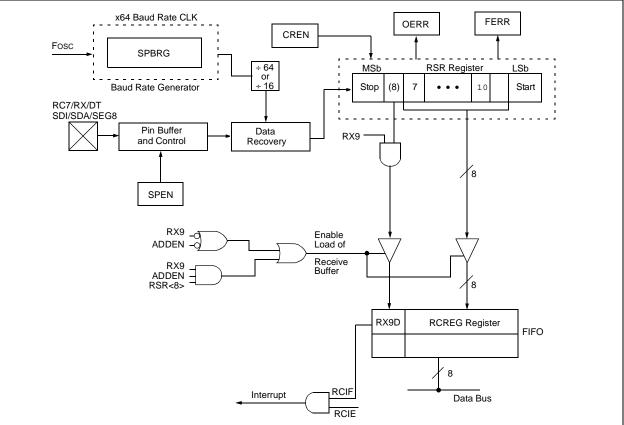
TABLE 11-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	x000 0000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 000x	0000 000x
1Ah	RCREG	USART I	Receive D	ata Regis	ter					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Genera	tor Regist		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

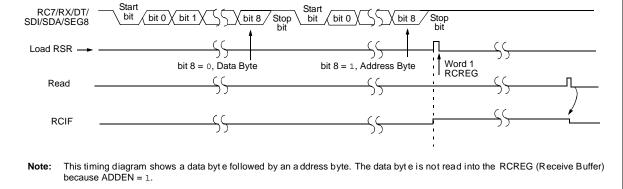
© 2005 Microchip Technology Inc.

11.2.3 SETTING UP 9-BIT MODE WITH ADDRESS DETECT

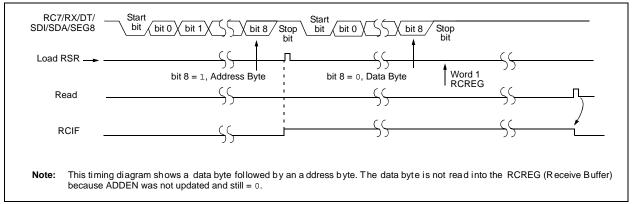

When setting up an Asy nchronous R eception with address detect enabled:

- · Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- · Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- If interrupts are desired, then set enable bit RCIE.
- Set bit RX9 to enable 9-bit reception.
- · Set ADDEN to enable address detect.

FIGURE 11-6:


• Enable the reception by setting enable bit CREN.

- · Flag bit RCIF will be set when reception is complete, and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit and determine if any error occurred during reception.
- Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- · If any error occurred, clear the error by clearing enable bit CREN.
- If the device has been addressed, clear the ADDEN bit to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.



USART RECEIVE BLOCK DIAGRAM

TABLE 11-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all o Res	ther
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART Red	ceive Dat	a Register	r					0000	0000	0000	0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate Generator Register									0000	0000	0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

11.3 USART Synchronous Master Mode

In Synchronous Master mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to co nfigure th e R C6/TX/CK/SCK/SCL/SEG9 an d RC7/RX/DT/SDI/SDA/SEG8 I/O pins to CK (clock) and DT (data) lines, r espectively. The Master mode i ndicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting bit, CSRC (TXSTA<7>).

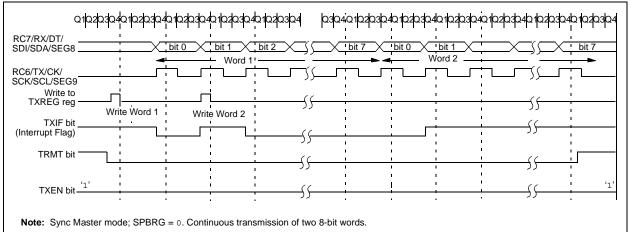
11.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter b lock di agram is s hown i n Figure 11-6. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXR EG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCYCLE), the TXREG is empty and interrupt bit, TXIF (PIR1<4>), is set. The interrupt can be enabled/disabled by se tting/clearing en able bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in or der to det ermine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

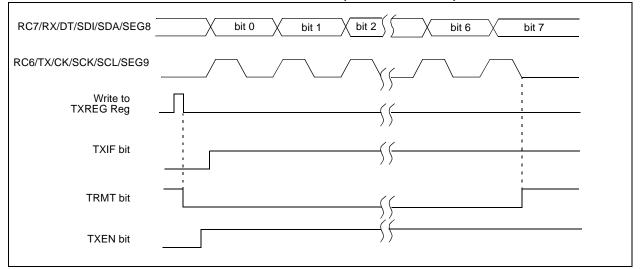
Transmission is enabled by setting enable bit, TXEN (TXSTA<5>). The actual tran smission will not occur until the TXREG register has been loaded with data. The first data bit will be shifted out on the next available rising edge of t he clock on the CK line. Data out is stable around the falling edge of the synchronous clock (Figure 11-9). The transmission can also be started by first loading the TXR EG register and then setting bit TXEN (Figure 11-10). This is advantageous when slow baud rates are selected, since the BRG is kept in Reset when bits TXEN, CREN and SREN are clear. Setting enable b it T XEN w ill st art the BR G, c reating a shift clock immediately. Normally, when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR, r esulting i n a n em pty T XREG. B ack-to-back transfers are possible.

Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The DT and CK pi ns will revert to high-impedance. If either bit CREN or bit SREN is set during a transmission, the transmission is aborted and the DT pin reverts to a high-impedance state (for a reception). The CK pin will remain an output if bit CSRC is set (internal clock). The transmitter logic, however, is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear bit TXEN. If bit SREN is set (to interrupt an on-going transmission and receive a single word), then after the single word is received, bit SREN will be cleared and the serial port will revert back to transmitting, since bit TXEN is still set. The DT line will immediately switch from High-Impedance Receive mode to tran smit and start driving. To avoid this, bit TXEN should be deared.

In orde r to s elect 9-bi t tran smission, the T X9 (TXSTA<6>) bit should be set and the ninth bit should be written to bit TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG can result in an immediate transfer of the data to the TSR register (if the TSR is empty). If the TSR was empty and the TXREG was written before writing the "new" TX9D, the "present" value of bit TX9D is loaded.


Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud ra te (Section 11.1 "USART Ba ud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit TXIE.
- 4. If 9-bit transmission is desired, set bit TX9.
- 5. Enable the tr ansmission by setting bit TX EN.
- 6. If 9 -bit transmission is selected, the ni nth b it should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using in terrupts, en sure that G IE and PEIE (bits 7 and 6) of the INTCON register are set.


Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART T	ransmit D	ata Regist	er					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generat	0000 0000	0000 0000						

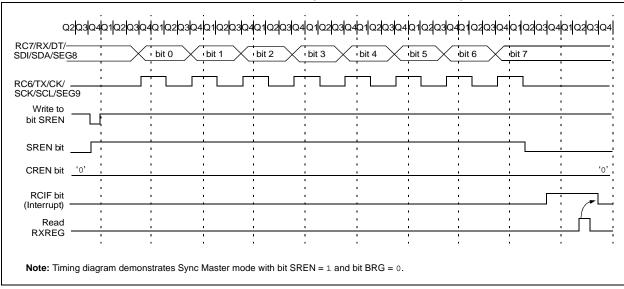
Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 11-9: SYNCHRONOUS TRANSMISSION

FIGURE 11-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

11.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Sy nchronous mode is selected, rec eption is enabled by setting either en able bit, S REN (RCSTA<5>), or enable bit, CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT/SDI/SDA/SEG8 pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is s et, th e rec eption is continuous un til C REN i s cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Sh ift R egister (RSR) is t ransferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit, RCIF (PIR1<5>), is set. The actual i nterrupt c an be enabled/disabled b y setting/clearing enable bit, RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double-buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then Overrun Error bit, OERR (RCSTA<1>), is set. The word in the RSR will be lost. The RCREG register c an be re ad twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the us er to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.


When setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud ra te (Section 11.1 "USART Ba ud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts a re d esired, t hen s et enable b it RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and de termine if an y error occurred during reception.
- 9. Read t he 8 -bit rec eived da ta by rea ding th e RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using in terrupts, en sure that G IE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR,		Valu all o Res	
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART R	eceive Da	ata Registe	ər					0000	0000	0000	0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate Generator Register									0000	0000	0000

TABLE 11-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

FIGURE 11-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

11.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode in the fact that the shift clock is supplied externally at the RC6/TX/CK/SCK/SCL/SEG9 pin (instead of being supplied in ternally in Master mode). This all ows the device to transfer or receive data while in Sleep mode. Slave mo de is ent ered by c learing bit, CSRC (TXSTA<7>).

11.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The ope ration of the Syn chronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the $\tt SLEEP$ instruction is executed, the following will occur:

- a) The first word will im mediately transfer to the TSR register and transmit.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Synchronous Slave Transmission, follow these steps:

- Enable the synchronous slave serial port by setting b its SYNC an d SPEN a nd c learing b it CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts a re d esired, t hen s et enable b it TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the tran smission by setting enable bit TXEN.
- 6. If 9 -bit transmission is selected, the ni nth b it should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE (bits 7 and 6) of the INTCON register are set.

TABLE 11-10:	REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION
--------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART T	ransmit D	ata Regis	ter					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Generat	0000 0000	0000 0000						

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

11.4.2 USART SYNCHRONOUS SLAVE RECEPTION

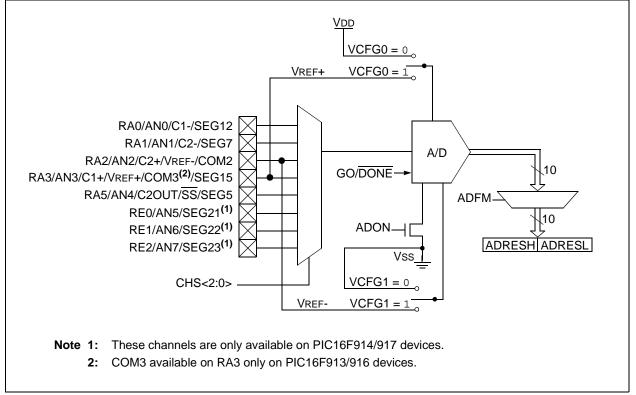
The operation of the Synchronous Master and Slave modes is id entical, except in the c ase of the Sleep mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the R SR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

When setting up a Syn chronous Slave R eception, follow these steps:

- Enable the s ynchronous master se rial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- Flag bi t R CIF will be set w hen rec eption is complete and an in terrupt will be ge nerated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and de termine if an y error occurred during reception.
- 7. Read t he 8 -bit rec eived da ta by rea ding th e RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using in terrupts, en sure that G IE and PEIE (bits 7 and 6) of the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive D	ata Regist	er					0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	0000 0000	0000 0000						


TABLE 11-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception.

12.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital converter (A/D) allows conversion of an analog input signal to a 10-bit binary representation of th at signal. The PI C16F917/916/914/913 has up to eight analog inputs, multiplexed into one sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a binary result via successive approximation and stores the result in a 10-bit register. The voltage reference used in the conversion is so ftware selectable to either VDD or a voltage applied by the VREF pin. Figure 12-1 shows the block diagam of the A/D on thePIC16F917/916/914/913.

12.1 A/D Configuration and Operation

There are thr ee reg isters av ailable to c ontrol th e functionality of the A/D module:

- 1. ANSEL (Register 12-1)
- 2. ADCON0 (Register 12-2)
- 3. ADCON1 (Register 12-3)

12.1.1 ANALOG PORT PINS

The ANS<7:0> bits (ANSEL<7:0>) and the TRIS bits control the ope ration of the A/D port pins. Set the corresponding TRIS bits to set the pin output driver to its high-impedance state. Likewise, set the corresponding ANSEL bit to disable the digital input buffer.

Note:	Analog voltages on any pin that is defined
	as a di gital input m ay c ause t he input
	buffer to conduct excess current.

12.1.2 CHANNEL SELECTION

There are up to e ight analog channels on the PIC16F917/916/914/913, AN <7:0>. The CHS<2:0> bits (ADCON0<4:2>) control which channel is connected to the sample and hold circuit.

12.1.3 VOLTAGE REFERENCE

There are two options for ea ch reference to the A/D converter, VREF+ and VREF-. VREF+ can be connected to either VDD or an externally applied voltage. Alternatively, VREF- can be connected to either VSs or an externally applied voltage. VCFG<1:0> bits are used to select the reference source.

12.1.4 CONVERSION CLOCK

The A/D conversion cycle requires 11 TAD. The source of the conversion clock is software selectable via the ADCS bits (ADCON1<6:4>). There are seven possible clock options:

- •F osc/2
- •F osc/4
- •F osc/8
- •F osc/16
- •F osc/32
- •F osc/64
- •F RC (dedicated internal oscillator)

For c orrect c onversion, the A/ D c onversion clock (1/TAD) must be selected to ensure a minimum TAD of 1.6 $\mu s.$ Table 12-1 shows a f ew TAD c alculations for selected frequencies.

A/D Clock	Source (TAD)	Device Frequency						
Operation	ADCS<2:0>	20 MHz	5 MHz	4 MHz	1.25 MHz			
2 Tosc	000	100 ns ⁽²⁾	400 ns ⁽²⁾	500 ns ⁽²⁾	1.6 µs			
4 Tosc	100	200 ns ⁽²⁾	800 ns ⁽²⁾	1.0 μs (2)	3.2 μs			
8 Tosc	001	400 ns ⁽²⁾	1.6 μs	2.0 μs	6.4 μs			
16 Tosc	101	800 ns ⁽²⁾	3.2 μs	4.0 μs	12.8 μs ⁽³⁾			
32 Tosc	010	1.6 μs	6.4 μs	8.0 μs (3)	25.6 μs ⁽³⁾			
64 Tosc	110	3.2 μs	12.8 μs ⁽³⁾	16.0 μs ⁽³⁾	51.2 μs ⁽³⁾			
A/D RC	x11	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)	2-6 μs ^(1,4)			

TABLE 12-1: TAD vs. DEVICE OPERATING FREQUENCIES

Legend: Shaded cells are outside of recommended range.

- **Note 1:** The A/D RC source has a typical TAD time of 4 μ s for VDD > 3.0V.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the A/D RC clock source is only recommended if the conversion will be performed during Sleep.

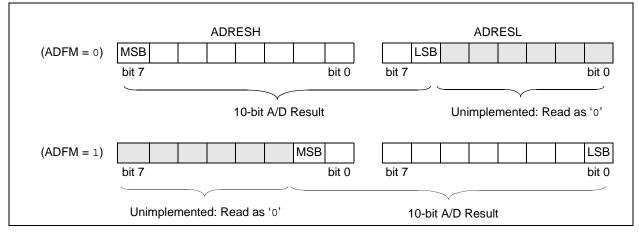
12.1.5 STARTING A CONVERSION

The A/D conversion is initiated by setting the GO/DONE bit (ADCON0<1>). When the conversion is complete, the A/D module:

- Clears the GO/DONE bit
- Sets the ADIF flag (PIR1<6>)
- · Generates an interrupt (if enabled)

If the conversion must be aborted, the GO/DONE bit can be cl eared in software. The ADRESH:ADRESL registers will not be updated with the partially complete A/D co nversion sa mple. I nstead, t he ADRESH:ADRESL registers will retain the value of the previous conversion. After an ab orted c onversion, a 2 TAD delay is required before another acquisition can be initiated. Following the delay, an input acquisition is automatically started on the selected channel.

Note: The GO/DONE bit should not be set in the same instruction that turns on the A/D.


FIGURE 12-2: A/D CONVERSION TAD CYCLES

TCY TO TAD TAD1	TAD2	TAD3	TAD4	TAD5	TAD6	TAD7	TAD8	TAD9	TAD10	TAD11	
	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0	
Convers	sion St	arts									
Holding Capa		s Disco	nnecte	d from	Analog	ADR <u>E</u> GO/D	↓	d ADR	ESL re	gisters a	are loaded,
						الماما.				4 1 4 -	Analog Input

12.1.6 CONVERSION OUTPUT

The A/D conversion can be supplied in two formats: left or right shifted. The ADFM bit (ADCON0<7>) controls the o utput fo rmat. Fi gure 12-3 s hows t he o utput formats.

FIGURE 12-3: 10-BIT A/D RESULT FORMAT

REGISTER 12-1: ANSEL – ANALOG SELECT REGISTER (ADDRESS: 91h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANS7 ⁽²⁾	ANS6 ⁽²⁾	ANS5 ⁽²⁾	ANS4	ANS3	ANS2	ANS1	ANS0
bit 7							bit 0

bit 7-0: ANS<7:0>: Analog Select bits⁽²⁾

Select between analog or digital function on pins AN<7:0>, respectively.

1 =Analog input. Pin is assigned as analog input.⁽¹⁾

0 = Digital I/O. Pin is assigned to port or special function.

- **Note 1:** Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANS<7:5> on PIC16F914/917 only; forced '0' on PIC16F913/916.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 12-2: ADCON0 – A/D CONTROL REGISTER (ADDRESS: 1Fh)

12-2.	ADOONO							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON
	bit 7						· · · · · ·	bit (
bit 7	ADFM: A/D 1 = Right ju 0 = Left just		ned Select bit	t				
oit 6	VCFG1: Vo 1 = VREF- p 0 = VSS	ltage Referei in	nce bit					
vit 5	VCFG0: Vo 1 = VREF+ p 0 = VDD	ltage Referen oin	nce bit					
oit 4-2	000 = Chan 001 = Chan 010 = Chan 011 = Chan 100 = Chan 101 = Chan 110 = Chan	Analog Cha nel 00 (AN0) nel 01 (AN1) nel 02 (AN2) nel 03 (AN3) nel 04 (AN4) nel 05 (AN5) nel 06 (AN6) nel 07 (AN7)	nnel Select b	its				
oit 1	1 = A/D cor This bit	A/D Conversion cycle is automaticativersion com	e in progress ally cleared b	. Setting this y hardware			sion cycle. has complete	ed.
it O	1 = A/D cor	Conversion overter modu overter is shu	le is operatin		perating curre	ent		
	Legend:							
	R = Readat	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as '0'	
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is un	known

'0' = Bit is cleared

x = Bit is unknown

ER 12-3:	ADCONT			GISTERI	(ADDRES	5: 9FN)		
	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	—	ADCS2	ADCS1	ADCS0	_	—	—	—
	bit 7							bit 0
bit 7 bit 6-4	ADCS<2:0	lented: Rea)>: A/D Con os€c/2		ck Select bit	S			
	001 = 0 010 = F 0 x11 = F 1 100 = F 0 101 = F 0	O\$€C/8 OSC/32	rived from a	a dedicated	internal osci	llator = 500	kHz max)	
bit 3-0	Unimplem	ented: Rea	d as '0'					
	Legend:							
	R = Reada	able bit	VV = V	Vritable bit	U = Unir	mplemented	bit, read as '0)')

'1' = Bit is set

REGISTER 12-3: ADCON1 – A/D CONTROL REGISTER 1 (ADDRESS: 9Fh)

- n = Value at POR

12.1.7 CONFIGURING THE A/D

After the A/D module has been configured as desired, the s elected ch annel m ust be ac quired b efore th e conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see **Section 19.0 "Electrical Specifications"**. After this sample time has elapsed, the A/D conversion can be started.

These steps should be followed for an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog/digital I/O (ANSEL)
 - Configure voltage reference (ADCON0)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON1)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit (PIR1<6>)
 - Set ADIE bit (PIE1<6>)
 - Set PEIE and GIE bits (INTCON<7:6>)
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts disabled); OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register pair (ADRESH:ADRESL); clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

EXAMPLE 12-1: A/D CONVERSION

;This code block configures the A/D ;for polling, Vdd reference, R/C clock ;and RA0 input.

Conversion start and wait for complete polling code included.

BSF	STATUS, RPO	;Bank 1
MOVLW	B'01110000'	;A/D RC clock
MOVWF	ADCON1	
BSF	TRISA,0	;Set RA0 to input
BSF	ANSEL,0	;Set RA0 to analog
BCF	STATUS, RPO	;Bank 0
MOVLW	B'1000001'	;Right, Vdd Vref, AN0
MOVWF	ADCON0	
CALL	SampleTime	;Wait min sample time
BSF	ADCON0,GO	;Start conversion
BTFSC	ADCON0,GO	;Is conversion done?
GOTO	\$-1	;No, test again
MOVF	ADRESH,W	;Read upper 2 bits
MOVWF	RESULTHI	
BSF	STATUS, RPO	;Bank 1
MOVF	ADRESL,W	;Read lower 8 bits
MOVWF	RESULTLO	

12.2 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the inp ut channel voltage level. The analog inp ut mo del is sho wn in Fig ure 12-4. The source im pedance (Rs) and the in ternal sa mpling switch (Rss) im pedance directly affect the tim e required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), se e Fi gure 12-4. **The max imum r ecommended impedance for analog sources is 10** k Ω .

As the i mpedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (changed), this a cquisition must be done before the conversion can be started.

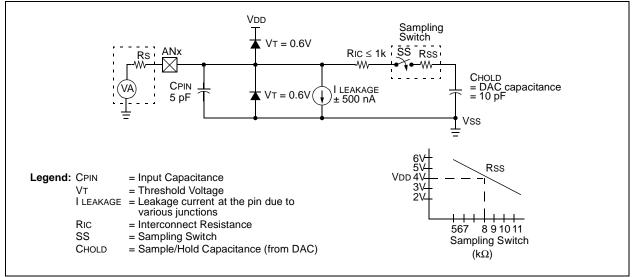
To calculate the mi nimum ac quisition ti me, Equation 12-1 m ay be u sed. T his equation as sumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the "*PICmicro[®] Mi d-Range M CU Family R eference Manual*" (DS33023).

EQUATION 12-1: ACQUISITION TIME

TACQ = Amplifier Settling Time + Hold Capacitor Charging Time Temperature Coefficient= TAMP + FC TCOFF= 2µs + FC [[Vemperature - 25°C (Ø.05µs/°C]]Where CHOLD is charged to within 1/2 lsb: $<math display="block">VAPPL IED \left(-\frac{1}{2047} = VCHOLD ;[1] VCHOLD charged to within 1/2 lsb$ $VAPPL IED \left(-\frac{-TC}{RC} = V_{CHOLD} ;[2] VCHOLD charge response to VAPPLIED$ $VAPPL IED \left(-\frac{-TC}{RC} = V_{AP} PLIED \left(-\frac{1}{2047} ; combining [1] and [2] \right)$ Solving for TC: TC = -CHOLD (RIC + RSS Rs ln(1/2047)) $= -10pF(Yk\Omega + Fk\Omega 10k\Omega ln(0.0004885))$ $= 1.37\mu s$ Therefore: $TACQ = 2\mu s + 4.37\mu s [[50°C - 25°C (0.05µs/°C]]$

 $= 4.67 \mu s$


Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

© 2005 Microchip Technology Inc.

PIC16F917/916/914/913

12.3 A/D Operation During Sleep

The A/D converter module can operate during Sleep. This requires the A/D cl ock so urce to be set to the internal os cillator. W hen the R C cl ock s ource i s selected, the A/D waits one instruction before starting the conversion. This allows the SLEEP instruction to be executed, thus eliminating much of the switching noise from the <u>conversion</u>. When the conversion is complete, the GO/DONE bit is cleared and the result is loaded into the ADRESH:ADRESL reg isters. If the A/D interrupt is enabled, the device awakens from Sleep. If the GIE bit (INTCON<7>) is set, the program counter is set to the interrupt vector (0004h). If G IE is clear, the next instruction is executed. If the A/D interrupt is not enabled, the A/D module is turned off, a lthough the ADON bit remains set.

When the A/ D clock source is something other than RC, a SLEEP instruction causes the present conversion to be aborted, and the A/D module is turned off. The ADON bit remains set.

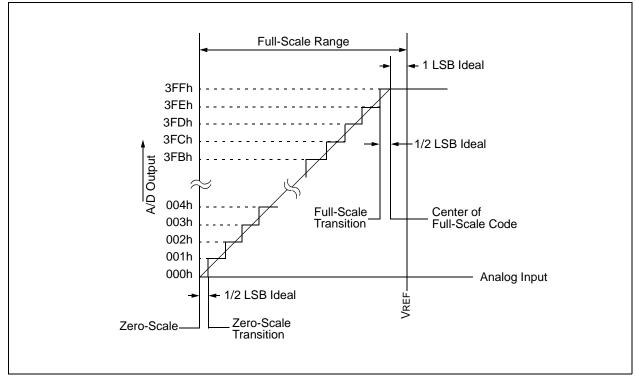


FIGURE 12-5: A/D TRANSFER FUNCTION

12.4 Effects of Reset

A device Reset forces all registers to their Reset state. Thus, the A/D module is turned off and any pending conversion i s a borted. The AD RESH:ADRESL registers are unchanged.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX XXXX	uuuu uuuu
09h	PORTE	—	_	-	_	RE3	RE2	RE1	RE0	xxxx	uuuu
0Bh/ 8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
1Eh	ADRESH	Most Signifi	cant 8 bits of	the left justif	ied A/D resul	t or 2 bits of t	ne right justifi	ed result		XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADFM	VCFG1	VCFG0	CHS2	CHS1	CHS0	GO/DONE	ADON	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
89h	TRISE	_	_	_	_	TRISE3	TRISE2	TRISE1	TRISE0	1111	1111
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
91h	ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	1111 1111	1111 1111
9Eh	ADRESL	Least Signif	icant 2 bits o	f the left justi	fied A/D resu	It or 8 bits of	the right justif	ied result		XXXX XXXX	uuuu uuuu
9Fh	ADCON1	—	ADCS2	ADCS1	ADCS0	—	—	—	_	-000	-000

TABLE 12-2:SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D module.

NOTES:

13.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

Data EEPROM memory is readable and writable and the Flash program memory is readable during normal operation (full V DD range). These memories a renot directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers. There are six SFRs used to a ccess these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the da tam emory block, EED ATL holds the 8-bit data for read/write, and EEADRL holds the address of the EE d ata location being accessed. This device has 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When int erfacing th e pr ogram m emory bl ock, th e EEDATL and EED ATH registers form a 2-byte w ord that holds the 14-bit data for read, and the EEAD RL and EEADRH registers form a 2-byte word that holds the 13-bit address of the EEPRO M loc ation being accessed. This device has 4k and 8k words of program EEPROM with an address range from 0h-0FFFh and 0h-1FFFh. The p rogram m emory all ows one word reads.

The EEPROM data memory allows byte read and write. A b yte w rite a utomatically e rases the I ocation and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase vol tages are gen erated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

When the device is c ode-protected, the C PU may continue to read and write the data EEPROM memory and read the program memory. When code-protected, the device programmer can no longer access data or program memory.

Additional i nformation on the dat a EEPROM i s available in the "*PICmicro[®] Mid-Range MC U Fam ily Reference Manual*" (DS33023).

13.1 EEADRL and EEADRH Registers

The EEADRL and EEADRH registers can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 8k words of program EEPROM.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a data address value, only the LSB of the address is written to the EEADRL register.

13.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE mem ory accesses.

Control bit EE PGD determines if the access will be a program or data memory access. When clear, as it is when reset, any subsequent operations will operate on the data memory. When set, any subsequent operations will operate on the program memory. Program memory can only be read.

Control bi ts R D a nd WR in itiate read an d w rite, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to data EE PROM. On power-up, the WREN bit is clear. The WR ERR bit is set when a w rite op eration is interrupted by a MCLR or a W DT T ime-out Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The data and address will be unchanged in the EEDATL and EEADRL registers.

Interrupt flag bit EEIF (PIR1<7>), is set when write is complete. It must be cleared in the software.

EECON2 is not a physical register. Reading EECON2 will re ad a II ' 0's. T he E ECON2 register i s used exclusively in the data EEPROM write sequence.

PIC16F917/916/914/913

REGISTER 13-1:	EEDATL -	EEPROM	DATA LO	WBAIFK	EGISTER (ADDRE33	: 10Ch)	
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0
	bit 7					·		bit 0
bit 7-0	EEDATL<7:	0> : Byte valu	e to Write to o	or Read from o	data EEPROM	bits or to Rea	d from progra	am memory
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = Unimpl	emented bit, I	read as '0'	
	- n = Value a	at POR	'1' = Bi	t is set	'0' = Bit is o	leared	x = Bit is unk	known
REGISTER 13-2:	EEADRL	– EPRON		S LOW BY	TE REGIST	ER (ADDR	ESS: 10D	h)
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0
	bit 7							bit 0
bit 7-0	EEADRL<7: program me		s one of 256	lo cations for I	E EPROM Rea	d/Write oper a	ation bits or le	ow by te for
	Legend:							
	R = Readab	le bit	W = W	ritable bit	U = Unimpl	emented bit, I	read as '0'	
	- n = Value a	at POR	'1' = Bi	t is set	'0' = Bit is c	cleared	x = Bit is unk	known
REGISTER 13-3:	EEDATH -	- EEPROM	DATA HI	GH BYTE F	REGISTER	(ADDRESS	6: 10Eh)	
REGISTER 13-3:	EEDATH - U-0	- EEPROM U-0	I DATA HI	GH BYTE F R/W-0	REGISTER R/W-0	(ADDRESS R/W-0	5: 10Eh) R/W-0	R/W-0
REGISTER 13-3:						-	R/W-0	R/W-0 EEDATH0
REGISTER 13-3:			R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
REGISTER 13-3: bit 5-0	U-0 — bit 7	U-0	R/W-0 EEDATH5	R/W-0 EEDATH4	R/W-0	R/W-0 EEDATH2	R/W-0 EEDATH1	EEDATH0 bit 0
	U-0 — bit 7	U-0	R/W-0 EEDATH5	R/W-0 EEDATH4	R/W-0 EEDATH3	R/W-0 EEDATH2	R/W-0 EEDATH1	EEDATH0 bit 0
	U-0 — bit 7 EEDATH<5:	U-0 — •••••••••••••••••••••••••••••••••••	R/W-0 EEDATH5 e to Write to	R/W-0 EEDATH4	R/W-0 EEDATH3 data EEPROM	R/W-0 EEDATH2	R/W-0 EEDATH1	EEDATH0 bit 0
	U-0 bit 7 EEDATH<5:	U-0 — • 0> : Byte valu	R/W-0 EEDATH5 e to Write to	R/W-0 EEDATH4 or Read from o	R/W-0 EEDATH3 data EEPROM	R/W-0 EEDATH2 bits or to Rea	R/W-0 EEDATH1	EEDATH0 bit 0 am memory
	U-0 bit 7 EEDATH<5: R = Readab - n = Value a	U-0 — • 0> : Byte valu le bit at POR	R/W-0 EEDATH5 e to Write to w W = W '1' = Bi	R/W-0 EEDATH4 or Read from o ritable bit t is set	R/W-0 EEDATH3 data EEPROM U = Unimpl	R/W-0 EEDATH2 bits or to Rea	R/W-0 EEDATH1 ad from progr read as '0' x = Bit is unl	EEDATH0 bit 0 am memory
bit 5-0	U-0 bit 7 EEDATH<5: R = Readab - n = Value a	U-0 — • 0> : Byte valu le bit at POR	R/W-0 EEDATH5 e to Write to w W = W '1' = Bi	R/W-0 EEDATH4 or Read from o ritable bit t is set	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c	R/W-0 EEDATH2 bits or to Rea	R/W-0 EEDATH1 ad from progr read as '0' x = Bit is unl	EEDATH0 bit 0 am memory
bit 5-0	U-0 bit 7 EEDATH<5: R = Readab - n = Value a EEADRH	U-0 — 0>: Byte valu le bit at POR —EEPROI	R/W-0 EEDATH5 e to Write to W = W '1' = Bi M ADDRES	R/W-0 EEDATH4 or Read from of ritable bit t is set	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIST R/W-0	R/W-0 EEDATH2 bits or to Rea emented bit, i cleared FER (ADDF R/W-0	R/W-0 EEDATH1 ad from progr read as '0' x = Bit is unk RESS: 10F	EEDATH0 bit 0 ram memory <nown< th=""></nown<>
bit 5-0	U-0 bit 7 EEDATH<5: R = Readab - n = Value a EEADRH	U-0 — 0>: Byte valu le bit at POR —EEPROI	R/W-0 EEDATH5 e to Write to W = W '1' = Bi M ADDRES	R/W-0 EEDATH4 or Read from of ritable bit t is set S HIGHBY R/W-0	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIST R/W-0	R/W-0 EEDATH2 bits or to Rea emented bit, i cleared FER (ADDF R/W-0	$\frac{R/W-0}{EEDATH1}$ ad from progr read as '0' x = Bit is unit RESS: 10F R/W-0	EEDATH0 bit 0 cam memory <nown< th=""></nown<>
bit 5-0	U-0 bit 7 EEDATH<5: R = Readab - n = Value a EEADRH U-0 bit 7	U-0 	R/W-0 EEDATH5 e to Write to 0 W = W '1' = Bi W ADDRES U-0 	R/W-0 EEDATH4 or Read from of ritable bit t is set SS HIGHBY R/W-0 EEADRH4	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIST R/W-0	R/W-0 EEDATH2 bits or to Rea emented bit, r cleared FER (ADDF R/W-0 EEADRH2	$\frac{R}{W-0}$ EEDATH1 ad from progr read as '0' x = Bit is unit RESS: 10F R/W-0 EEADRH1	EEDATH0 bit 0 ram memory <nown h) R/W-0 EEADRH0 bit 0</nown
bit 5-0 REGISTER 13-4:	U-0 bit 7 EEDATH<5: Legend: R = Readab - n = Value a EEADRH U-0 bit 7 EEADRH<4	U-0 	R/W-0 EEDATH5 e to Write to 0 W = W '1' = Bi W ADDRES U-0 	R/W-0 EEDATH4 or Read from of ritable bit t is set SS HIGHBY R/W-0 EEADRH4	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIS R/W-0 EEADRH3	R/W-0 EEDATH2 bits or to Rea emented bit, r cleared FER (ADDF R/W-0 EEADRH2	$\frac{R}{W-0}$ EEDATH1 ad from progr read as '0' x = Bit is unit RESS: 10F R/W-0 EEADRH1	EEDATH0 bit 0 ram memory <nown h) R/W-0 EEADRH0 bit 0</nown
bit 5-0 REGISTER 13-4:	U-0 bit 7 EEDATH<5: R = Readab - n = Value a EEADRH U-0 bit 7 EEADRH<4 program me	U-0 	R/W-0 EEDATH5 e to Write to 0 W = W '1' = Bi M ADDRES U-0 	R/W-0 EEDATH4 or Read from of ritable bit t is set SS HIGHBY R/W-0 EEADRH4	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIS R/W-0 EEADRH3 EEPROM Rea	R/W-0 EEDATH2 bits or to Rea emented bit, r cleared FER (ADDF R/W-0 EEADRH2	R/W-0 EEDATH1 ad from progr read as '0' x = Bit is unk RESS: 10F R/W-0 EEADRH1	EEDATH0 bit 0 ram memory <nown h) R/W-0 EEADRH0 bit 0</nown
bit 5-0 REGISTER 13-4:	U-0 bit 7 EEDATH<5: R = Readab - n = Value a EEADRH U-0 Dit 7 EEADRH<4 program me Legend:	U-0 	R/W-0 EEDATH5 e to Write to 0 W = W '1' = Bi M ADDRES U-0 	R/W-0 EEDATH4 or Read from of ritable bit t is set SS HIGHBY R/W-0 EEADRH4 locations for	R/W-0 EEDATH3 data EEPROM U = Unimpl '0' = Bit is c /TE REGIS R/W-0 EEADRH3 EEPROM Rea	R/W-0 EEDATH2 bits or to Rea lemented bit, I cleared FER (ADDF R/W-0 EEADRH2 ad/Write opera	R/W-0 EEDATH1 ad from progr read as '0' x = Bit is unk RESS: 10F R/W-0 EEADRH1	EEDATH0 bit 0 cam memory (nown bit 0 EEADRH0 bit 0 high bits for

	R/W-0	U-0	U-0	U-0	R/W-x	R/W-0	R/S-0	R/S-0
	EEPGD	—	—	—	WRERR	WREN	WR	RD
	bit 7							bit 0
bit 7	FEPGD: Pro	ogram/Data E	EPROM Sala	ct bit				
	1 = Access	ses program n ses data mem	nemory					
bit 6-4	Unimplemented: Read as '0'							
bit 3	WRERR: EE 1 = A write normal	EPROM Error operation is p operation or	Flag bit prematurely te BOR Reset)	erminated (an	y MCLR Rese	et, any WDT F	Reset during	
bit 2	1 = Allows w	 0 = The write operation completed WREN: EEPROM Write Enable bit 1 = Allows write cycles 0 = Inhibits write to the data EEPROM 						
bit 1	WR : Write C <u>EEPGD = 1</u> This bit is ign EEPGD = 0	: nored						
	1 = Initiates set, not	s a write cycle t cleared, in s	oftware.)		lware once wr	ite is comple	te. The WR bi	t can only be
bit 0	 0 = Write cycle to the data EEPROM is complete RD: Read Control bit 1 = Initiates a mem ory read (R D is cleared in hardware. The RD bit can only be set , not cleared, in software.) 0 = Does not initiate an memory read 							t cleared, in
	Legend: S = Bit can o R = Readab	•	W = W	ritable bit	U = Unima	blemented bit	. read as '0'	

'1' = Bit is set

'0' = Bit is cleared

REGISTER 13-5: EECON1 – EEPROM CONTROL REGISTER 1 (ADDRESS: 18Ch)

- n = Value at POR

x = Bit is unknown

13.1.2 READING THE DATA EEPROM MEMORY

To read a data memory location, the user must write the address to the EEADR L r egister, c lear t he EEP GD control bit (EECON1<7>), and then set control bit RD (EECON1<0>). The data is available in the very next cycle, in the EEDATL register; therefore, it can be read in the next instruction. EEDATL will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1:	DATA EEPROM READ
$L \land \land \square$	

		_	
BSF	STATUS, RP1	;	
BCF	STATUS, RPO	;	Bank 2
MOVF	DATA_EE_ADDR,W	;	Data Memory
MOVWF	EEADR	;	Address to read
BSF	STATUS, RPO	;	Bank 3
BCF	EECON1, EEPGD	;	Point to Data
		;	memory
BSF	EECON1,RD	;	EE Read
BCF	STATUS, RPO	;	Bank 2
MOVF	EEDATA,W	;	W = EEDATA

13.1.3 WRITING TO THE DATA EEPROM MEMORY

To write an EEPROM data location, the user must first write the address to the EEADRL register and the data to the EEDATL register. Then the user must follow a specific sequence to initiate the write for each byte.

The write will not initiate if the sequence described below is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. Interrupts should be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable w rite. Thi s m echanism p revents a ccidental writes to da ta EEPROM due to erra nt (u nexpected) code execution (i.e., lost programs). The user should keep the WR EN bit cl ear at all times, except w hen updating EEPROM. The W REN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cy cle, the WR bit is cleared in ha rdware and the E E Write Complete Interrupt F lag bit (EEIF) is set. The user can either enable th is in terrupt or poll this bit. EEIF m ust be cleared by software. The steps to write to EEPROM data memory are:

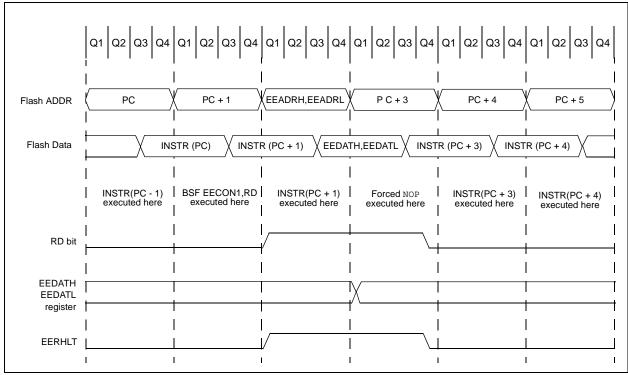
- 1. If step 10 is not implemented, check the WR bit to see if a write is in progress.
- 2. Write the address to EEADR. Make sure that the address is not larger than the memory size of the device.
- 3. Write the 8-bit data value to be programmed in the EEDATA register.
- 4. Clear the EEPGD bit to point to EEPROM data memory.
- 5. Set the WREN bit to enable program operations.
- 6. Disable interrupts (if enabled).
- 7. Execute the special five instruction sequence:
 - Write 55h to EECON2 in two steps (first to W, then to EECON2)
 - Write AAh to EECON2 in two steps (first to W, then to EECON2)
 - Set the WR bit
- 8. Enable interrupts (if using interrupts).
- 9. Clear t he WREN b it t o d isable program operations.
- At the completion of the write cycle, the WR bit is cleared and the EEIF interrupt flag bit is set. (EEIF must be cleared by firmware.) If step 1 is not im plemented, then firmware should check for EEIF to be set, or WR to clear, to indicate the end of the program cycle.

EXAMPLE 13-2: DATA EEPROM WRITE

		STATUS, RP1	;
	BSF	STATUS, RPO	
	BTFSC	EECON1,WR	;Wait for write
	GOTO	\$-1	;to complete
	BCF	STATUS, RPO	;Bank 2
	MOVF	DATA_EE_ADDR	,W;Data Memory
	MOVWF	EEADR	;Address to write
	MOVF	DATA_EE_DATA	,W;Data Memory Value
	MOVWF	EEDATA	;to write
	BSF	STATUS, RPO	;Bank 3
	BCF	EECON1, EEPGD	;Point to DATA
			;memory
	BSF	EECON1,WREN	;Enable writes
	BCF	INTCON,GIE	;Disable INTs.
	MOVLW	55h	;
Required Sequence	MOVWF	EECON2	;Write 55h
uire	MOVLW	AAh	;
Required Sequence	MOVWF	EECON2	;Write AAh
шv	BSF	EECON1,WR	;Set WR bit to
			;begin write
	BSF	INTCON,GIE	;Enable INTs.
	BCF	EECON1,WREN	;Disable writes

13.1.4 READING THE FLASH PROGRAM MEMORY

To read a p rogram memory location, the u ser must write two by tes of the address to the EEADRL and EEADRH registers, s et the EEPGD control bit (EECON1<7>), a nd then set c ontrol b it R D (EECON1<0>). Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This c auses the second instruction immediately following the


"BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATL and EEDATH registers; therefore, it can be read as two bytes in the f ollowing i nstructions. EED ATL an d EEDATH registers will hold this value until another read or un til it is written to by the user (during a w rite operation).

- Note 1: The two instructions following a program memory read are required to be NOP's. This prevents the user from executing a two-cycle ins truction on the nex t instruction after the RD bit is set.
 - 2: If the WR b it is set when EEPGD = 1, it will be im mediately r eset to '0' and n o operation will take place.

EXAMPLE 13-3: FLASH PROGRAM READ

Required	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	BSF BCF MOVLW MOVWF MOVWF BSF BSF BSF NOP NOP	STATUS, RP0 EECON1, EEPGD EECON1, RD	DR;; ; ; ; ; ; ; ; ; ;	MS Byte of Program Address to read LS Byte of Program Address to read Bank 3 Point to PROGRAM memory EE Read Any instructions here are ignored as program memory is read in second cycle after BSF EECON1,RD
	;	BCF MOVF MOVWF MOVF MOVWF	STATUS, RPO EEDATA, W DATAL EEDATH, W DATAH	;	Bank 2 W = LS Byte of Program EEDATA W = MS Byte of Program EEDATA

PIC16F917/916/914/913

FIGURE 13-1: FLASH PROGRAM MEMORY READ CYCLE EXECUTION

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh/8Bh/ 10Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
10Ch	EEDATL	EEDATL7	EEDATL6	EEDATL5	EEDATL4	EEDATL3	EEDATL2	EEDATL1	EEDATL0	0000 0000	0000 0000
10Dh	EEADRL	EEADRL7	EEADRL6	EEADRL5	EEADRL4	EEADRL3	EEADRL2	EEADRL1	EEADRL0	0000 0000	0000 0000
10Eh	EEDATH	_	_	EEDATH5	EEDATH4	EEDATH3	EEDATH2	EEDATH1	EEDATH0	00 0000	00 0000
10Fh	EEADRH	_	_	_	EEADRH4	EEADRH3	EEADRH2	EEADRH1	EEADRH0	0 0000	0 0000
18Ch	EECON1	EEPGD	_	_	_	WRERR	WREN	WR	RD	0 x000	d000
18Dh	EECON2	EEPROM C	EEPROM Control Register 2 (not a physical register)								

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM module.

14.0 SSP MODULE OVERVIEW

The Synchronous Serial Port (SSP) module is a serial interface used to communicate with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROM s, s hift reg isters, display driv ers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])

An overview of PC operations and additional information on the SSP m odule can be found in the "*PICmicro*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

Refer to Ap plication N ote AN578, "Use of the SSP Module in the Multi-Master Environment" (DS00578).

14.1 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SP I mod ule can be found in the "*PICmicro*® *Mid-Range MCU Family Reference Manual*" (DS33023).

The SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC4/T1G/SDO/SEG11
- Serial Data In (SDI) RC7/RX/DT/SDI/SDA/SEG8
- Serial Clock (SCK) RC6/TX/CK/SCK/SCL/SEG9

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) – RA5/AN4/C2OUT/SS/SEG5

When initializing the SP I, several options need to be specified. This is done by programming the appropriate control bits in the SSPC ON register (SSPCON<5:0>) and SSP STAT<7:6>. These control b its a llow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

ER 14-1:	SSPSTAT – SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)											
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7							bit 0				
bit 7	 SMP: SPI[™] Data Input Sample Phase bit <u>SPI Master mode:</u> 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time (Microwire) <u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode 											
	<u>I²C ™ mode:</u> This bit must be maintained clear											
bit 6	CKE: SPI Clock Edge Select bit SPI mode, CKP = 0: 1 = Data transmitted on falling edge of SCK 0 = Data transmitted on rising edge of SCK (Microwire alternate) SPI mode, CKP = 1: 1 = Data transmitted on rising edge of SCK 0 = Data transmitted on rising edge of SCK 0 = Data transmitted on falling edge of SCK 0 = Data transmitted on falling edge of SCK 0 = Data transmitted on falling edge of SCK (Microwire default) I ² C mode:											
bit 5	D/A : Data// 1 = Indicate		(I ² C mode o ast byte reco	eived or trar	nsmitted was							
bit 4	P: Stop bit	(I ² C mode c cleared whe	only)		asmitted was abled, or wl	address	t bit is detect	ted last.				
	 1 = Indicates that a Stop bit has been detected last (this bit is '0' on Reset) 0 = Stop bit was not detected last 											
bit 3	S : Start bit (I ² C mode only) This bit is cleared when the SSP module is disabled, or when the Stop bit is detected last. SSPEN is cleared.											
	 1 = Indicates that a Start bit has been detected last (this bit is '0' on Reset) 0 = Start bit was not detected last 											
bit 2	R/\overline{W} : Read/Write bit Information (I ² C mode only) This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next Start bit, Stop bit or ACK bit.											
	1 = Read 0 = Write											
bit 1	1 = Indicate	e Address b es that the u is does not r	iser needs t	o update the		the SSPAD	D register					
bit 0	 BF: Buffer Full Status bit <u>Receive (SPI and I²C modes):</u> 1 = Receive complete, SSPBUF is full 0 = Receive not complete, SSPBUF is empty <u>Transmit (I²C mode only):</u> 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty 											
	Legend:											
	R = Reada			/ritable bit		nplemented						
	- n = Value	at POR	1' = B	it is set	$0^{\circ} = Bit$	is cleared	x = Bit is ι	Inknown				

REGISTER 14-1: SSPSTAT - SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
	bit 7							bit 0
bit 7		ware)		while it is st	ill transmitting	g the previou	ıs word (mus	st be cleared
bit 6	In SPI™ m 1 = A new overfild the SS flow bi BUF re 0 = No over	ode: byte is recei bw, the data ir PBUF, even t is not set sir egister. erflow	n SSPSR is lo if only transm	SSPBUF r st. Overflow	egister is still / can only occ /o avoid settin and transmiss	ur in Slave m g overflow. I	node. The us n Master mo	er must read de, the over-
		is received w n Transmit m			r is still holding eared in softw			DV is a "don't
bit 5	In SPI mod 1 = Enable 0 = Disable	<u>e:</u> s serial port a es serial port a		s SCK, SDO	D, and SDI as s as I/O port p		ins	
	0 = Disable	s the serial p es serial port	and configure	es these pin	DA and SCL p s as I/O port p e properly co	pins		ut.
bit 4	<u>In SPI mod</u> 1 = Idle sta	te for clock is	ect bit s a high level s a low level (
	$\frac{\ln I^2 C \mod}{SCK \text{ releas}}$ $1 = \text{Enable}$ $0 = \text{Holds } c$	e control clock	ck stretch). (l	Jsed to ens	ure data setu	p time.)		
bit 3-0	$\begin{array}{l} \textbf{SSPM<3:0} \\ 0000 = SP \\ 0001 = SP \\ 0010 = SP \\ 0011 = SP \\ 0100 = SP \\ 0101 = SP \\ 0101 = I^2C \\ 0111 = I^2C \\ 1011 = I^2C \\ 1110 = I^2C \end{array}$	>: Synchrono I Master moo I Master moo I Master moo I Slave mode I Slave mode Slave mode Slave mode Firmware C Slave mode	bus Serial Poi le, clock = FC le, clock = FC le, clock = FC le, clock = SC e, clock = SC e, clock = SC e, clock = SC f, 7-bit addres f, 10-bit addres f, 7-bit addres	rt Mode Sele ssc/4 ssc/16 ssc/64 MR2 output/2 < pin. SS pin s ss ss ss ster mode (s ss with Start	ect bits 2 n control enat n control disa	bled. bled. SS can	abled	I/O pin.
	Legend:							
	R = Reada	ble bit	$W = W_{I}$	ritable bit	U = Unim	plemented b	ot, read as '0	r


- n = Value at POR

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

FIGURE 14-1: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSPEN bit (SSPCON<5>) must be set. To reset or reconfigure SPI mode:

- Clear bit SSPEN
- Re-initialize the SSPCON register
- Set SSPEN bit

This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave in a serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. This is:

- SDI must have TRISC<7> set
- SDO must have TRISC<4> cleared
- SCK (Master mode) must have TRISC<6> cleared
- SCK (Slave mode) must have TRISC<6> set
- •S S must have TRISA<5> set.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin c ontrol e nabled (SSPCON <3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is us ed in Slav e mode with CKE = 1, then the SS pin control must be enabled.
 - 3: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the state of the \overline{SS} pin can affect the state read back from the TR ISC<4> b it. The peripheral OE signal from the SSP module into PORTC controls the state that is read the TR ISC<4> bi t (see back from Section 19.4 "D C C haracteristics: PIC16F917/916/914/913-I (Industr ial) PIC16F917/916/914/913-E (Extended)" for information on POR lf TC). read-modify-write instructio ns, such as BSF, are performed on the TRISC register while the SS pin is high, this will cause the TRISC<4> bit to be set, thus disabling the SDO output.

14.2 Operation

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON <5:0> and SSPST AT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

The SSP consi sts of a tr ansmit/receive shi ft register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is re ady. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF, are set. Th is doub le-buffering of the re ceived data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored and the write collision detect bit, WCOL (SSPCON<7>), will be set.User software must clear the WCOL bit so that it can be determined if the following write(s) to theSSPBUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer Full bit, BF (SSPST AT<0>), in dicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Gene rally, th e SSP i nterrupt is us ed to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not o ccur. E xample 14-1 shows the I oading of t he SSPBUF (SSPSR) for data transmission.

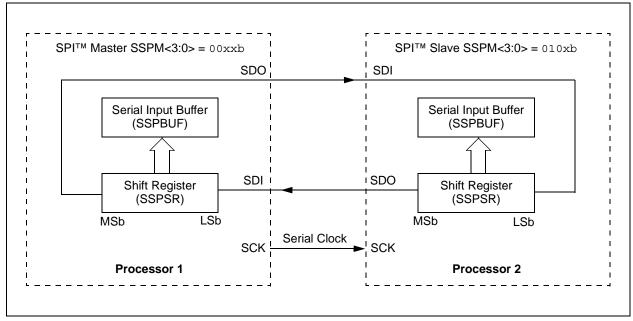
The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPBUF register. Additionally, the SSPS tatus reg ister (SSPST AT) indicates the various status conditions.

EXAMPLE 14-1: LOADING THE SSPBUF (SSPSR) REGISTER

LOOP	BTFSS	SSPSTAT, BF	;Has data been received(transmit complete)?
	BRA	LOOP	;No
	MOVF	SSPBUF, W	;WREG reg = contents of SSPBUF
	MOVWF	RXDATA	;Save in user RAM, if data is meaningful
	MOVF	TXDATA, W	;W reg = contents of TXDATA
	MOVWF	SSPBUF	;New data to xmit

14.3 Enabling SPI I/O

To e nable the s erial port, SSP Enable bit, SSPEN (SSPCON<5>), must be set. To reset or reconfigure SPI mode, c leart he SSPEN bit, re-initialize th e SSPCON registers and then set the <u>SSPEN</u> bit. This configures the SDI, SDO, SCK and <u>SS</u> pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI is automatically controlled by the SPI module
- SDO must have TRISC<4> bit cleared
- SCK (Master mode) must have TRISC<6> bit cleared
- SCK (Slave mode) must have TRISC<6> bit set
- •S S must have TRISA<5> bit set

Any serial port f unction that is not desired may be overridden by programming the corresponding da ta direction (TRIS) register to the opposite value.

14.4 Typical Connection

Figure 14-2 shows a typ ical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SC K signal. Data is shi fted out of both sh ift regi sters on the ir programmed clock edge and latched on the opposite edge of the clock. Both p rocessors s hould b e programmed to the same Clock Polarity (CKP), then both c ontrollers w ould send and re ceive dat a at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 14-2: SPI™ MASTER/SLAVE CONNECTION

14.5 Master Mode

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the sl ave (Proc essor 2, Fi gure 14-2) is to broadcast data by the software protocol.

In Ma ster mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only goi ng to receive, th e SD O ou tput co uld be disabled (p rogrammed as an i nput). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately s et). Thi s c ould be u seful in r eceiver applications as a "Line Activity Monitor" mode.

The clock polarity is selected by appropriately programming the CKP bit (SSPCON<4>). This then, would give waveforms for sPI communication as s hown in Figure 14-3, Fi gure 14-5 and Figu re 14-6, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- •F OSC/4 (or TCY)
- •F osc/16 (or 4 Tcy)
- •F osc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum data rate (at 40 M Hz) of 10 Mbps.

Figure 14-3 s hows the waveforms for Ma ster m ode. When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

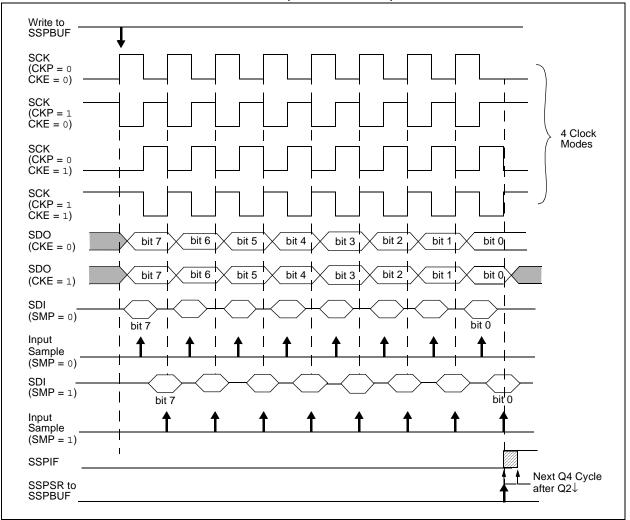


FIGURE 14-3: SPI™ MODE WAVEFORM (MASTER MODE)

14.6 Slave Mode

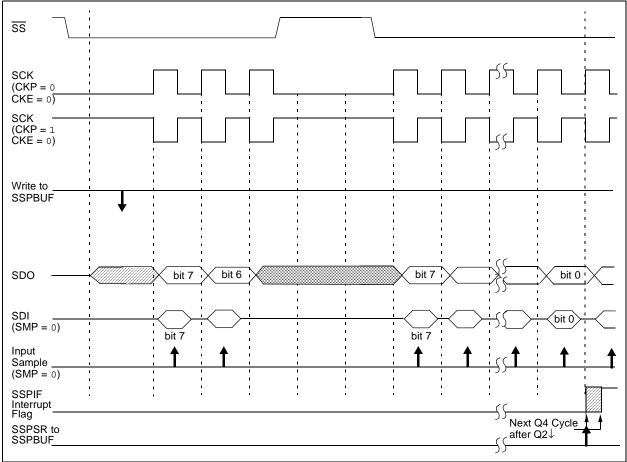
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

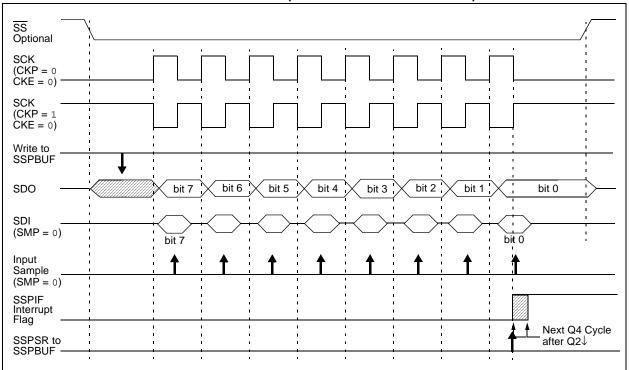
While in Sle ep mode, the s lave can transmit/receive data. When a byte is received, the device will wake-up from Sleep.

14.7 Slave Select Synchronization

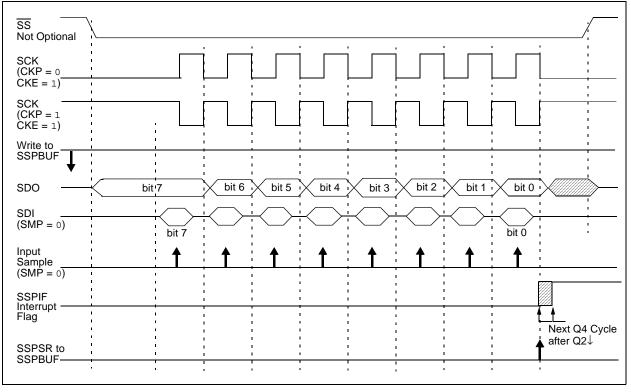
The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 04h). The pin must not be driven low for the \overline{SS} pin to function as an input. The data latch must be high. When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the SS pin goes high, the SDO pin is no longer driven, even i f i n th e middle o f a transmitted by te, an d


becomes a floating output. External pull-up/pull-down resistors may be desirable, depending on the application.

- Note 1: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the \overline{SS} pin is set to VDD.
 - 2: If the SPI is used in Slave Mode with CKE set, the n the SS pin control must be enabled.


When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.


FIGURE 14-4: SLAVE SYNCHRONIZATION WAVEFORM

14.8 Sleep Operation

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from Sleep. After the device returns to normal m ode, the mod ule w ill con tinue to tran s-mit/receive data.

In Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and dat a to be shifted in to the SPI Transmit/Receive Shift register. When all 8 bits have been received, the SSP interrupt flag bit will be set and if enabled, will wake the device from Sleep.

14.9 Effects of a Reset

A Reset disables the SSP module and terminates the current transfer.

14.10 Bus Mode Compatibility

Table 14-1 s hows the com patibility between the standard SPI modes and the states of the CKP and CKE control bits.

TABLE 14-1: SPI™ BUS MODES

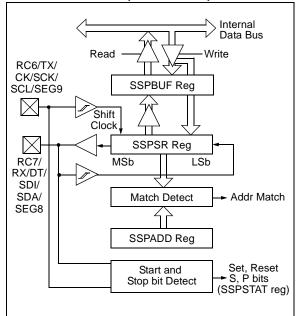
Standard SPI™	Control Bits State				
Mode Terminology	СКР	CKE			
0, 0	0	1			
0, 1	0	0			
1, 0	1	1			
1, 1	1	0			

There is also a SMP bit which controls when the data is sampled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
13h	SSPBUF	Synchronou	us Serial P	ort Receive	e Buffer/Tra	insmit Reg	jister			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 14-2: REGISTERS ASSOCIATED WITH SPI™ OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.


14.11 SSP I²C Operation

The SSP m odule in I ²C mode, f ully im plements al I slave functions, except general call support, and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are us ed for d ata tran sfer. T hese a re the RC6/TX/CK/SCK/SCL/SEG9 p in, wh ich is th e c lock (SCL), and the RC7/RX/DT/SDI/SDA/SEG8 pin, which is the data (SDA).

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 14-7: SSP BLOCK DIAGRAM (I²C™ MODE)

The SSP module has five registers for the ${\rm \mathring{F}C}$ operation, which are listed below.

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON re gister all ows c ontrol o f th e l 2 C operation. Four mode s election bits (SSPCON<3:0>) allow one of the following l 2 C modes to be selected:

- •I ²C Slave mode (7-bit address)
- •I ²C Slave mode (10-bit address)
- •I ²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- •I ²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- •I ²C Start and Stop bit interrupts enabled to support Firmware Master mode; Slave is idle

Selection of an y I^2C mode with the SSPEN bits et forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C o peration c an be found i n the " *PICmicro® Mid-R ange M CU Fam ily Reference Manual*" (DS33023).

14.12 Slave Mode

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<7:6> set). The SSP module will override th e i nput s tate with the ou tput d ata w hen required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. They include (either or both):

- a) The b uffer full bit BF (SSPSTAT<0>) was s et before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 14-3 shows the resultsof when a dat transfer byte is received given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is clear ed by reading the SSPBUF register, while bitSSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. For high and low times of the I^2C specification, as well as the requirements of the SSP module, see **Section 19.0 "Electrical Specifica-tions"**.

14.12.1 ADDRESSING

Once the SSP module has been enabled, it waits for a Start condition to oc cur. Following the Start condition, the 8-bi ts are shifted in to the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR re gister v alue is lo aded in to the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1< 3>) is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Fi gure 14-8). The f ive M ost Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a w rite s o the slave dev ice w ill rec eive the second ad dress by te. For a 10 -bit ad dress, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF and bit UA (SSPSTAT<1>) are set).
- 2. Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive s econd (low) byte of a ddress (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address; if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

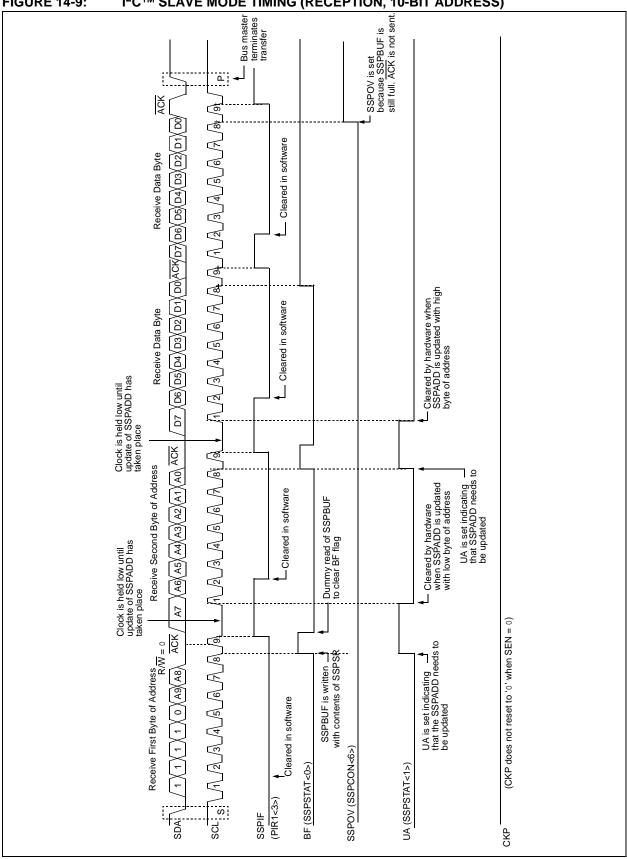
TABLE 14-3: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		Fuise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
11		No	No	Yes		
0	1	No	No	Yes		

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

14.12.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

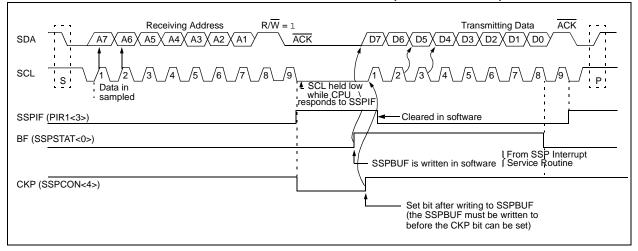

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) p ulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set. This is an error condition due to the user's firmware.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) m ust be c leared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 14-8:	I ² C [™] WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

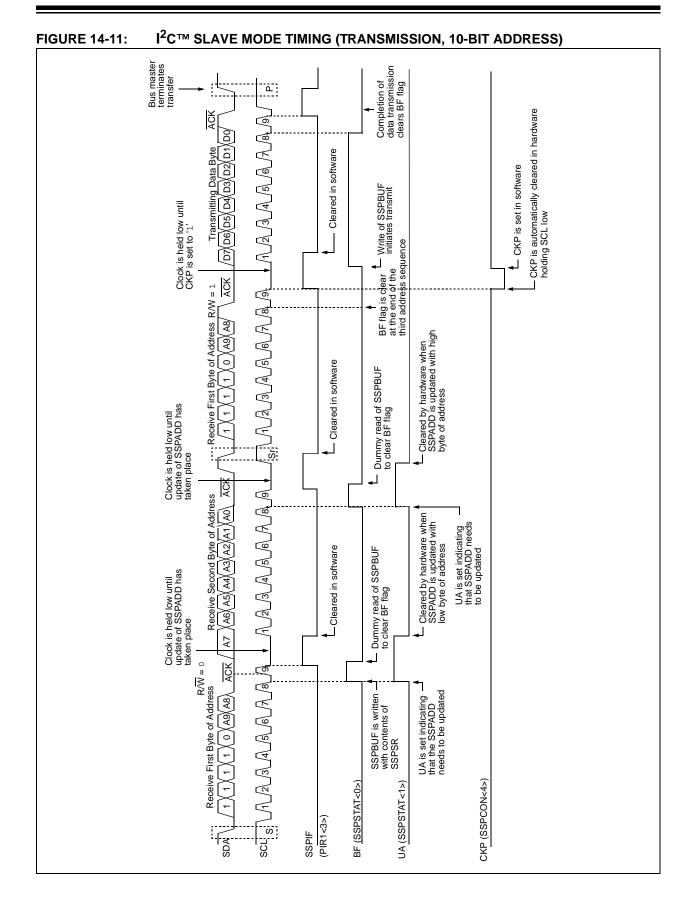
Receiving Address R/W SDA 1 A7 XA6 XA5 XA4 XA3 XA2 XA1 SCL 1 S1 1 2 3 4 5 6 7 8	= 0	
SSPIF (PIR1<3>) BF (SSPSTAT<0>)	Cleared in software SSPBUF register is read	Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u>	Bit SSPOV is set because the SSPBUF register is still full.	

PIC16F917/916/914/913


I²C[™] SLAVE MODE TIMING (RECEPTION, 10-BIT ADDRESS) **FIGURE 14-9:**

14.12.3 TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT re gister is s et. The rec eived a ddress i s loaded into the SSPBUF register. The ACK pulse will be s ent on th e n inth b it. and pi n RC6/TX/CK/SCK/SCL/SEG9 is held low. The transmit data must be loaded into the SSPBUF register, which also I oads the SSPSR re gister. Th en, pi n RC6/TX/CK/SCK/SCL/SEG9 sh ould be en abled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SC L high time (Figure 14-10).


An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the master receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF register, which al so lo ads th e SSPSR register. T hen pi n RC6/TX/CK/SCK/SCL/SEG9 should be enabled by setting bit CKP.

FIGURE 14-10: I²C[™] WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

PIC16F917/916/914/913

14.13 Master Mode

Master mode of op eration is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I²C bus may be taken when the P bit is set or the bus is idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<6:7> bit(s). The output le vel is a lways low, i rrespective of th e value(s) in PORTC<6:7>. So when transmitting data, a '1' data bit must have the TRISC<7> bit set (input) and a '0' data bit must have the TRISC<7> bit cleared (output). The same scenario is true for the SCL line with the TRISC<6> bit. Pu II-up resistors m ust b e p rovided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause the SSP Interrupt Flag bit, SSPIF, to be s et (SSP Interrupt wil I o ccur if enabled):

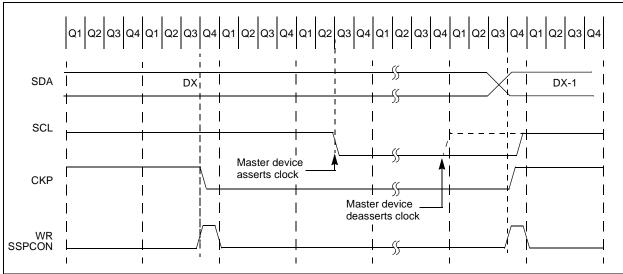
- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode id le (SSPM <3:0> = 1011), or with the Slave active. When both Master and Slave modes are enabled, the s oftware n eeds t o di fferentiate the source(s) of the interrupt.

14.14 Multi-Master Mode

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus m ay be t aken w hen bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SC L lines (se t TRISC<6:7>). The re are tw o stages where this arbitration can be lost, these are:


- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If a ddressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

14.14.1 CLOCK SYNCHRONIZATION AND THE CKP BIT

When the CKP bit is cleared, the SCL output is forced to '0'; however, setting the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an e xternal I 2 C m aster d evice has alre ady asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I²C bus have deasserted SCL. This ensures that a write to the CKP bit will not vi olate the minimum high tim e requirement for SCL (see Figure 14-12).

PIC16F917/916/914/913

FIGURE 14-12: CLOCK SYNCHRONIZATION TIMING

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register						xxxx xxxx	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
87h	TRISC	PORTC Data Direction Register						1111 1111	1111 1111		
93h	SSPADD	Synchronous Serial Port (I ² C™ mode) Address Register						0000 0000	0000 0000		
94h	SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode.

Note 1: Maintain these bits clear in I^2C mode.

15.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Both the C CP1 and C CP2 modules are id entical in operation, with the exception being the operation of the special event trigger. Table 15-1 and Table 15-2 show the resources and interactions of the CCP module(s). In the fol lowing s ections, the ope ration of a C CP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

CCP1 Module:

Capture/Compare/PWM R egister1 (C CPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the op eration of C CP1. The special event trig ger is generated by a compare match and will reset Timer1.

CCP2 Module:

Capture/Compare/PWM R egister2 (C CPR2) is comprised of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high byte). The CCP2CON register controls the op eration of C CP2. The s pecial event trigger is generated by a compare match and will reset Timer1 and s tart an A/D c onversion (if the A/D mo dule is enabled).

Additional information on CCP modules is available in the "*PICmicro® Mid-Range M CU F amily R eference Manual*" (D S33023) and in Ap plication N ote AN 594, "Using the CCP Modules" (DS00594).

TABLE 15-1:CCP MODE – TIMER
RESOURCES REQUIRED

CCP Mode	Timer Resource			
Capture	Timer1			
Compare	Timer1			
PWM	Timer2			

TABLE 15-2: INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction					
Capture	Capture	Same TMR1 time base					
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1					
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1					
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt)					
PWM	Capture	None					
PWM	Compare	None					

REGISTER 15-1: CCP1CON – CCP2CON⁽¹⁾ REGISTER (ADDRESS: 17h/1Dh)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCPxX:CCPxY: PWM Least Significant bits

Capture mode: Unused Compare mode:

Unused

PWM mode:

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

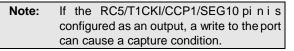
bit 3-0 CCPxM<3:0>: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM disabled (resets CCPx module)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (CCPxIF bit is set)
- 1001 = Compare mode, clear output on match (CCPxIF bit is set)
- 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)
- 1011 = Compare mode, trig ger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 resets TMR1; CCP2 resets TMR1 and starts an A/D conversion (if A/D module is enabled)
- 11xx =P WM mode

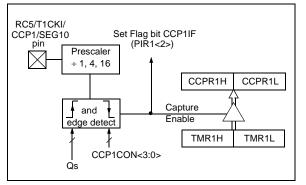
Note 1: CCP2CON used for PIC16F914/917 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

15.1 Capture Mode


In Ca pture mo de, CCPR1H:CCPR1L captures th e 16-bit value of the TMR1 register when an event occurs on pin RC5/T1CKI/CCP1/SEG10. An event is defined as one of the following:

- Every falling edge
- Every rising edge
- Every 4th rising edge
- Every 16th rising edge


The type o f e vent is c onfigured by c ontrol bits CCP1M<3:0> (C CPxCON<3:0>). When a c apture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another ca pture o ccurs be fore t he v alue i n r egister CCPR1 is read, the old captured value is overwritten by the new value.

15.1.1 CCP PIN CONFIGURATION

In C apture m ode, the R C5/T1CKI/CCP1/SEG10 pi n should be configured as an in put by s etting the TRISC<5> bit.

FIGURE 15-3: CAPTURE MODE OPERATION BLOCK DIAGRAM

15.1.2 TIMER1 MODE SELECTION

Timer1 m ust be r unning in Timer mode, or Synchronized Counter mode, for the CCP module to use the capture feature. In Asynchronous C ounter mode, the capture operation may not work.

15.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF, following any such change in Operating mode.

15.1.4 CCP PRESCALER

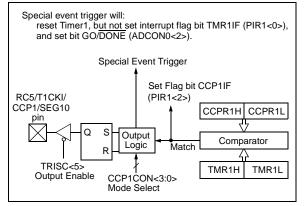
There are f our prescaler s ettings, s pecified by bits CCP1M<3:0>. Whe never the C CP m odule is t urned off, or the C CP m odule is not in C apture m ode, the prescaler counter is cleared. Any R eset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended m ethod for s witching between c apture p rescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load the W reg with
		;	the new prescaler
		;	move value and CCP ON
MOVWF	CCP1CON	;	Load CCP1CON with this
		;	value

© 2005 Microchip Technology Inc.


15.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared a gainst the TM R1 register p air value. When a ma tch oc curs, t he RC5/T1CKI/CCP1/SEG10 pin is:

- Driven high
- •D riven low
- Remains unchanged

The action on the pin is based on the value of control bits CCP1 M<3:0> (CCP1 CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 15-4: COMPARE MODE OPERATION BLOCK DIAGRAM

15.2.1 CCP PIN CONFIGURATION

The user must configure the RC5/T1CKI/CCP1/SEG10 pin as an output by clearing the TRISC<5> bit.

Note: Clearing the CCP1CON register will force the R C5/T1CKI/CCP1/SEG10 compare output latch to the default low level. This is not the PORTC I/O data latch.

15.2.2 TIMER1 MODE SELECTION

Timer1 m ust be r unning in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the RC5/T1CKI/CCP1/SEG10 pin is not affected. The CCPIF bit is set, causing a CCP interrupt (if enabled).

15.2.4 SPECIAL EVENT TRIGGER

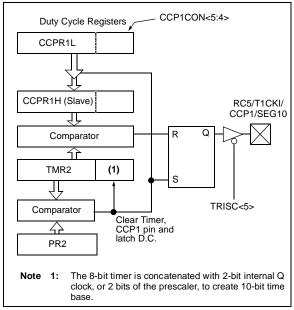
In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger ou tput of C CP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

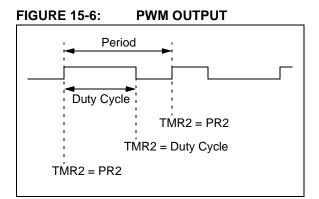
The special event trigger ou tput of C CP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

Note:	The special event trigger from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

15.3 PWM Mode (PWM)


In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the RC5/T1CKI/CCP1/SEG10 pin is multiplexed with the PORTC data latch, the TRISC<5> bit must be cleared to make the RC5/T1CKI/CCP1/SEG10 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.


Figure 15-5 s hows a si mplified block dia gram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM ope ration, see **Section 15.3.3** "Setup for PWM Operation".

FIGURE 15-5: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-6) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the P WM is the inverse of the period (1/period).

15.3.1 PWM PERIOD

The PW M p eriod is specified by w riting to the PR 2 register. The PWM period can be calculated using the following formula:

```
PWM period = (PR2) + 1] • 4 • Tosc •
(TMR2 prescale value)
```

PWM frequency is defined as 1/[PWM period].

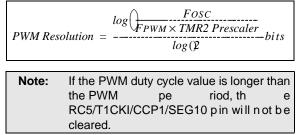
When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- •T MR2 is cleared
- The RC5/T1CKI/CCP1/SEG10 pin is set (exception: if PWM duty cycle = 0%, the RC5/T1CKI/CCP1/SEG10 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 7.0
	"Timer2 M odule") is n ot used in the
	determination of the PWM frequency. The
	postscaler could be used to have a servo
	update rate at a different frequency than
	the PWM output.

15.3.2 PWM DUTY CYCLE

The PWM du ty c ycle is s pecified b y writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LS bs. Th is 1 0-bit v alue is re presented b y CCPR1L:CCP1CON<5:4>. The following e quation is used to calculate the PWM duty cycle in time:


PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, b ut the d uty c ycle v alue is n ot latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is c omplete). In PW M m ode, CCPR1H is a read-only register.

The C CPR1H reg ister an d a 2 -bit internal lat ch a re used to double buffer the PWM duty cycle. This double buffering is essential for glitch-free PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock, or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the formula:

15.3.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM d uty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make t he R C5/T1CKI/CCP1/SEG10 p in a n output by clearing the TRISC<5> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 15-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFFh	0xFFh	0xFFh	0x3Fh	0x1Fh	0x17h
Maximum Resolution (bits)	10	10	10	8	7	5.5

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	—	CCP2IF	0000 -0-0	0000 -0-0
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	—	LVDIE	—	CCP2IE	0000 -0-0	0000 -0-0
87h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
0Eh	TMR1L	Holding R	egister for	the Least S	ignificant B	yte of the 16	-bit TMR1 F	Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	egister for	the Most Si	gnificant By	te of the 16-	bit TMR1 R	egister		xxxx xxxx	uuuu uuuu
10h	T1CON	T1GINV	T1GE	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	uuuu uuuu
15h	CCPR1L	Capture/C	ompare/P	WM Registe	er1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/P	WM Registe	er1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON			CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)							xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	capture/Compare/PWM Register 2 (MSB)								uuuu uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 15-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	_	CCP2IF	0000 -0-0	0000 -0-0
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	_	CCP2IE	0000 -0-0	0000 -0-0
87h	TRISC	PORTC D	ata Directior	n Register						1111 1111	1111 1111
11h	TMR2	Timer2 Mo	odule Regist	er						0000 0000	0000 0000
92h	PR2	Timer2 Mo	odule Period	Register						1111 1111	1111 1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	ompare/PW	M Register '	1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PW	M Register '	1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register 2 (LSB)								uuuu uuuu
1Ch	CCPR2H	Capture/C	apture/Compare/PWM Register 2 (MSB) xxxx xxxx uuuu uuuu								
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

NOTES:

16.0 SPECIAL FEATURES OF THE CPU

The PIC16F917/916/914/913 has a ho st of features intended to maximize system reliability, minimize cost through el imination of e xternal components, pro vide power saving features and offer code protection.

These features are:

- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Oscillator Selection
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming™

The PIC16F917/916/914/913 has two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), in tended to k eep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 64 ms (nominal) on power-up only, designed to ke ep the part in Reset w hile the po wer supply stabilizes. There is also circuitry to reset the device if a br own-out oc curs, which can use the Power-up Timer to provide at least a 64 ms Reset. With these three functions-on-chip, most ap plications ne ed no external Reset circuitry.

The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through:

- •E xternal Reset
- Watchdog Timer Wake-up
- An interrupt

Several os cillator options are also made a vailable to allow the part to fit the application. The INTOSC option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options (see Register 16-1).

16.1 **Configuration Bits**

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1') to select various device c onfigurations a s shown i n Register 16-1. These bits a re mapped in program memory location 2007h.

Note: Address 2007h is bey ond the us er program memory space. It belongs to the special c onfiguration m emory space (2000h-3FFFh), which can be accessed only duri ng programming. Se е "PIC16F917/916/914/913 Mem ory Programming Spec ification" (D S41244) for more information.

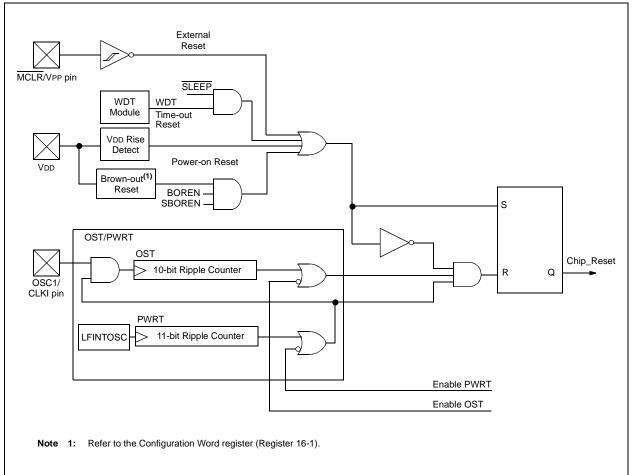
REGISTER 16-1: CONFIG – CONFIGURATION WORD (ADDRESS: 2007h)

_	DEBUG	FCMEN	IESO	BOREN1	BOREN0	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
13													bit 0
13	Unimpl	emented: F	Read as ':	1'									
12	1 = In-C	DEBUG: In-Circuit Debugger Mode bit 1 = In-Circuit Debugger disabled, RB6/ICSPCLK/ICDCK/SEG14 and RB7/ICSPDAT/ICDDAT/SEG13 are general purpose I/O pins 0 = In-Circuit Debugger enabled, RB6/ICSPCLK/ICDCK/SEG14 and RB7/ICSPDAT/ICDDAT/SEG13 are dedicated to the debugger											
11	1 = Fail	FCMEN: Fail-Safe Clock Monitor Enabled bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled											
10	1 = Inte		al Switcho	chover bit over mode is over mode is									
9-8	11 = BC 10 = BC 01 = BC	BOREN<1:D>: Brown-out Reset Selection bits ⁽¹⁾ 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit (PCON<4>) 00 = BOR disabled											
7	1 = Dat		code prote	bit ⁽²⁾ ection is disa ection is enat									
6	1 = Pro		ory code p	protection is o									
5	1 = RB3	B/MCLR/VP	P pin func	n functi <u>on se</u> tion is MCLF tion is digital		R internall	y tied to	Vdd					
4	1 = PW	Power-up RT disabled RT enabled	d	nable bit									
3	1 = WD	Watchdog T enabled T disabled			y SWDTEN k	oit (WDTC	;ON<0>)						
2-0	 0 = WDT disabled and can be enabled by SWDTEN bit (WDTCON<0>) FOSC<2:0>: Oscillator Selection bits 111 = RC oscillator: CLKO function on RA6/OSC2/CLKO/T1OSO pin, RC on RA7/OSC1/CLKI/T1OSI 110 = RCIO oscillator: I/O function on RA6/OSC2/CLKO/T1OSO pin, RC on RA7/OSC1/CLKI/T1OSI 101 = INTOSC oscillator: CLKO function on RA6/OSC2/CLKO/T1OSO pin, I/O function on RA7/OSC1/CLKI/T1OSI 100 = INTOSCIO oscillator: I/O function on RA6/OSC2/CLKO/T1OSO pin, I/O function on RA7/OSC1/CLKI/T1OSI 101 = INTOSCIO oscillator: I/O function on RA6/OSC2/CLKO/T1OSO pin, I/O function on RA7/OSC1/CLKI/T1OSI 101 = EC: I/O function on RA6/OSC2/CLKO/T1OSO pin, CLKI on RA7/OSC1/CLKI/T1OSI 011 = EC: I/O function on RA6/OSC2/CLKO/T1OSO pin, CLKI on RA7/OSC1/CLKI/T1OSI 010 = HS oscillator: resed crystal/resonator on RA6/OSC2/CLKO/T1OSO and RA7/OSC1/CLKI/T1OSI 001 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKO/T1OSO and RA7/OSC1/CLKI/T1OSI 001 = LP oscillator: Low-power crystal on RA6/OSC2/CLKO/T1OSO and RA7/OSC1/CLKI/T1OSI 												
	Note	 Enabling Brown-out Reset does not automatically enable Power-up Timer. The entire data EEPROM will be erased when the code protection is turned off. The entire program memory will be erased when the code protection is turned off. When MCLR is asserted in INTOSC or RC mode, the internal clock oscillator is disabled. 											
	Legend	l:											
	R = Rea	adable bit		W :	= Writable bit		U =	Unimpleme	nted bit, rea	d as '0'			
	- n – Va	lue at POR		'1' :	= Bit is set		'0' =	Bit is cleare	ed	X =	Bit is unkn	own	

16.2 Reset

The PIC 16F917/916/914/913 di fferentiates b etween various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)


Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset
- •M CLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

They are not affected by a WDT wake-up since this is viewed as the resumption of normal operation. $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different Reset situations, as indicated in Table 16-2. The se bits a re used in software to determine the nature of the Reset. See Table 16-5 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 16-1.

The MCLR Reset path has a noise filter to detect and ignore small pul ses. See **Section 19.0** " **Electrical Specifications**" for pulse width specifications.

FIGURE 16-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

16.3 Power-on Reset

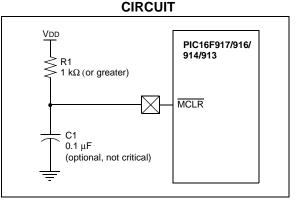
The on-chip POR circuit holds the chip in Reset until VDD has reached a high en ough I evel for proper operation. Totake a dvantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Section 19.0 "Electrical Specifications" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (s ee Section 16.3.3 "B rown-Out R eset (BOR)").

Note: The POR circuit does not p roduce a n internal Reset w hen V DD dec lines. To re-enable the POR, VDD must reach Vss for a minimum of 100 μs.

When the dev ice s tarts n ormal o peration (e xits th e Reset condition), device ope rating p arameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device m ust b e h eld i n R eset un til th e o perating conditions are met.

For add itional in formation, refer to App lication N ote AN607, *"Power-up Trouble Shooting"* (DS00607).

16.3.1 MCLR


PIC16F917/916/914/913 has a noise filter in the MCLR Reset p ath. Th e fil ter w ill d etect an d ig nore sm all pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has be en a ltered f rom early devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 16-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When cleared, $\overline{\text{MCLR}}$ is internally tied to VDD and an internal weak pull-up is enabled for the $\overline{\text{MCLR}}$ pin. In-Circuit Serial P rogramming is not affected by selecting the internal $\overline{\text{MCLR}}$ option.

FIGURE 16-2: RECOMMENDED MCLR

16.3.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on pow er-up on ly, from POR or Brown-out Reset. The Power-up Timer operates from the 31 kHz LFINTOSC o scillator. F or m ore in formation, se e **Section 4.4 "Internal Clock Modes**". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE, can disable (if se t) or ena ble (if cleared or programmed) the Pow er-up T imer. The Power-up T imer should be enabled when B rown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip and vary due to:

- VDD variation
- Temperature variation
- Process variation

See D C parameters for det ails (**Section 19.0** "Electrical Specifications").

16.3.3 BROWN-OUT RESET (BOR)

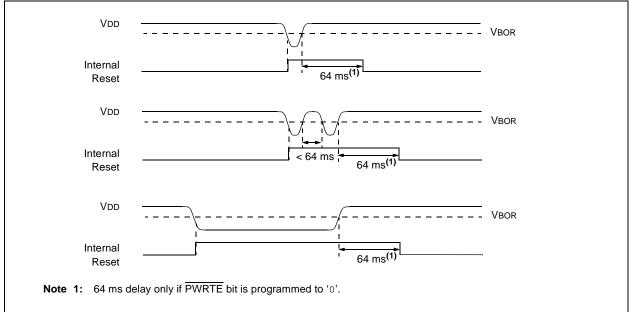
The BOR EN0 and BOR EN1 bits in the Configuration Word register s elects one of four BOR modes. Two modes have been added to allow software or hardware control of the BOR enable. When BOREN<1:0> = 01, the SBOREN bit (PC ON<4>) ena bles/disables the BOR allowing it to be controlled in software. By selecting BOREN<1:0>, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. In this mo de, the SBO REN bit is di sabled. Se e Register 16-1 for the configuration word definition.

If V DD falls be low V BOR for gr eater th an p arameter (TBOR) (s ee **Section 19.0** " **Electrical Spe cifica-tions**"), the Brown-out situation will reset the device. This will occur regardless of VDD slew rate. A Reset is not insured to occur if VDD falls below VBOR for I ess than parameter (TBOR).

On any Reset (Power-on, Brown-out Reset, Watchdog Timer, etc.), the chip will remain in Reset until VDD rises above V BOR (see Fig ure 16-3). The Power-up Timer will now be invoked, if enabled and will keep the chip in Reset an additional 64 ms.

Note:	The Power-up Timer is enabled by	the
	PWRTE bit in the Configuration Word.	

FIGURE 16-3: BROWN-OUT SITUATIONS


If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

16.3.4 BOR CALIBRATION

The PIC16F917/916/914/913 stores the BOR calibration values in f uses located in the C alibration Word (2008h). The Calibration W ord is not eras ed when using the s pecified bulk era se s equence in th e "PIC16F917/916/914/913 *Me mory P rogramming Specification*" (DS41244) and thu s, do es not require reprogramming.

Address 2008h is beyond the user program mem ory space. It belongs to the special configuration memory space (2000 h-3FFFh), which c an be accessed o nly during programming. See "P IC16F917/916/914/913 *Memory*

Programming S pecification" (D S41244) for more information.

16.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows: first, PWRT time-out is invoked after POR has expired, then OST is activated after the PWRT time-out has expired. The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 16-4, Figure 16-5 and Figure 16-6 depict time-out sequences. The device can execute code from the INTOSC while OST is active, by enabling Two-Speed Start-up or Fail-Safe Monitor (see Section 4.6.2 "Two-Speed Start-up Sequence" and Section 4.7 "Fail-Safe Clock Monitor").

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 16-5). This is useful for testing purposes or to synchronize more than one PIC16F917/916/914/913 device operating in parallel.

Table 16-5 shows the R eset c onditions for s ome special registers, while Table 16-5 shows the R eset conditions for all the registers.

16.3.6 POWER CONTROL (PCON) REGISTER

The Power Control (PCON) register (address 8Eh) has two Status bits to indicate what type of Reset that last occurred.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on R eset. It m ust then be s et by the user and checked on subs equent R esets to see if $\overline{\text{BOR}} = 0$, indicating th at a Brown-out has occurred. The $\overline{\text{BOR}}$ Status b it is a "don 't c are" and is n ot ne cessarily predictable if the brow n-out circuit is dis abled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to th is b it fol lowing a Power-on Rese t. O n a subsequent Reset, if POR is '0', it will indicate that a Power-on Res et h as oc curred (i.e., V DD may h ave gone too low).

For more information, see **Section 16.3.3** "**Brown-Out Reset (BOR)**".

Oscillator Configuration	Powe	er-up	Brown-o	Wake-up from	
	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP ⁽¹⁾	TPWRT + 1024 •	1024 • Tosc	TPWRT + 1024 •	1024 • Tosc	1024 • Tosc
	Tosc		Tosc		
RC, EC, INTOSC	TPWRT	_	TPWRT	—	—

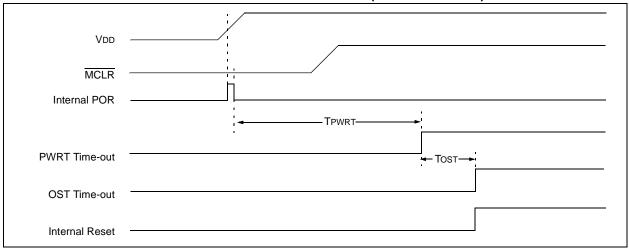
TABLE 16-1: TIME-OUT IN VARIOUS SITUATIONS

Note 1: LP mode with T1OSC disabled.

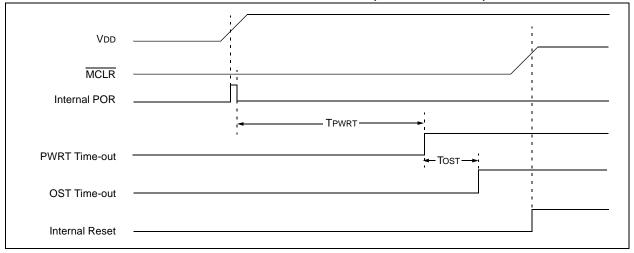
TABLE 16-2: PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition	
0	u	1	1	Power-on Reset	
1	0	1	1	Brown-out Reset	
u	u	0	u	WDT Reset	
u	u	0	0	WDT Wake-up	
u	u	u	u	MCLR Reset during normal operation	
u	u	1	0	MCLR Reset during Sleep	

Legend: u = unchanged, x = unknown


TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets ⁽¹⁾
03h S	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh F	PCON	_	_		SBOREN	_	_	POR	BOR	01qq	Ouuu


Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

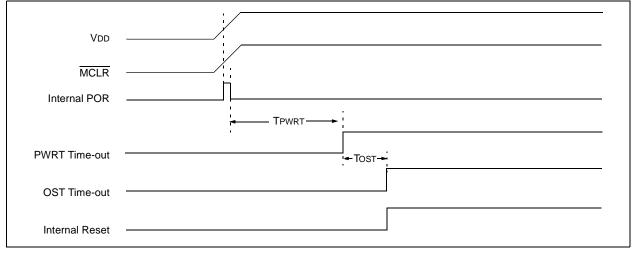


TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset WDT Reset Brown-out Reset	eset ⁽¹⁾	 Wake-up fror through inter Wake-up fror through WD1 	rupt n Sleep
W	—	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
INDF	00h/80h/ 100h/180h	XXXX XXXX	xxxx	xxxx	սսսս	սսսս
TMR0	01h/101h	xxxx xxxx	uuuu	uuuu	սսսս	uuuu
PCL	02h/82h/ 102h/182h	0000 0000	0000	0000	PC +	1 ⁽³⁾
STATUS	03h/83h/ 103h/183h	0001 1xxx	000q	quuu ⁽⁴⁾	սսսգ	quuu ⁽⁴⁾
FSR	04h/84h/ 104h/184h	xxxx xxxx	սսսս	uuuu	սսսս	นนนน
PORTA	05h	xxxx xxxx	0000	0000	uuuu	uuuu
PORTB	06h/106h	xxxx xxxx	0000	0000	uuuu	uuuu
PORTC	07h	xxxx xxxx	0000	0000	uuuu	uuuu
PORTD	08h	xxxx xxxx	0000	0000	uuuu	uuuu
PORTE	09h	xxxx		0000		uuuu
PCLATH	0Ah/8Ah/ 10Ah/18Ah	0 0000	0	0000	u	นนนน
INTCON	0Bh/8Bh/ 10Bh/18Bh	0000 000x	0000	000x	սսսս	uuuu ⁽²⁾
PIR1	0Ch	0000 0000	0000	0000	uuuu	uuuu ⁽²⁾
PIR2	0Dh	0000 - 0 - 0	0000	- 0 - 0	uuuu	
TMR1L	0Eh	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
TMR1H	0Fh	xxxx xxxx	uuuu	uuuu	uuuu	uuuu
T1CON	10h	0000 0000	uuuu	uuuu	uuuu	uuuu
TMR2	11h	01-0 0-00	01-0	0 - 0 0	uu-u	u-uu
T2CON	12h	-000 0000	- 0 0 0	0000	-uuu	uuuu
SSPBUF	13h	xxxx xxxx	xxxx	xxxx	uuuu	uuuu
SSPCON	14h	0000 0000	0000	0000	սսսս	uuuu
CCPR1L	15h	0000 0000	0000	0000	uuuu	uuuu
CCPR1H	16h	0000 0010	0000	0010	սսսս	uuuu
CCP1CON	17h	000x 000x	000x	000x	սսսս	uuuu
RCSTA	18h	0 1000	0	1000	u	uuuu
TXREG	19h	0000 0000	0000	0000	uuuu	uuuu
RCREG	1Ah	0000 0000	0000	0000	uuuu	uuuu
CCP2CON	1Dh	00 0000	00	0000	uu	uuuu
ADRESH	1Eh	xxxx xxxx	uuuu	uuuu	uuuu	uuuu

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 16-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

Register Address F ADCON0 1Fh 000 OPTION_REG 81h/181h 111 TRISA 85h 111 TRISB 86h/186h 111 TRISC 87h 111 TRISD 88h 111 TRISD 88h 111 TRISE 89h 111 PIE1 8Ch 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON 9Dh 0-0 ADCON1 9Fh -00	CONDIT	ATION CONDITION FOR REGISTERS (CONTINUED)	
OPTION_REG 81h/181h 111 TRISA 85h 111 TRISB 86h/186h 111 TRISC 87h 111 TRISC 87h 111 TRISC 88h 111 TRISC 88h 111 TRISE 89h 111 PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Dh 0-0 ADCON1 9Fh -00 WDTCON 105h <		Power-on Reset • Brown-out Reset ⁽¹⁾ • Wak	e-up from Sleep ugh interrupt e-up from Sleep ugh WDT time-out
TRISA 85h 111 TRISB 86h/186h 111 TRISC 87h 111 TRISC 87h 111 TRISC 87h 111 TRISC 87h 111 TRISE 89h 111 TRISE 89h 111 TRISE 89h 000 PIE1 8Ch 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Dh 0-0 ADCON1 9Fh -000 <t< td=""><td>0000</td><td>0000 0000 0000 0000</td><td>uuuu uuuu</td></t<>	0000	0000 0000 0000 0000	uuuu uuuu
TRISB 86h/186h 111 TRISC 87h 111 TRISD 88h 111 TRISE 89h 111 TRISE 89h 111 PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh 111 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000	. 1111	1111 1111 1111 1111	uuuu uuuu
TRISC 87h 111 TRISD 88h 111 TRISE 89h 111 PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh 111 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000	. 1111	1111 1111 1111 1111	uuuu uuuu
TRISD 88h 111 TRISE 89h 111 PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000	. 1111	1111 1111 1111 1111	uuuu uuuu
TRISE 89h 111 PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Ch 000	. 1111	1111 1111 1111 1111	uuuu uuuu
PIE1 8Ch 000 PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 108h 000 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh 0	. 1111	1111 1111 1111 1111	uuuu uuuu
PIE2 8Dh 000 PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 VRCON 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Eh 0 EEADRH 10Fh <t< td=""><td>. 1111</td><td>1111 1111 1111 1111</td><td>uuuu uuuu</td></t<>	. 1111	1111 1111 1111 1111	uuuu uuuu
PCON 8Eh 0 OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000 0000	uuuu uuuu
OSCCON 8Fh -11 OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
OSCTUNE 90h ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	0x	010x0uuu ^(1,5)	uuuu
ANSEL 91h 111 PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Ch 000 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx) q000	-110 q000 -110 x000	-uuu uuuu
PR2 92h 111 SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Fh LCDDATA0 110h xxx	0000	0 0000u uuuu	u uuuu
SSPADD 93h 000 SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEADRH 10Fh 0 EEADRH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	. 1111	1111 1111 1111 1111	uuuu uuuu
SSPSTAT 94h 000 WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx	. 1111	1111 1111 1111	1111 1111
WPUB 95h 111 IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 109h -0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
IOCB 96h 000 CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -000 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
CMCON1 97h TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Fh 0 EEADRL 10Dh 000 EEADRH 10Fh LCDDATA0 110h xxx	. 1111	1111 1111 1111	uuuu uuuu
TXSTA 98h 000 SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 109h -0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEDATH 10Fh 0 EEDATH 10Fh 0 EEDATH 10Fh 0)	0000 0000	uuuu
SPBRG 99h 000 CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEDATH 10Fh 0 EEDATH 10Fh 1 LCDDATA0 110h xxx	10	10 10	uu
CMCON0 9Ch 000 VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEDATH 10Fh LCDDATA0 110h xxx	0 -010	0000 -010 0000 -010	uuuu -uuu
VRCON 9Dh 0-0 ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Dh -00 EEDATH 10Fh 0 EEDATH 10Fh 0 EEDATH 10Fh 0 EEDATH 10Fh 0 EEDATH 10Fh 10	0000	0000 0000 0000 0000	uuuu uuuu
ADRESL 9Eh xxx ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
ADCON1 9Fh -00 WDTCON 105h LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Dh 000 EEDATH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	0000	0-0-0000 0-0-0000	u-u- uuuu
WDTCON 105h LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATH 10Dh 0 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx	xxxx	xxxx xxxx uuuu uuuu	uuuu uuuu
LCDCON 107h 000 LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEDATL 10Dh 000 EEDATL 10Dh 000 EEDATH 10Eh 0 EEDATH 10Fh LCDDATA0 110h xxx)	-000	-uuu
LCDPS 108h 000 LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	1000	0 10000 1000	u uuuu
LVDCON 109h 0 EEDATL 10Ch 000 EEADRL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh 0 EEADRH 10Fh LCDDATA0 110h xxx	0011	0001 0011 0001 0011	uuuu uuuu
EEDATL 10Ch 000 EEADRL 10Dh 000 EEDATH 10Eh 0 EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
EEADRL10Dh000EEDATH10Eh0EEADRH10FhLCDDATA0110hxxx) -100	00 -10000 -100	uu -uuu
EEDATH10Eh0EEADRH10FhLCDDATA0110hxxx	0000	0000 0000 0000	uuuu uuuu
EEADRH 10Fh LCDDATA0 110h xxx	0000	0000 0000 0000	uuuu uuuu
LCDDATA0 110h xxx	0000	00 0000 0000 0000	uuuu uuuu
	0000	0 0000 0000 0000	uuuu uuuu
	xxxx	xxxx xxxx uuuu uuuu	uuuu uuuu
LCDDATA1 111h xxx	xxxx	xxxx xxxx uuuu uuuu	uuuu uuuu
LCDDATA2 112h xxx	xxxx	xxxx xxxx uuuu uuuu	uuuu uuuu

TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

 $\label{eq:logend: u = unchanged, x = unknown, - = unimplemented bit, reads as `0', q = value depends on condition.$

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

- **3:** When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
- 4: See Table 16-5 for Reset value for specific condition.
- 5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

Register	Address	Power-on Reset	 MCLR Reset WDT Reset Brown-out Reset⁽¹⁾ 	 Wake-up from Sleep through interrupt Wake-up from Sleep through WDT time-out
LCDDATA3	113h	xxxx xxxx	սսսս սսսս	սսսս սսսս
LCDDATA4	114h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA5	115h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA6	116h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA7	117h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA8	118h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA9	119h	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA10	11Ah	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDDATA11	11Bh	xxxx xxxx	uuuu uuuu	uuuu uuuu
LCDSE0	11Ch	0000 0000	uuuu uuuu	uuuu uuuu
LCDSE1	11Dh	0000 0000	uuuu uuuu	uuuu uuuu
LCDSE2	11Eh	0000 0000	uuuu uuuu	uuuu uuuu
EECON1	18Ch	x x000	u q000	u uuuu

TABLE 16-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 16-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

TABLE 16-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	010x
MCLR Reset during normal operation	000h	000u uuuu	0uuu
MCLR Reset during Sleep	000h	0001 0uuu	0uuu
WDT Reset	000h	0000 uuuu	0uuu
WDT Wake-up	PC + 1	uuu0 0uuu	uuuu
Brown-out Reset	000h	0001 luuu	0110
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul 0uuu	uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Interrupt Enable bit, GIE, is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

16.4 Interrupts

The PIC16F917/916/914/913 has multiple sources of interrupt:

- External Interrupt RB0/INT/SEG0
- TMR0 Overflow Interrupt
- PORTB Change Interrupts
- 2 Comparator Interrupts
- A/D Interrupt
- Timer1 Overflow Interrupt
- EEPROM Data Write Interrupt
- Fail-Safe Clock Monitor Interrupt
- LCD Interrupt
- PLVD Interrupt
- USART Receive and Transmit interrupts
- CCP1 and CCP2 Interrupts
- TMR2 Interrupt

The Interrupt Control (INTCON) register and Peripheral Interrupt R equest 1 (PIR 1) register record individual interrupt requests in f lag bits. The INTCON register also has individual and global interrupt enable bits.

A GI obal I nterrupt E nable b it, GI E (INTCON<7>), enables (if set) all unmasked interrupts, or disables (if cleared) al I interrupts. I ndividual in terrupts can be disabled through their corresponding enable bits in the INTCON register and PIE1 register. GIE is cleared on Reset.

The Return from Interrupt instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables unmasked interrupts.

The fol lowing in terrupt fl ags are contained in the INTCON register:

- INT Pin Interrupt
- PORTB Change Interrupt
- TMR0 Overflow Interrupt

The peripheral interrupt flags are contained in the special registers, PIR1 and PIR2. The corresponding interrupt enable bit are contained in the special registers, PIE1 and PIE2.

The following interrupt flags are contained in the PIR1 register:

- EEPROM Data Write Interrupt
- A/D Interrupt
- USART Receive and Transmit Interrupts
- Timer1 Overflow Interrupt
- CCP1 Interrupt
- SSP Interrupt

The following interrupt flags are contained in the PIR2 register:

- Fail-Safe Clock Monitor Interrupt
- Comparator 1 and 2 Interrupts
- LCD Interrupt
- PLVD Interrupt
- CCP2 Interrupt

When an interrupt is serviced:

- The GIE is cleared to disable any further interrupt.
- The return address is pushed onto the stack.
- The PC is loaded with 0004h.

For external interrupt events, such as the INT p in or PORTB change interrupt, the interrupt latency will be three or four r instruction cy cles. The exact latency depends upon when the interrupt event occurs (see Figure 16-8). The I atency is the same for one or two-cycle instructions. On ce in the In terrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple in terrupt requests.

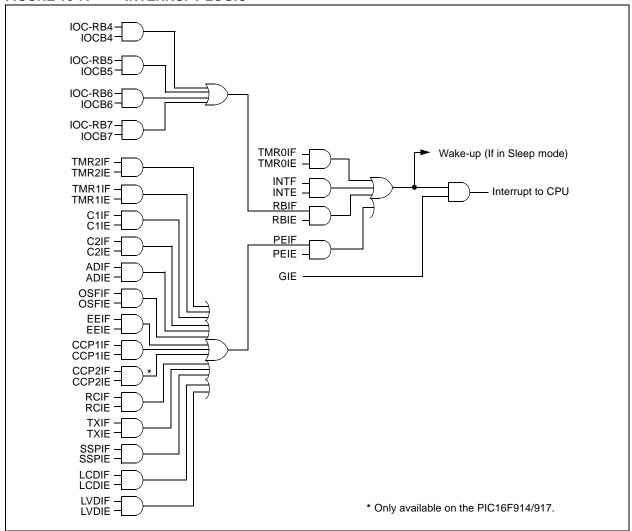
- Note 1: Individual interrupt flag bits are se t, regardless of the st atus of the ir corresponding mask bit or the GIE bit.
 - 2: When an instruction that clears the G IE bit is ex ecuted, any interrupts that were pending for ex ecution in the next cy cle are i gnored. The interrupts, which were ignored, are still pending to be se rviced when the GIE bit is set again.

For a dditional in formation on T imer1, A/ D or data EEPROM modules, refer to the respective peripheral section.

Note: The ANSEL (9 1h) a nd CMCON0 (9 Ch) registers m ust be in itialized t o c onfigure an analog channel as a digital input. Pins configured as a nalog inputs will read '0'. Also, if a LCD output function is active on an ex ternal i nterrupt pin , tha t in terrupt function will be disabled.

16.4.1 RB0/INT/SEG0 INTERRUPT

External interrupt on RB0/INT/SEG0 pin is edge-triggered; either rising if the INTEDG bit (OPTION<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT/SEG0 pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the Interrupt Service Routine b efore re -enabling thi s interrupt. Th e RB0/INT/SEG0 interrupt can wake-up the processor from Sleep if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up (00 04h). See Section 16.7 " Power-Down Mode (Sleep)" for details on Sleep and Figure 16-10 for t iming o f wake-up fro m Sleep through RB0/INT/SEG0 interrupt.


16.4.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T 0IF (INTCON<2>) b it. The in terrupt can b e enabled/disabled by s etting/clearing T0 IE (INTCON<5>) bit. See **Section 5.0 "Timer0 Module"** for operation of the Timer0 module.

16.4.3 PORTB INTERRUPT

An inp ut c hange on PO RTB change s ets the R BIF (INTCON<0>) bit. The in terrupt ca n be enabled/disabled by se tting/clearing th e R BIE (INTCON<3>) bit. Plus, individual pins can be configured through the IOCB register.

Note: If a change on t he I/O pin should occur when the read operation is being executed (start of the Q 2 cycle), then t he RBIF interrupt flag may not get set.

FIGURE 16-7: INTERRUPT LOGIC

FIGURE 16-8:		ERRUPT TIMING	j		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1					
CLKO ⁽³⁾	(4)		\/	· · ·	
INT pin		(1)	1 1 1	1 1 1	
INTF Flag (INTCON<1>)	, (1) (5)		Interrupt Latency (2)	· · · ·	
GIE bit (INTCON<7>)	 	1 1 1	<u> </u>	1 1 1	
Instruction Flow			-, — — — — — - '		· — — — — ¬
PC	C PC	X PC + 1	X PC + 1	X 0004h	× <u>0005h</u>
Instruction (Fetched	Inst (PC)	Inst (PC + 1)	—	Inst (0004h)	Inst (0005h)
Instruction { Executed {	Inst (PC - 1)	Inst (PC)	Dummy Cycle	Dummy Cycle	Inst (0004h)
2: Asy	F flag is sampled here nchronous interrupt lat ency is the same wheth	tency = 3-4 Tcy. Synch		ery, where Tcy = instruct struct	ion cycle time.

FIGURE 16-8: INT PIN INTERRUPT TIMING

3: CLKO is available only in INTOSC and RC Oscillator modes.

4: For minimum width of INT pulse, refer to AC specifications in Section 19.0 "Electrical Specifications".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh, 8Bh	INTCON	GIE P	EIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000x
0Ch	PIR1	EEIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	OSFIF	C2IF	C1IF	LCDIF	—	LVDIF	—	CCP2IF	0000 -0-0	0000 -0-0
8Ch	PIE1	EEIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	OSFIE	C2IE	C1IE	LCDIE	_	LVDIE	—	CCP2IE	0000 -0-0	0000 -0-0

TABLE 16-6: SUMMARY OF INTERRUPT REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by the interrupt module.

16.5 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers du ring an in terrupt (e. g., W an d S tatus registers). This must be implemented in software.

Since the lower 16 bytes of all banks are common in the PIC16F917/916/914/913 (s ee F igure 2-3), te mporary holding r egisters, W _TEMP an d S TATUS_TEMP, should be placed in here. These 16 locations do not require banking and therefore, make it easier to context save and restore. The sam e c ode shown in Example 16-1 can be used to:

- Store the W register
- Store the Status register
- · Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register

Note:	The PIC 16F917/916/914/913 normally
	does no t req uire s aving the PC LATH.
	However, if computed GOTO's are used in
	the ISR and the main code, the PCLATH
	must be saved and restored in the ISR.

EXAMPLE 16-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		;Insert user code here
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into Status register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

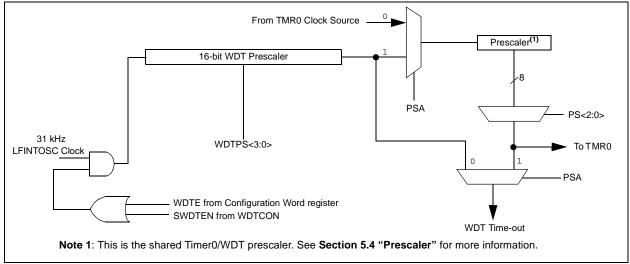
16.6 Watchdog Timer (WDT)

For PIC16F917/916/914/913, the WDT has been modified from previous PIC16F devices. The new WDT is code and functionally compatible with previous PIC16F WDT modules and adds a 16-bit prescaler to the WDT. This allows the user to have a scaled value for the WDT and TMR0 at the same time. I n a ddition, the WDT time-out value can be extended to 268 seconds. WDT is c leared un der certain c onditions de scribed i n Table 16-7.

16.6.1 WDT OSCILLATOR

The W DT d erives its t ime base f rom t he 31 kHz LFINTOSC. The L TS bit do es not reflect that the LFINTOSC is enabled.

The value of WDTCON is `---0 1000' on all Resets. This giv es a no minal time base of 16 ms, which is compatible with the time base generated with previous PIC16F microcontroller versions. A new prescaler has been added to the path between the INTOSC and the mu ltiplexers used to select the path for the WDT. This prescaler is 16 bits and can be programmed to divide the INTOSC by 32 to 65 536, giving the WDT a nominal range of 1 ms to 268s.


16.6.2 WDT CONTROL

The WD TE bit is I ocated in the Configuration W ord register. When set, the WDT runs continuously.

When the WDTE bit in the Configuration Word register is set, the SWDTEN bit (WDTCON<0>) has no effect. If WDTE is clear, then the SWDTEN bit can be used to enable and disable the WDT. Setting the bit will enable it and clearing the bit will disable it.

The PSA and PS<2:0> bits (OPTION_REG) have the same function as in previous versions of the PIC16F family of m icrocontrollers. Se e **Section 5.0 "T imer0 Module"** for more information.

FIGURE 16-9: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 16-7: WDT STATUS

Conditions	WDT	
WDTE = 0		
CLRWDT Command	Cleared	
Oscillator Fail Detected	Cleared	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK		
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST	

Note: When the Oscillator Start-up Timer (OST) is in voked, th e WD T is h eld in R eset, because the WDT Ripple Counter is used by the OST to perform the oscillator delay count. When the OST count has expired, the WDT will begin counting (if enabled).

REGISTER 16-2: WDTCON – WATCHDOG TIMER CONTROL REGISTER (ADDRESS: 105h)

U-0	U-0	U-0	R/W-0	R/W-1	R/W-0	R/W-0	R/W-0
	—	—	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN
bit 7							bit 0

- bit 7-5 Unimplemented: Read as '0'
- bit 4-1 WDTPS<3:0>: Watchdog Timer Period Select bits

Bit Value	= Prescale Rate
	4.00

0000	= 1:32	
0001	= 1:64	
0010	= 1:128	
0011	= 1:256	
0100	= 1:512 (Reset value)
0101	= 1:1024	
0110	= 1:2048	
0111	= 1:4096	
1000	= 1:8192	
1001	= 1:1638	4
1010	= 1:3276	3
1011	= 1:6553	5
1100	= reserve	d
1101	= reserve	d
1110	= reserve	d
1111	= reserve	d

bit 0

0 SWDTEN: Software Enable or Disable the Watchdog Timer bit⁽¹⁾

1 = WDT is turned on

0 = WDT is turned off (Reset value)

Note 1: If WDTE configuration bit = 1, then WDT is always enabled, irrespective of this control bit. If WDTE configuration bit = 0, then it is possible to turn WDT on/off with this control bit.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TABLE 16-8: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
105h	WDTCON	—	—	_	WDTPS3	WDTPS2	WSTPS1	WDTPS0	SWDTEN
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0
2007h ⁽¹⁾	CONFIG	CPD	CP	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 16-1 for operation of all Configuration Word register bits.

16.7 Power-Down Mode (Sleep)

The Pow er-down mode is ent ered by ex ecuting a SLEEP instruction.

If the Watchdog Timer is enabled:

- WDT will be cleared but keeps running.
- PD bit in the Status register is cleared.
- TO bit is set.
- Oscillator driver is turned off.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, all I/O pins should be either at V DD or VSS, with no external circuitry d rawing c urrent from the I/O pin, and the comparators and CVREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or V ss f or lo west cu rrent co nsumption. T he contribution from on-chip pull-ups on PORTB should be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level.

Note:	It should be noted that a Reset generated
	by a WDT time-out does not drive MCLR
	pin low.

16.7.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin.
- 2. Watchdog T imer wak e-up (i f W DT wa s enabled).
- 3. Interrupt fro m R B0/INT/SEG0 pi n, PO RTB change or a peripheral interrupt.

The first event will cause a device Reset. The two latter events are c onsidered a continuation of program execution. The \overline{TO} and \overline{PD} bits in the Status register can be used to determine the cause of device Reset. The \overline{PD} bit, which is set on power-up, is cleared when Sleep is invoked. \overline{TO} bit is cleared if WDT wake-up occurred.

The following peripheral interrupts can wake the device from Sleep:

- 1. TMR1 Interrupt. Timer1 must be operating as an asynchronous counter.
- 2. EUSART Receive Interrupt
- 3. A/D conversion (when A/D clock source is RC)
- 4. EEPROM write operation completion
- 5. Comparator output changes state
- 6. Interrupt-on-change
- 7. External Interrupt from INT pin
- 8. PLVD Interrupt
- 9. LCD Interrupt (if running during Sleep)

Other peri pherals c annot ge nerate i nterrupts si nce during Sleep, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction after the subset (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note:	If the global interrupts are disabled (GIE is
	cleared), but any interrupt source has both
	its interrupt enable bit and the correspond-
	ing interrupt flag bits set, the device will
	immediately w ake-up fro m SI eep. Th e
	SLEEP instruction is completely executed.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

16.7.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will not be cleared, the TO bit will not be set and the PD bit will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from Sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT prescaler and postscaler (if enabled) will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it m ay be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a $\tt CLRWDT$ instruction should be executed before a $\tt SLEEP$ instruction.

FIGURE 16-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT

OSC1 ⁽¹⁾	; Q1 Q2 Q3 Q4 /~	Q1 Q2 Q3 Q4	Q1			; Q1 Q2 Q3 Q4; /~/	Q1 Q2 Q3 Q4;0	Q1 Q2 Q3 Q4; ~~~~.
CLKO ⁽⁴⁾	۲ <u>٬</u>	/	<u> </u>	Tost ⁽²⁾		↓/	/\	/¦
INT pin				1				
INTF flag (INTCON<1>			Y	ı ı ≠	Interrupt Laten	cy ⁽³⁾		i
GIE bit (INTCON<7>) <mark></mark>		Processor in Sleep	· · ·				
Instruction Flow	/			1		· · ·		
PC	X PC	(PC + 1	Х РС	+ 2	PC + 2	X PC + 2 X	<u> 0004h </u> X	0005h
Instruction { Fetched	Inst(PC) = Sleep	Inst(PC + 1)	, , ,		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction { Executed	Inst(PC - 1)	Sleep	1 1 1		Inst(PC + 1)	Dummy Cycle	Dummy Cycle	Inst(0004h)
Note 1: 2: 3: 4:	XT, HS or LP Oscill Tost = 1024 Tosc (GIE = 1 assumed. CLKO is not availab	(drawing not to so In this case after	cale). This del wake-up, the	processo	r jumps to 0004h.	If GIE = 0, execution	on will continue in-	line.

16.8 Code Protection

If the c ode protection b it(s) h ave n ot been programmed, the on -chip p rogram memory c an b e read out using ICSP for verification purposes.

Note: The entire d ata EEPROM a nd F lash program memory will be erased when the code pro tection i s tu rned of f. Se e th e "PIC16F917/916/914/913 *Me mory P rogramming Sp ecification*" (D S41244) for more information.

16.9 ID Locations

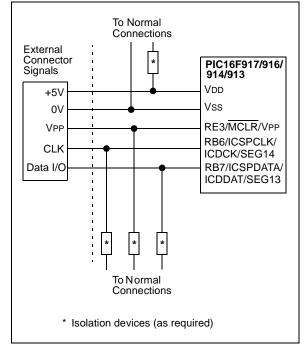
Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not ac cessible du ring norm al execution, but are readable and w ritable du ring Progra m/Verify m ode. Only the Least Significant 7 bits of the ID locations are used.

16.10 In-Circuit Serial Programming

The PIC 16F917/916/914/913 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for:

- power
- ground
- programming voltage

This a llows c ustomers t o m anufacture bo ards w ith unprogrammed devices and then program the microcontroller j ust before s hipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


The device is placed in to a Program/Verify mode by holding the RB7 /ICSPDAT/ICDDAT/SEG13 a nd RB6/ICSPCLK/ICDCK/SEG14 pins low, while raising the MCLR (V PP) pi n f rom V IL to VIHH. S ee "PIC16F917/916/914/913 Memo Programming ny Specification" (DS41244) f or m ore i nformation. RB7/ICSPDAT/ICDDAT/SEG13 b ecomes th е programming data an d RB6/ICSPCLK/ICDCK/SEG14 becomes th ogramming cl ock. Bo e pr th RB7/ICSPDAT/ICDDAT/SEG13 and

RB6/ICSPCLK/ICDCK/SEG14 are Schmitt Trigger inputs in this mode.

After Res et, to pl ace the device into Program/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is t hen s upplied t ot he device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending on whether t he command w as a load or a r ead. Fo r complete details of serial programming, please refer to the "PIC 16F917/916/914/913 *Me mory P rogramming Specification"* (DS41244). A typical In-Circuit Serial Programming connection is shown in Figure 16-11.

FIGURE 16-11: TY

TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

16.11 In-Circuit Debugger

The PIC16F917/916/914/913-ICD can be used in any of the package types. The device will be mounted on the target application board, which in turn has a 3 or 4 wire connection to the ICD tool.

When the d ebug bit in the C onfiguration W ord (CONFIG<12>) is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] ICD 2. Whe n the mi crocontroller has this feature enabled, some of the resources are not available for general use. See Table 16-9 for more detail.

Note: The user's application m ust h ave th e circuitry r equired to support IC D functionality. O nce t he IC D c ircuitry i s enabled, no rmal d evice pi n fu nctions o n RB6/ICSPCLK/ICDCK/SEG14 a nd RB7/ICSPDAT/ICDDAT/SEG13 wi II n ot be usable. The ICD circuitry uses these pins for communication w ith t he I CD2 external debugger. For m ore i nformation, s ee "Us ing *MPLAB*[®] *I CD 2*" (DS51265), av ailable o n Mi crochip's w eb si te (www.microchip.com).

16.11.1 ICD PINOUT

The dev ices in the PIC16F91X fam ily c arry the circuitry for the In-C ircuit D ebugger on-c hip and on existing dev ice pins. This eli minates the need for a separate die or package for the ICD device. The pinout for the ICD device is the same as the dev ices (see **Section 1.0 "Device O verview"** for complete pinout and pin des criptions). Table 16-9 s hows the I ocation and function of the ICD related pins on the 28 and 40 pin devices.

TABLE 16-9:	PIC16F917/916/914/913-ICD PIN DESCRIPTIONS

Pin (I	PDIP)	Name	Tuno	Pull-up	Description
PIC16F914/917	PIC16F913/916	Name	Туре	Full-up	Description
40	28	ICDDATA	TTL	—	In Circuit Debugger Bidirectional data
39	27	ICDCLK	ST	—	In Circuit Debugger Bidirectional clock
11		MCLR/Vpp	ΗV	_	Programming voltage
11,32	20	Vdd	Р	—	
12,31	8,19	Vss	Р	—	

Legend: TTL = TTL input buffer, ST = Schmitt Trigger input buffer, P = Power, HV = High Voltage

17.0 INSTRUCTION SET SUMMARY

The PIC16F917/916/914/913 instruction s et is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 17-1, while the various opcode fields are summarized in Table 17-1.

Table 17-2 l ists the i nstructions re cognized by the MPASMTM assembler. A complete description of each instruction is al so av ailable i n th e " $PICmicro^{\circledast}$ *Mid-Range M CU Fa mily R eference Manual*" (DS33023).

For **byte-oriented** instructions, 'f' represents a f ile register d esignator and 'd' r epresents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, w hich s elects th e bit af fected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8-bit or 11-bit constant, or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All ins tructions are executed w ithin a si ngle ins truction cy cle, unless a conditional test is true, or the pro gram counter is changed as a result of an instruction. When this occurs, the ex ecution t akes t wo in struction c ycles, with the second cycle executed as a NOP.

Note:	To ma intain upw ard co mpatibility with
	future products, do not use the OPTION
	and TRIS instructions.

All i nstruction e xamples us e t he f ormat '0xhh' t o represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

17.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a CLRF GPIO instruction will read GPIO, clear all the data bits, then write the result back to GPIO. This example would have the unintended result of clearing the condition that set the GPIF flag.

TABLE 17-1:	OPCODE FIELD
	DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

FIGURE 17-1: GENERAL FORMAT FOR INSTRUCTIONS

13		8	7	6		0
	OPCODE		d		f (FILE #)	
	d = 0 for dest	inati	ion W			
	d = 1 for dest		••••			
	f = 7-bit file re	egist	er ado	dress	5	
	iented file re	•	•			~
13		10	9	7	6	0
	OPCODE b = 3-bit bit a f = 7-bit file re	egist	er ado	dress		
	b = 3-bit bit a f = 7-bit file re Il and contro	egist	er ado	dress		
itera	b = 3-bit bit a f = 7-bit file re Il and contro	egist	er ado	dress		0
.itera Gene	b = 3-bit bit a f = 7-bit file re Il and contro	egist	er ado	dress ons		0
.itera Gener 13	b = 3-bit bit a f = 7-bit file re I I and contro ral	ogist	eratio	dress ons	5	0
.itera Gener 13	b = 3-bit bit a f = 7-bit file re al and contro ral OPCODE	ogist	eratio	dress ons	5	0
itera Sene 13	b = 3-bit bit a f = 7-bit file re al and contro ral OPCODE	edia	erations erations 8 te value	dress ons 7 ue	s k (literal)	0
itera Sene 13	b = 3-bit bit a f = 7-bit file re al and contro ral OPCODE k = 8-bit imme	edia	erations erations 8 te value	dress ons 7 ue	s k (literal)	0

Mnemonic, Operands		Description	Cycles		14-Bit Opcode			Status	
		Description C		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE	E REGISTER OPE	RATIC	ONS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2,
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000		ffff	Z	1, 2
MOVWF	., ∝ f	Move W to f	1	00	0000	lfff	ffff	_	.,_
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff		c	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010		ffff	C,DC,Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110		ffff	0,20,2	1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
	, -	BIT-ORIENTED FILE		RATIO				L	,
BCF	f, b	Bit Clear f	1	01	0.0bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f		01		bfff			1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01		bfff			3
BTFSC BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01		bfff	ffff		3
BIF55	Ι, Β	LITERAL AND CO			ddil	DIII	LLLL		3
100111	Ŀ	Add literal and W			111	1_1_1_1_	1_1_1_1_		
ADDLW	k			11	111x		kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001		kkkk	Z	
CALL	k	Call subroutine		10		kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10		kkkk		7	
IORLW	k	Inclusive OR literal with W	1	11	1000		kkkk	Z	
MOVLW	k -	Move literal to W	1	11		kkkk			
RETFIE		Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx				
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11		kkkk		C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	1

TABLE 17-2: PIC16F917/916/914/913 INSTRUCTION SET

If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range in struction set is available in the *PICmicro[®] Mid-Range MCU Family Reference Manual*" (DS33023).

Instruction Descriptions 17.2

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

BCF	Bit Clear f	
Syntax:	[<i>label</i>]BCF f,b	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	
Operation:	$0 \rightarrow (f < b >)$	
Status Affected:	None	
Description:	Bit 'b' in register 'f' is cleared.	

ADDWF	Add W and f		
Syntax:	[label] ADDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$		
Operation:	(W) + (f) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSC	Bit Test, Skip if Clear		
Syntax:	[label] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if $(f < b >) = 0$		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b' in register 'f' is '0', the next instruction is discarded, and a NOP is executed instead, making this a two-cycle instruction.		

ANDWF ~ .

Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

AND W with f

BTFSS	Bit Test f, Skip if Set		
Syntax:	[<i>label</i>] BTFSS f,b		
Operands:	$0 \le f \le 127$ $0 \le b < 7$		
Operation:	skip if (f) = 1		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a two-cycle instruction.		

CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
Operands:	None		
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$		
Status Affected:	TO, PD		
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.		

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a two-cycle instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a two-cycle instruction.

GOTO	Go to Address
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two-cycle instruction.

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f
Syntax:	[<i>label</i>] INCF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

	IORWF	Inclusive OR W with f
	Syntax:	[label] IORWF f,d
	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
	Operation:	(W) .OR. (f) \rightarrow (destination)
	Status Affected:	Z
llt is	Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1000 dfff ffff
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If 'd' = 0, destination is W register. If 'd' = 1, the destination is file register 'f' itself. 'd' = 1 is useful to test a file register since status flag Z is affected.
Words:	1
Cycles:	1
Example:	movf fsr, 0
	After Instruction W = value in SR register Z = 1

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \le f \le 127$
Operation:	$(W) \to (f)$
Status Affected:	None
Encoding:	00 0000 1fff ffff
Description:	Move data from W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF OPTION
	Before Instruction OPTION = 0xFF W = 0x4F After Instruction OPTION = 0x4F W = 0x4F

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Encoding:	11 00xx kkkk kkkk
Description:	The eight bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

NOP	No Oper	ation		
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	00	0000	0xx0	0000
Description:	No opera	ation.		
Words:	1			
Cycles:	1			
Example:	NOP			

© 2005 Microchip Technology Inc.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, 1 $\rightarrow GIE$
Status Affected:	None
Encoding:	00 0000 0000 1001
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	RETFIE
	After Interrupt PC = TOS GIE = 1

RETLW	Return with Literal in W		
Syntax:	[<i>label</i>] RETLW k		
Operands:	$0 \le k \le 255$		
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$		
Status Affected:	None		
Encoding:	11 01xx kkkk kkkk		
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example:	CALL TABLE ; W contains table ;offset value • ;W now has table		
TABLE	value • ADDWF PC ; $W = offset$ RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table Before Instruction W = 0x07 After Instruction W = value of k8		
RETURN	Return from Subroutine		
Suptor			

RETURN	
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS\toPC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.

RLF	Rotate L	eft f thro	ough Ca	rry
Syntax:	[label]	RLF f	,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 12 \\ d \in \ [0,1] \end{array}$	27		
Operation:	See description below			
Status Affected:	С			
Encoding:	0 0	1101	dfff	ffff
Description:	The control rotated o the Carry result is p 'd' is '1', t register 'f	ne bit to Flag. If blaced in he result	the left t 'd' is '0', the W re	hrough the egister. If
			egister f]•
Words:	1 egister		egister f	
Words: Cycles:	- <u>C</u>		egister f	_
	1		legister f	
Cycles:	1 1	- R REG1,0		_ + _
Cycles:	1 1 RLF Before In	- R REG1,0	-	_
Cycles:	1 1 RLF Before In	REG1,0 struction REG1 C	= 11:	_
Cycles:	1 1 RLF Before In	REG1,0 struction REG1 C	= 11:	LO 0110

SLEEP	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k \text{ - } (W) \to (W)$
Status Affected:	C, DC, Z
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBWF	Subtract W from f
Syntax:	[label] SUBWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

SWAPF	Swap Nibbles in f
Syntax:	[label] SW APF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

18.0 DEVELOPMENT SUPPORT

The $\text{PICmicro}^{\$}$ microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART[®] Plus Development Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

18.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller m arket. Th e MPL AB IDE is a Wi ndows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE s upports multiple d ebugging to ols i n a single development p aradigm, from the cost-effective simulators, t hrough low-cost i n-circuit de buggers, to full-featured emu lators. This el iminates the learning curve when upgrading to tools with increased flexibility and power.

18.2 MPASM Assembler

The MPASM Assembler is a full -featured, un iversal macro assembler for all PICmicro MCUs.

The MPASM As sembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory us age and symbol reference, absolute LST files that contain source lines and g enerated m achine c ode and C OFF fil es for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

18.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are c omplete AN SI C compilers for Microchip's PIC 18 fa mily of microcontrollers and dsPIC30F f amily of di gital signal c ontrollers. T hese compilers pro vide powerful in tegration c apabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

18.4 MPLINK Object Linker/ MPLIB Object Librarian

The M PLINK O bject L inker c ombines relocatable objects created by the MP ASM Ass embler and the MPLAB C18 C Compiler. It can link relocatable objects from pre compiled lib raries, using di rectives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the ap plication. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

18.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM 30 Ass embler pro duces relocatable machine c ode f rom s ymbolic a ssembly I anguage f or dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to pro duce its object f ile. The assembler generates rel ocatable object fi les that c an th en b e archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

18.6 MPLAB SIM Software Simulator

The M PLAB SIM So ftware Simulator al lows code development in a P C-hosted environment by simulating the PICmicro M CUs and dsPIC[®] DSCs on a n instruction le vel. O n any g iven in struction, the dat a areas can be examined or modified and stimuli can be applied from a c omprehensive s timulus controller. Registers can be log ged to fi les for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, as well as internal registers.

The M PLAB SIM Softwa re Sim ulator full y s upports symbolic de bugging u sing th e M PLAB C 18 an d MPLAB C 30 C Compilers, and the M PASM an d MPLAB ASM 30 As semblers. The software s imulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

18.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC micro microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated D evelopment Environment, w hich a llows editing, building, downloading and source de bugging from a single environment.

The M PLAB IC E 2 000 is a full-featured emu lator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MP LAB ICE 200 0 In-Circuit Emulator all ows ex pansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been de signed as a real-time emulation system with advanced features t hat are ty pically found on more expensive d evelopment tools. The PC p latform an d Microsoft[®] Wi ndows[®] 3 2-bit op erating sy stem w ere chosen to bes t m ake thes e fe atures a vailable in a simple, unified application.

18.8 MPLAB ICE 4000 High-Performance In-Circuit Emulator

The MPLAB ICE 4000 In-Circuit Emulator is intended to provide the product de velopment engineer w ith a complete microcontroller design tool set for high-end PICmicro MCUs and dsPIC DSCs. Software control of the MPLAB ICE 4000 In-Circuit Emulator is provided by the MPLAB Integrated D evelopment Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 4000 is a premium emulator system, providing the features of M PLAB ICE 2000, but with increased emulation memory and high-speed performance for d sPIC30F and PIC18X XXX de vices. It s advanced emulator features include complex triggering and timing, and up to 2 Mb of emulation memory.

The MPLAB ICE 4000 In-Circuit Emulator system has been de signed as a real-time emulation system with advanced features t hat are ty pically found on more expensive d evelopment tools. The PC p latform an d Microsoft Windows 3 2-bit o perating s ystem w ere chosen to bes t m ake thes e fe atures a vailable in a simple, unified application.

18.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-C ircuit D ebugger, M PLAB IC D 2, is a powerful, low -cost, run-time dev elopment tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PICmicro MCUs and can be used to develop for these and other PICmicro MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes t he i n-circuit deb ugging c apability bu ilt in to the Flash devices. This feature, along with Microchip's In-Circuit Serial Programm ing[™] (ICSP [™]) pr otocol, offers cost-effective, in-circuit Flash debugging from the graphical u ser int erface of the M PLAB I ntegrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and w atching va riables, and CPU status and peripheral registers. Running at full speed enables t esting ha rdware and a pplications in r eal time, MPL AB ICD 2 als o s erves a s a de velopment programmer for selected PICmicro devices.

18.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage ve rification at V DDMIN an d V DDMAX fo r maximum reli ability. It features a I arge LC D d isplay (128 x 64) for menus and error messages and a modular, de tachable s ocket assembly to su pport various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PICmicro devices without a PC connection. It can also set c ode prot ection in th is mod e. Th e M PLAB PM 3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized al gorithms for guick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

18.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low -cost, prot otype pro grammer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the prog rammer si mple an d ef ficient. The PICSTART P lus D evelopment P rogrammer su pports most PICmicro devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

18.12 Demonstration, Development and Evaluation Boards

A w ide v ariety of d emonstration, de velopment and evaluation boards for various PICmicro MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature se nsors, sw itches, s peakers, R S-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

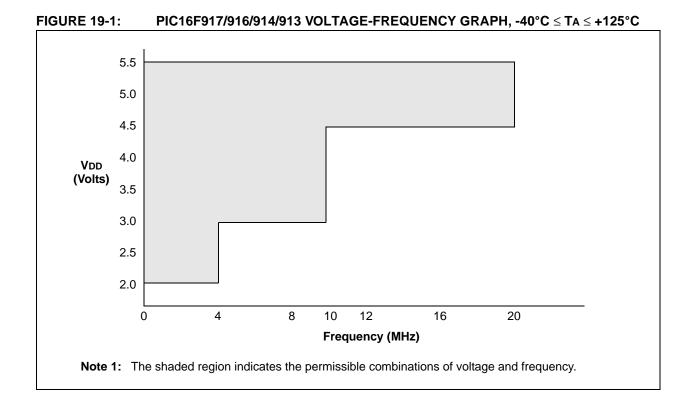
The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for ana log f ilter de sign, K EELOQ[®] security I Cs, CAN, IrDA[®], P owerSmart[®] bat tery man agement, S EEVAL[®] evaluation system, Sigma-Delta A DC, fl ow ra te sensing, plus many more.

Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.

19.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings^(†)


Ambient temperature under bias	40° to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +6.5V
Voltage on MCLR with respect to Vss	0.3V to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	
Maximum current into Vod pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo >VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sourced by all ports (combined)	
Maximum current sunk by by all ports (combined)	200 mA

Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD - ∑ IOH} + ∑ {(VDD - VOH) x IOH} + ∑(VOL x IOL).
 2: PORTD and PORTE are not implemented in PIC16F913/916 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 m A, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin, rather than pulling this pin directly to Vss.

PIC16F917/916/914/913

19.1 DC Characteristics: PIC16F917/916/914/913-I (Industrial) PIC16F917/916/914/913-E (Extended)

DC CHARACTERISTICS				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
D001 D001C D001D	Vdd	Supply Voltage	2.0 3.0 4.5		5.5 5.5 5.5	V V V	Fosc < = 4 MHz: Fosc < = 10 MHz Fosc < = 20 MHz			
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5*	—	_	V	Device in Sleep mode			
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	V	SS	V		See Section 16.3 "Power-on Reset" for details.			
D004	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 *	—	—	V/ms	See Section 16.3 "Power-on Reset" for details.			
D005	VBOR	Brown-out Reset	—2	.1	—	V				

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

19.2 DC Characteristics: PIC16F917/916/914/913-I (Industrial)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param	Device Characteristics	Min.	Tunt	Max.	Units		Conditions		
No.	Device Characteristics	win.	Тур†	wax.	Units	VDD	Note		
D010	Supply Current (IDD) ^(1, 2)	—8		TBD	μA2	.0	Fosc = 32 kHz		
		—1	1	TBD	μΑ3	.0	LP Oscillator mode		
		—3	3	TBD	μA5	.0			
D011		—	110	TBD	μA2	.0	Fosc = 1 MHz		
		—1	90	TBD	μ A 3	.0	XT Oscillator mode		
		—3	30	TBD	μ A 5	.0			
D012			220	TBD	μA2	.0	Fosc = 4 MHz		
		—3	70	TBD	μ A 3	.0	XT Oscillator mode		
		—	0.6	TBD	mA	5.0			
D013			70	TBD	μ A 2	.0	Fosc = 1 MHz		
		—1	40	TBD	μΑ3	.0	EC Oscillator mode		
		—2	60	TBD	μA5	.0			
D014			180	TBD	μA2	.0	Fosc = 4 MHz		
		—3	20	TBD	μΑ3	.0	EC Oscillator mode		
		—5	00	TBD	μA5	.0			
D015			5	TBD	μA2	.0	Fosc = 31 kHz		
		—1	4	TBD	μΑ3	.0	INTOSC mode		
		—3	0	TBD	mA	5.0			
D016			340	TBD	μA2	.0	Fosc = 4 MHz		
		—5	00	TBD	μΑ3	.0	INTOSC mode		
		—	0.8	TBD	mA	5.0			
D017			180	TBD	μ A 2	.0	Fosc = 4 MHz		
		—3	20	TBD	μΑ3	.0	EXTRC mode		
		—5	80	TBD	μ A 5	.0			
D018			2.1	TBD	mA	4.5	Fosc = 20 MHz		
		—	3.0	TBD	mA	5.0	HS Oscillator mode		

Legend: TBD = To Be Determined

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

DC CH	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param	Device Characteristics	Min.	Typt	Max.	Units		Conditions			
No.	Device Gildiacteristics		Тур†		Onito	Vdd	Note			
D020	Power-down Base	_	0.1	TBD	μA	2.0	WDT, BOR, Comparators, VREF and			
	Current (IPD) ⁽⁴⁾	—0	.5	TBD	μ A 3	.0	T1OSC disabled			
		—0	.75	TBD	μA5	.0				
D021)21		0.6	TBD	μA	2.0	WDT Current			
		—1	.8	TBD	μ A 3	.0				
		—8	.4	TBD	μA5	.0				
D022			58	TBD	μA	3.0	BOR Current			
		—7	5	TBD	μA5	.0				
D023		—	35	TBD	μΑ	2.0	Comparator Current ⁽³⁾			
		—6	5	TBD	μΑ3	.0				
		—1	30	TBD	μA5	.0				
D024		_	40	TBD	μA2	.0	CVREF Current			
		—	50.5	TBD	μΑ3	.0				
		—8	0	TBD	μA5	.0				
D025			2.1	TBD	μΑ	2.0	T1OSC Current			
		—2	.5	TBD	μΑ3	.0				
		—3	.4	TBD	μA5	.0				
D026		_	1.2	TBD	nA	3.0	A/D Current			
		—0	.0022	TBD	μA5	.0				

19.2 DC Characteristics: PIC16F917/916/914/913-I (Industrial) (Continued)

Legend: TBD = To Be Determined

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- **3:** The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.
- 4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

19.3 DC Characteristics: PIC16F917/916/914/913-E (Extended)

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param			- .				Conditions		
No.	Device Characteristics	Min.	Тур†	Max.	Units	Vdd	Note		
D010E	Supply Current (IDD) ^(1, 2)	—8		TBD	μA2	.0	Fosc = 32 kHz		
		—	11	TBD	μΑ3	.0	LP Oscillator mode		
		—3	3	TBD	μA5	.0]		
D011E		—	110	TBD	μA2	.0	Fosc = 1 MHz		
		—	190	TBD	μΑ3	.0	XT Oscillator mode		
		_	330	TBD	μA5	.0]		
D012E		_	220	TBD	μA2	.0	Fosc = 4 MHz		
		—	370	TBD	μ A 3	.0	XT Oscillator mode		
		—	0.6	TBD	mA	5.0			
D013E		—	70	TBD	μA2	.0	Fosc = 1 MHz		
		—	140	TBD	μ A 3	.0	EC Oscillator mode		
		— 260 TBD μA5 .0							
D014E		_	180	TBD	μA2	.0	Fosc = 4 MHz		
		—	320	TBD	μΑ3	.0	EC Oscillator mode		
		_	500	TBD	μA5	.0			
D015E		_	5	TBD	μA2	.0	Fosc = 31 kHz		
		—1	4	TBD	μΑ3	.0	INTOSC mode		
		—3	0	TBD	mA	5.0			
D016E		_	340	TBD	μA2	.0	Fosc = 4 MHz		
			500	TBD	μΑ3	.0	INTOSC mode		
		—	0.8	TBD	mA	A 5.0			
D017E			180	TBD	μA2	.0	Fosc = 4 MHz		
			320	TBD	μΑ3	.0	EXTRC mode		
			580	TBD	μA5	.0			
D018E		_	2.1	TBD	mA	4.5	Fosc = 20 MHz		
]	3.0	TBD	mA	5.0	HS Oscillator mode		

Legend: TBD = To Be Determined

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

- 3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.
- 4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

DC CHA	ARACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Param	Device Characteristics	Min.	Тур†	Max.	Units	Conditions			
No.	Device Gharacteristics	IVIIII.	וקעי	Wax.	U IIII	Vdd	Note		
D020E	Power-down Base	—	0.1	TBD	μA	2.0	WDT, BOR, Comparators, VREF		
	Current (IPD) ⁽⁴⁾		0.5	TBD	μΑ3	.0	and T1OSC disabled		
		—0	.75	TBD	μA5	.0			
D021E		—	0.6	TBD	μΑ	2.0	WDT Current		
		—1	.8	TBD	μ A 3	.0			
		—8	.4	TBD	μA5	.0			
D022E		_	58	TBD	μA	3.0	BOR Current		
		—7	5	TBD	μA5	.0			
D023E			35	TBD	μΑ	2.0	Comparator Current ⁽³⁾		
		—6	5	TBD	μΑ3	.0			
		—	130	TBD	μA5	.0			
D024E			40	TBD	μA2	.0	CVREF Current		
		—5	0.5	TBD	μΑ3	.0	_		
		—8	0	TBD	μA5	.0			
D025E		_	2.1	TBD	μΑ	2.0	T1OSC Current		
		—2	.5	TBD	μΑ3	.0	1		
		—3	.4	TBD	μA5	.0			
D026E			1.2	TBD	μΑ	3.0	A/D Current ⁽³⁾		
		—	0.0022	TBD	μA5	.0			

19.3 DC Characteristics: PIC16F917/916/914/913-E (Extended) (Continued)

Legend: TBD = To Be Determined

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral ∆ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

4: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

19.4 DC Characteristics: PIC16F917/916/914/913-I (Industrial) PIC16F917/916/914/913-E (Extended)

DC CH	ARACT	ERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O port:							
D030		with TTL buffer	Vss	—	0.8	V	$4.5V \le VDD \le 5.5V$		
D030A			Vss	—	0.15 Vdd	V	Otherwise		
D031		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V	Entire range		
D032		MCLR, OSC1 (RC mode)	Vss	—	0.2 Vdd	V			
D033		OSC1 (XT and LP modes) ⁽¹⁾	Vss	_	0.3	V			
D033A		OSC1 (HS mode) ⁽¹⁾	Vss	_	0.3 Vdd	V			
D034		I ² C™ mode	Vss	_	0.3Vdd	V	Entire DD/Range		
	Vih	Input High Voltage							
		I/O port:		_					
D040		with TTL buffer	2.0	_	Vdd	V	$4.5V \le VDD \le 5.5V$		
D040A			(0.25 VDD + 0.8)	_	Vdd	V	Otherwise		
D041		with Schmitt Trigger buffer	0.8 Vdd	—V	DD	V	Entire range		
D042		MCLR	0.8 Vdd	—	Vdd	V			
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	(Note 1)		
D043A		OSC1 (HS mode)	0.7 Vdd	_	Vdd	V	(Note 1)		
D043B		OSC1 (RC mode)	0.9 Vdd	—V	DD	V			
D044		I ² C mode	0.7Vdd	—V	DD	VE	ntire VDD Range		
D070	IPUR	PORTB Weak Pull-up Current	50*	250	400*	μAV	DD = 5.0V, VPIN = VSS		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O port	—	± 0.1	± 1	μAV	SS \leq VPIN \leq VDD, Pin at high-impedance		
D061		MCLR ⁽³⁾	—	± 0.1	± 5	μΑ	$VSS \le VPIN \le VDD$		
D063		OSC1	—	± 0.1	± 5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP OSC configuration		
	Vol	Output Low Voltage							
D080		I/O port	—	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V (Ind.)		
D083		OSC2/CLKO (RC mode)	—	_	0.6	V	IOL = 1.6 mA, VDD = 4.5V (Ind.) IOL = 1.2 mA, VDD = 4.5V (Ext.		
	Vон	Output High Voltage							
D090		I/O port	Vdd - 0.7	—	—	V	IOH = -3.0 mA, VDD = 4.5V (Ind		
D092		OSC2/CLKO (RC mode)	Vdd - 0.7	_	-	V	IOH = -1.3 mA, VDD = 4.5V (Ind. IOH = -1.0 mA, VDD = 4.5V (Ext.		

t Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

19.4 DC Characteristics: PIC16F917/916/914/913-I (Industrial) PIC16F917/916/914/913-E (Extended) (Continued)

DC CHA	ARACT	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym.	Characteristic	Min.	Min. Typ† Max. Units		Conditions			
		Capacitive Loading Specs on Output Pins							
D100	COS C2	OSC2 pin	_	_	15*	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Cio	All I/O pins	—		50*	pF			
		Data EEPROM Memory							
D120	ED	Byte Endurance	100K	1M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D120A	ED	Byte Endurance	10K	100K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$		
D121	Vdrw	VDD for Read/Write	Vmin	-	5.5	V	Using EECON1 to read/write VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write Cycle Time	—	5	6	ms			
D123	Tretd	Characteristic Retention	40	_	—	Year	Provided no other specifica- tions are violated		
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
		Program Flash Memory							
D130	Eр	Cell Endurance	10K	100K	—	E/W	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D130A	ED	Cell Endurance	1K	10K	—	E/W	$+85^{\circ}C \le TA \le +125^{\circ}C$		
D131	Vpr	VDD for Read	VMIN	—5	.5	V	VMIN = Minimum operating voltage		
D132	VPEW	VDD for Erase/Write	4.5	-	5.5	V			
D133	TPEW	Erase/Write cycle time	—	2	2.5	ms			
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifica- tions are violated		

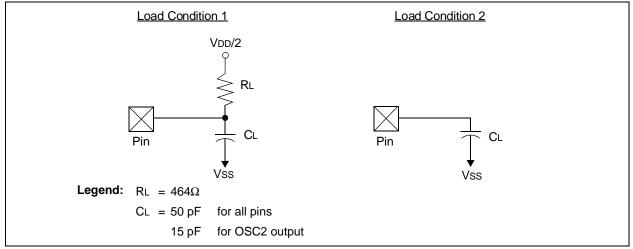
* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

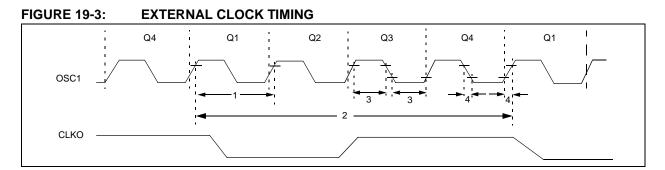
Note 1: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


19.5 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:


- 1. TppS2ppS
- 2. TppS

2. Tpp5				
т				
F	Frequency	Т	Time	
Lower	case letters (pp) and their meanings:			
рр				
сс	CCP1	OSC	OSC1	
ck	CLKO	rd	RD	
CS	CS	rw	RD or WR	
di	SDI	sc	SCK	
do	SDO	SS	SS	
dt	Data in	tO	TOCKI	
io	I/O port	t1	T1CKI	
mc	MCLR	wr	WR	
Upper	case letters and their meanings:			
S				
F	Fall	Р	Period	
н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-impedance	

FIGURE 19-2: LOAD CONDITIONS

19.6 AC Characteristics: PIC16F917/916/914/913 (Industrial, Extended)

TABLE 19-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	Fosc	External CLKI Frequency ⁽¹⁾	DC	_	37	kHz	LP Oscillator mode
			DC	—	4	MHz	XT Oscillator mode
			DC	—	20	MHz	HS Oscillator mode
			DC	—	20	MHz	EC Oscillator mode
		Oscillator Frequency ⁽¹⁾	5	_	37	kHz	LP Oscillator mode
				4	—	MHz	INTOSC mode
			DC	_	4	MHz	RC Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	—	20	MHz	HS Oscillator mode
1T	OSC	External CLKI Period ⁽¹⁾	27		∞μ	S	LP Oscillator mode
			50	_	~	ns	HS Oscillator mode
			50	_	~	ns	EC Oscillator mode
			250	—	~	ns	XT Oscillator mode
		Oscillator Period ⁽¹⁾	27		200	μs	LP Oscillator mode
			—	250	—	ns	INTOSC mode
			250	—	—	ns	RC Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
2T	CY	Instruction Cycle Time ⁽¹⁾ 200		TCY	DC	ns	TCY = 4/FOSC
3T	osL,	External CLKI (OSC1) High	2*	_	—	μs	LP oscillator, Tosc L/H duty cyc
	TosH	External CLKI Low	20*	—	—	ns	HS oscillator, Tosc L/H duty cy
			100 *		—	ns	XT oscillator, Tosc L/H duty cyc
4T	osR,	External CLKI Rise		-	50*	ns	LP oscillator
	TosF	External CLKI Fall		-	25*	ns	XT oscillator
			—	—	15*	ns	HS oscillator

* These parameters are characterized but not tested.

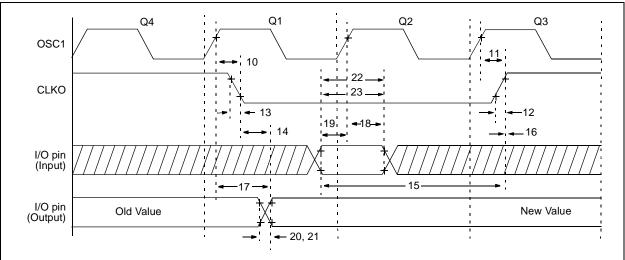
† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at 'min' values with an external clock applied to OSC1 pin. When an external clock input is used, the 'max' cycle time limit is 'DC' (no clock) for all devices.

TABLE 19-2: PRECISION INTERNAL OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)

Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Internal Calibrated	±1%		8.00	TBD	MHz	VDD and Temperature TBD
		INTOSC Frequency ⁽¹⁾	±2%	—	8.00	TBD	MHz	$2.5V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
			±5%	_	8.00	TBD	MHz	$2.0V \le VDD \le 5.5V$ -40°C \le TA \le +85°C (Ind.) -40°C \le TA \le +125°C (Ext.)
F14	Tiosc	Oscillator Wake-up from			TBD	TBD	μsV	DD = 2.0V, -40°C to +85°C
	ST	Sleep Start-up Time*			TBD	TBD	μsV	DD = $3.0V$, $-40^{\circ}C$ to $+85^{\circ}C$
					TBD	TBD	μsV	DD = 5.0V, -40°C to +85°C

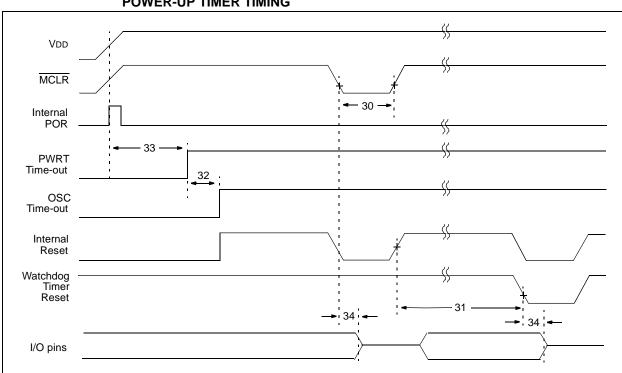

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

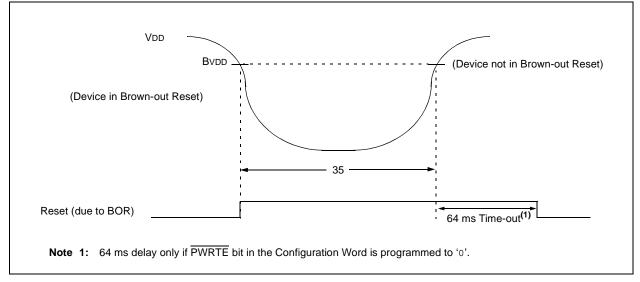
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 uF and 0.01 uF values in parallel are recommended.

TABLE 19-3:	CLKO AND I/O TIMING REQUIREMENTS


	rd Operatin ng Temperat	g Conditions (unless otherwi ture $-40^{\circ}C \le TA \le +125^{\circ}C$	se stated)					
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
10*	TosH2ckLC	SC1↑ to CLOUT↓ —			75	200	ns	(Note 1)
11*	TosH2ckH0	SC1↑ to CLOUT↑ —			75	200	ns	(Note 1)
12*	ТскR	CLKO Rise Time		_	35	100	ns	(Note 1)
13*	ТскF	CLKO Fall Time		_	35	100	ns	(Note 1)
14*	TCKL2IOVC	LKO↓ to Port Out Valid		_	_	0.5 Tcy + 20	ns	(Note 1)
15*	ТюV2скН	Port In Valid before CLKO [↑] T		OSC + 200 ns		_	ns	(Note 1)
16*	TckH2iol	Port In Hold after CLKO↑ 0			_	—	ns	(Note 1)
17*	TosH2IoVC	SC1 [↑] (Q1 cycle) to Port Out	Valid	_	50	150*	ns	
						300	ns	
18*	TosH2iolO		3.0-5.5V	100	_	—	ns	
		Input Invalid (I/O in hold time)	2.0-5.5V	200	_	—	ns	
19*	TioV2osH	Port Input Valid to OSC1↑ (I/O in setup time)		0—		—	ns	
20*	TioR	Port Output Rise Time	3.0-5.5V	_	10	40	ns	
			2.0-5.5V	_	—	145		
21*	TIOF	Port Output Fall Time	3.0-5.5V		10	40	ns	
			2.0-5.5V	—	_	145		
22*	TINP	INT Pin High or Low Time		25	—	_	ns	
23*	Trbp	PORTA change INT High or Lo	ow Time	Тсү			ns	

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated.

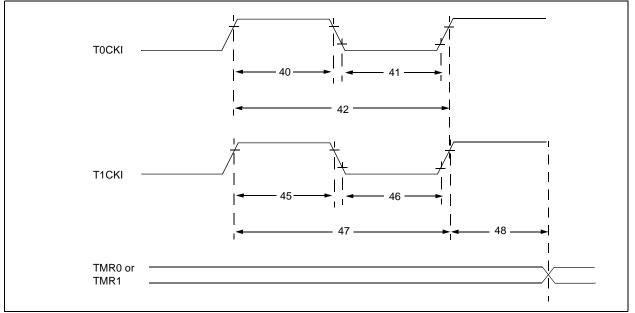

Note 1: Measurements are taken in RC mode where CLKO output is 4 x Tosc.

PIC16F917/916/914/913

FIGURE 19-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 19-6: BROWN-OUT RESET TIMING AND CHARACTERISTICS

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS


Standard C Operating T		Conditions (unless otherwise sre $-40^{\circ}C \le TA \le +125^{\circ}C$	stated)				
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
30	TMCLM	CLR Pulse Width (low)	2 11	— 18	 24	μs ms	VDD = 5V, -40°C to +85°C Extended temperature
31	TWDT	Watchdog Timer Time-out Period (No Prescaler)	10 10	17 17	25 30	ms ms	VDD = 5V, -40°C to +85°C Extended temperature
32	Tost	Oscillation Start-up Timer Period	—	1024 Tosc			Tosc = OSC1 period
33*	TPWRT	Power-up Timer Period	28* TBD	64 TBD	132* TBD	ms ms	VDD = 5V, -40°C to +85°C Extended Temperature
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μs	
	Bvdd	Brown-out Reset Voltage	2.025	—	2.175	V	
35	TBOR	Brown-out Reset Pulse Width	100*	—	_	μsV	$DD \le BVDD (D005)$

Legend: TBD = To Be Determined

* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

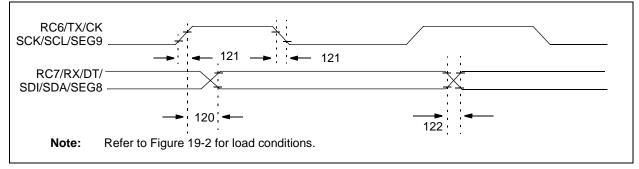

Param No.	Sym.		Characteristic		Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High P	ulse Width	No Prescaler	0.5 TCY + 20	—		ns	
				With Prescaler	10	—		ns	
41*	TT0L	T0CKI Low Pulse Width		No Prescaler	0.5 Tcy + 20	—	_	ns	
				With Prescaler	10	—	_	ns	
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N		_	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No	o Prescaler	0.5 Tcy + 20	—	—	ns	
		Time	Synchronous,	3.0-5.5V	15	—	_	ns	
			with Prescaler	2.0-5.5V	25	—	_	ns	
			Asynchronous	3.0-5.5V	30	—		ns	
				2.0-5.5V	50	—		ns	
46*	T⊤1L	T1CKI Low	Synchronous, No Prescaler		0.5 Tcy + 20	—		ns	
		Time	Synchronous,	3.0-5.5V	15	—		ns	
			with Prescaler	2.0-5.5V	25	—		ns	
			Asynchronous	3.0-5.5V	30	—	_	ns	
				2.0-5.5V	50	—		ns	
47*	T⊤1P	T1CKI Input Period	Synchronous	3.0-5.5V	Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8
				2.0-5.5V	50 or <u>Tcy + 40</u> N	—	_	ns	
			Asynchronous	3.0-5.5V	60	—		ns	
				2.0-5.5V	100	—		ns	
	F⊤1		tor input frequence abled by setting bit		DC	— 3	7*	kHz	
48	TCKEZTMR1	Delay from ex increment	ternal clock edge	to timer	2 Tosc*—		7 Tosc*-	-	

TABLE 19-5: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

These parameters are characterized but not tested.

† Data in 'Typ' column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

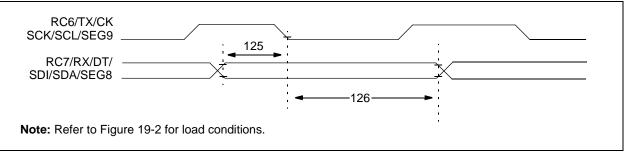

FIGURE 19-8: USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-6: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

	Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param. No.	Symbol	Characteristic		Min.	Max.	Units	Conditions					
120	ТскН2рт	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns						
	V	Clock high to data-out valid	2.0-5.5V	_	100	ns						
121	TCKRF	Clock out rise time and fall time	3.0-5.5V		45	ns						
		(Master mode)	2.0-5.5V		50	ns						
122	TDTRF	Data-out rise time and fall time	3.0-5.5V		45	ns						
			2.0-5.5V	—	50	ns						

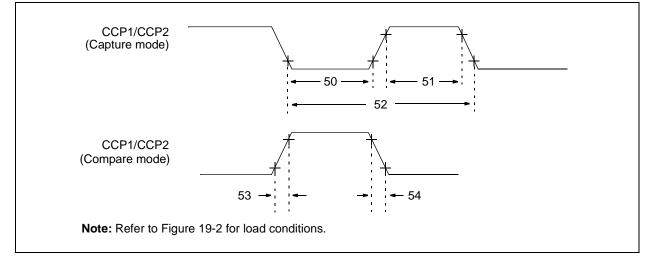

FIGURE 19-9: USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-7: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Symbol	Characteristic	Min.	Max.	Units	Conditions			
125	TDTV2CKL	SYNC RCV (Master and Slave) Data-hold before CK \downarrow (DT hold time)	10		ns				
126	TCKL2DTL	Data-hold after CK \downarrow (DT hold time)	15	—	ns				

FIGURE 19-10: CAPTURE/COMPARE/PWM TIMINGS

© 2005 Microchip Technology Inc.

Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
50*	TccLC	CP1	No Prescaler		0.5Tcy + 5	—	_	ns	
		input low time	With Prescaler	3.0-5.5V	10	—	_	ns	
				2.0-5.5V	20	—		ns	
51*	ТссН	CCP1	No Prescaler		0.5Tcy + 5	—	—	ns	
		input high time	With Prescaler	3.0-5.5V	10	—	—	ns	
				2.0-5.5V	20	—		ns	
52*	TCCP	CCP1 input peri	od		<u>3Tcy + 40</u> N	_		ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 output fal	l time	3.0-5.5V	—	10	25	ns	
				2.0-5.5V	_	25	50	ns	
54*	TccF	CCP1 output fal	l time	3.0-5.5V	—	10	25	ns	
				2.0-5.5V	_	25	45	ns	

TABLE 19-8: CAPTURE/COMPARE/PWM REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

COMPARATOR SPECIFICATIONS TABLE 19-9:

or Specifications	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Characteristics	Min.	Тур.	Max.	Units	Comments			
Input Offset Voltage	—	±5.0	±10	mV				
Input Common Mode Voltage	0		Vdd - 1.5	V				
Common Mode Rejection Ratio	+55*			db				
Response Time ⁽¹⁾	—	150	400*	ns				
Comparator Mode Change to Output Valid			10*	μs				
	Characteristics Input Offset Voltage Input Common Mode Voltage Common Mode Rejection Ratio Response Time ⁽¹⁾ Comparator Mode Change to	OperationsOperatingCharacteristicsMin.Input Offset Voltage—Input Common Mode Voltage0Common Mode Rejection Ratio+55*Response Time ⁽¹⁾ —Comparator Mode Change to—	Operating temperatingCharacteristicsMin.Typ.Input Offset Voltage—±5.0Input Common Mode Voltage0—Common Mode Rejection Ratio+55*—Response Time ⁽¹⁾ —150Comparator Mode Change to—	Operating temperature-40°CCharacteristicsMin.Typ.Max.Input Offset Voltage±5.0±10Input Common Mode Voltage0VDD - 1.5Common Mode Rejection Ratio+55*Response Time ⁽¹⁾ 150400*Comparator Mode Change to10*	Operating temperature $-40^{\circ}C \le TA \le +1$ CharacteristicsMin.Typ.Max.UnitsInput Offset Voltage ± 5.0 ± 10 mVInput Common Mode Voltage0 $VDD - 1.5$ VCommon Mode Rejection Ratio $+55^*$ dbResponse Time ⁽¹⁾ 150400*nsComparator Mode Change to10* μ s			

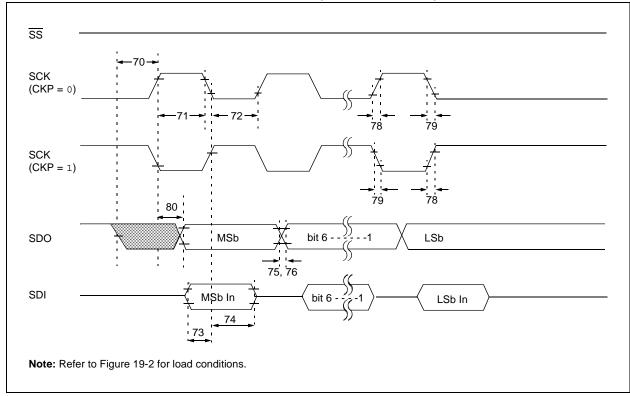
These parameters are characterized but not tested.

Response time measured with one comparator input at (VDD - 1.5)/2 while the other input transitions from Note 1: Vss to VDD - 1.5V.

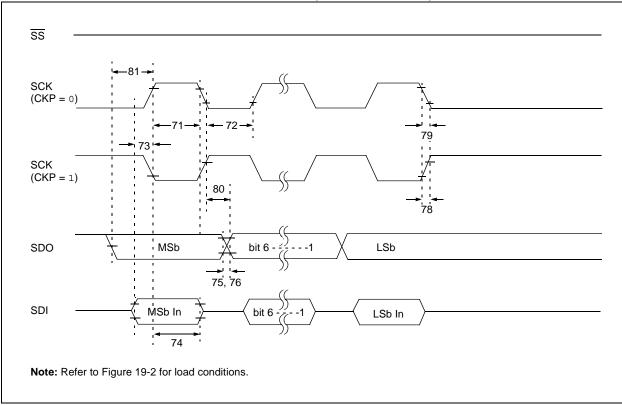
TABLE 19-10: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Voltage F	Reference Specifications	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$						
Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
	Resolution		Vdd/24* Vdd/32		LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
	Absolute Accuracy		_	±1/4* ±1/2*	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
	Unit Resistor Value (R)	—	2K*		Ω			
	Settling Time ⁽¹⁾			10*	μs			

These parameters are characterized but not tested.

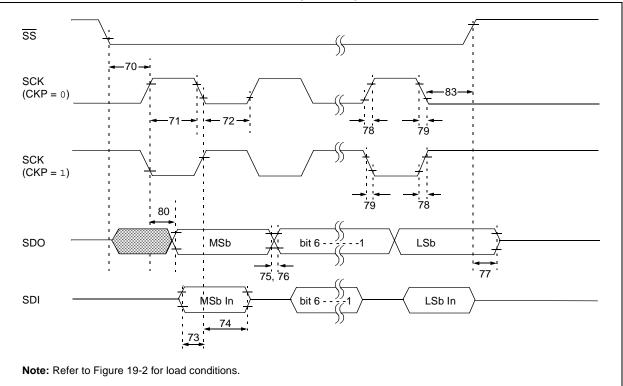

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

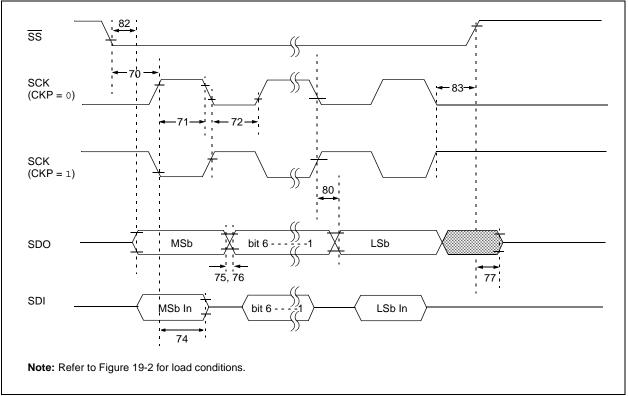
DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ Operating VoltageVDD Range 2.0V-5.5V						
Sym.		Characteristic	Min.	Тур†	Max.	Units	Conditions		
Vplvd	PLVD	LVDL<2:0> = 000	TBD	1.9	TBD	V			
	Voltage	TBD	TBD	2.0	TBD	V			
		TBD	TBD	2.1	TBD	V			
		TBD	TBD	2.2	TBD	V			
		TBD	TBD	2.3	TBD	V			
		TBD	TBD	4.0	TBD	V			
		TBD	TBD	4.2	TBD	V			
		TBD	TBD	4.5	TBD	V			


TABLE 19-11: PIC16F917/916/914/913 PLVD CHARACTERISTICS:

Legend: TBD = To Be Determined

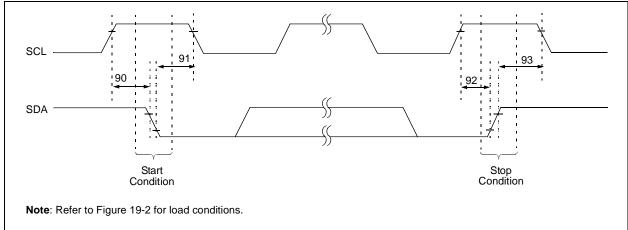
† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


FIGURE 19-11: SPITM MASTER MODE TIMING (CKE = 0, SMP = 0)


FIGURE 19-12: SPI[™] MASTER MODE TIMING (CKE = 1, SMP = 1)

PIC16F917/916/914/913

FIGURE 19-14: SPI™ SLAVE MODE TIMING (CKE = 1)

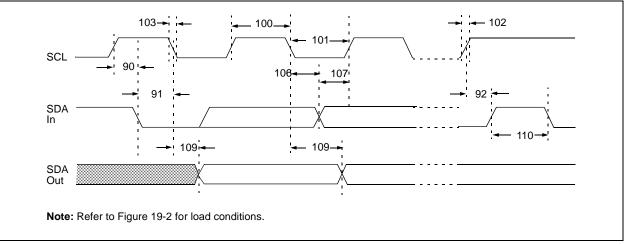


Param No.	Symbol	Characteristic		Min.	Тур†	Max.	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү		—	ns	
71*	TscH	SCK input high time (Slave mode	e)	Tcy + 20		—	ns	
72*	TscL	SCK input low time (Slave mode)	Tcy + 20	_	—	ns	
73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	SCK edge	100		—	ns	
74*	TscH2DIL, TscL2DIL	Hold time of SDI data input to SO	CK edge	100			ns	
75*	TDOR	SDO data output rise time	3.0-5.5V	_	10	25	ns	
			2.0-5.5V	—	25	50	ns	
76*	TDOF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZS	S↑ to SDO output high-impeda	nce	10		50	ns	
78*	TscR	SCK output rise time	3.0-5.5V	—	10	25	ns	
		(Master mode)	2.0-5.5V	—	25	50	ns	
79*	TscF	SCK output fall time (Master mod	de)	—	10	25	ns	
80*	TscH2doV,	SDO data output valid after	3.0-5.5V	—	_	50	ns	
	TscL2doV	SCK edge	2.0-5.5V	—	_	145	ns	
81*	TDOV2SCH, TDOV2SCL	SDO data output setup to SCK e	data output setup to SCK edge		_	—	ns	
82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		—	_	50	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40		—	ns		

TABLE 19-12: SPI™ MODE REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-15: I²C[™] BUS START/STOP BITS TIMING



Param No.	Symbol	Charac	teristic	Min.	Тур.	Max.	Units	Conditions
90*	TSU:STA	Start condition	100 kHz mode	4700	_	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	_		Start condition
91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first
		Hold time	400 kHz mode	600	—	—		clock pulse is generated
92*	TSU:STO	Stop condition	100 kHz mode	4700	—	_	ns	
		Setup time	400 kHz mode	600	_	_		
93	THD:STO	Stop condition	100 kHz mode	4000	—	—	ns	
		Hold time	400 kHz mode	600	_	_		

TABLE 19-13: I²C[™] BUS START/STOP BITS REQUIREMENTS

* These parameters are characterized but not tested.

FIGURE 19-16: I²C[™] BUS DATA TIMING

Param. No.	Symbol	Characte	eristic	Min.	Max.	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5TCY			
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10-400 pF
90*	TSU:STA	Start condition	100 kHz mode	4.7	_	μs	Only relevant for
		setup time	400 kHz mode	0.6		μs	Repeated Start condition
91*	THD:STA	Start condition hold	100 kHz mode	4.0		μs	After this period the first
		time	400 kHz mode	0.6		μs	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup	100 kHz mode	250	_	ns	(Note 2)
		time	400 kHz mode	100	_	ns	
92*	Tsu:sto	Stop condition	100 kHz mode	4.7	_	μs	
		setup time	400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode		—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Св	Bus capacitive loading	ng	—	400	pF	

TABLE 19-14:I²C™ BUS DATA REQUIREMENTS

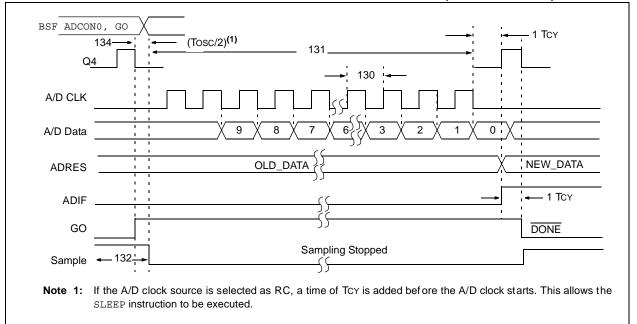
* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

TABLE 19-15: PIC16F917/916/914/913 A/D CONVERTER CHARACTERISTICS:

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
A01	Nr	Resolution	_		10 bits	bits			
A03	EIL	Integral Error	_		<±1L	Sb	VREF = 5.0V		
A04	Edl	Differential Error	—	—	<±1	LSb	No missing codes to 10 bits VREF = 5.0V		
A06	EOFF	Offset Error	_	_	<±1L	Sb	VREF = 5.0V		
A07	Egn	Gain Error	_	_	<±1L	Sb	VREF = 5.0V		
A10	—	Monotonicity	—	assured ⁽¹⁾			$VSS \leq VAIN \leq VREF+$		
A20	Vref	Reference Voltage (VREF+ – VREF-)	2.5	_	Vdd	V	Full 10-bit accuracy		
A21	VREF+	Reference Voltage High	Vdd - 2.5V		Vdd + 0.3V	V			
A22	VREF-	Reference Voltage Low	Vss - 0.3V		VREF+ -2V	V			
A25	VAIN	Analog Input Voltage	Vss - 0.3V		VREF+ +0.3V	V			
A30	Zain	Recommended Imped- ance of Analog Voltage Source			10	kΩ			
A50	IREF	VREF Input Current (2)			±5 ±150	μΑ μΑ	During VAIN acquisition. During A/D conversion cycle.		


* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

2: VREF+ current is from RA3/AN3/C1+/VREF+/SEG15 pin or VDD, whichever is selected as the VREF+ source. VREF- current is from RA2/AN2/C2+/VREF-/COM2 pin or VSS, whichever is selected as the VREF- source.

TABLE 19-16: PIC16F917/916/914/913 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
130	TAD	A/D Clock Period ⁽²⁾	1.6	—	—	μsΤ	OSC-based, VREF $\geq 3.0V$		
			3.0*	—	—	μsΤ	OSC-based, VREF full range		
130	Tad	A/D Internal RC Oscillator Period	3.0*	6.0	9.0*	μs	ADCS<1:0> = 11 (RC mode) At VDD = 2.5V		
			2.0*	4.0	6.0*	μsA	t VDD = 5.0V		
131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾	—1	1	—	TAD	Set GO/DONE bit to new data in A/D Result register		
132	TACQ	Acquisition Time		11.5	—	μs			
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 4.1 mV @ 4.096V) from the last sampled voltage (as stored on CHOLD).		
134	TGO	Q4 to A/D Clock Start	—т	osc/2	_	_	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.		

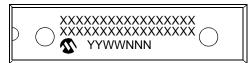
* These parameters are characterized but not tested.

† Data in 'Typ' column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

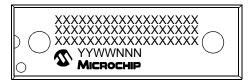
Note 1: ADRESH and ADRESL registers may be read on the following TCY cycle.

2: See Table 12-1 for minimum conditions.

20.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


Graphs are not available at this time.

NOTES:


21.0 PACKAGING INFORMATION

21.1 Package Marking Information

28-Lead SPDIP

40-Lead PDIP

PIC16F913-I/SP

Example

Example

28-Lead QFN

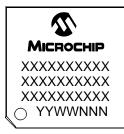
Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.					
Note:	In the event the full Microchip part number cannot be marked on one line, be ca rried ove r to the next line, thu s lim iting the nu mber of av a characters for customer-specific information.						

* Standard P ICmicro[®] d evice m arking con sists of Mi crochip p art nu mber, y ear co de, w eek cod e a nd traceability code. For PICmicro d evice m arking beyond this, certain price adders apply. Please check with your Microchip S ales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Continued)

44-Lead QFN


28-Lead SOIC

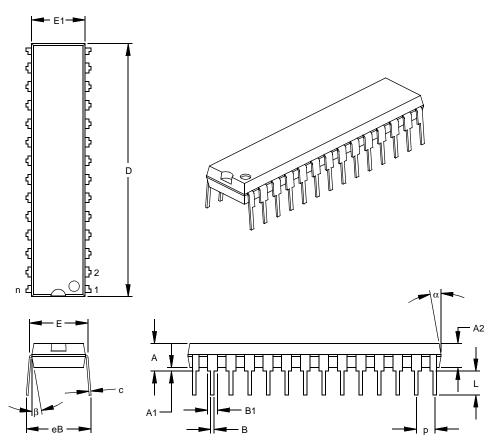
28-Lead SSOP

44-Lead TQFP

Example

Example

Example


Example

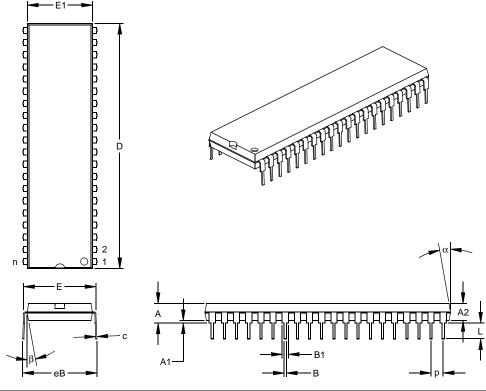
Package Details 21.2

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

	Units			INCHES*		MILLIMETERS		
Dimension Limits			MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins n			28			28		
Pitch		р		.100			2.54	
Top to Seating Plane		А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness		A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane		A1	.015			0.38		
Shoulder to Shoulder Width		Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width		E1	.275	.285	.295	6.99	7.24	7.49
Overall Length		D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane		L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness		С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width		B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width		В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	§	eВ	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top		α	5	10	15	5	10	15
Mold Draft Angle Bottom		β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

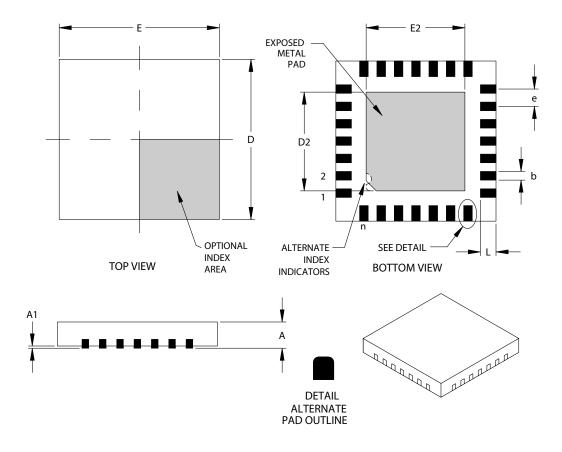
.010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

PIC16F917/916/914/913

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	40			40		
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:

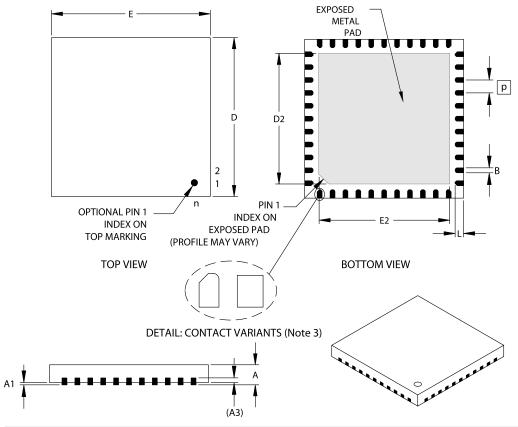
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

28-Lead Plastic Quad Flat No Lead Package (ML) 6x6 mm Body (QFN) – With 0.55 mm Contact Length (Saw Singulated)

	Units		INCHES			MILLIMETERS*		
Dimension Limi	ts	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	е		.026 BSC			0.65 BSC		
Overall Height	А	.031	.035	.039	0.80	0.90	1.00	
Standoff	A1	.000	.001	.002	0.00	0.02	0.05	
Contact Thickness	A3		.008 REF		0.20 REF			
Overall Width	E	.232	.236	.240	5.90	6.00	6.10	
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85	
Overall Length	D	.232	.236	.240	5.90	6.00	6.10	
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85	
Contact Width	b	.009	.011	.013	0.23	0.28	0.33	
Contact Length	L	.020	.024	.028	0.50	0.60	0.70	


*Controlling Parameter Notes:

JEDEC equivalent: MO-220

Drawing No. C04-105

Revised 05-24-04

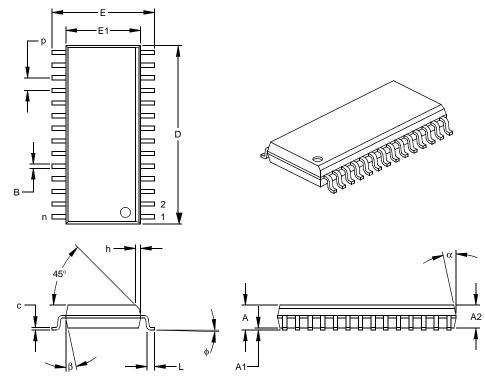
44-Lead Plastic Quad Flat No Lead Package (ML) 8x8 mm Body (QFN)

	Units		INCHES			MILLIMETERS*	
Dimension Limi	ts	MIN	NOM	MAX	MIN	NOM	MAX
Number of Contacts	n		44		44		
Pitch	σ		.026 BSC	1		0.65 BSC	l
Overall Height	A	.031	.035	.039	0.80	0.90	1.00
Standoff	A1	.000	.001	.002	0	0.02	0.05
Base Thickness	(A3)		.010 REF	2		0.25 REF	2
Overall Width	Е	.309	.315	.321	7.85	8.00	8.15
Exposed Pad Width	E2	.246	.268	.274	6.25	6.80	6.95
Overall Length	D	.309	.315	.321	7.85	8.00	8.15
Exposed Pad Length	D2	.246	.268	.274	6.25	6.80	6.95
Contact Width	В	.008	.013	.013	0.20	0.33	0.35
Contact Length	L	.014	.016	.019	0.35	0.40	0.48

*Controlling Parameter

Notes:

1. BSC: Basic Dimension. Theoretically exact value shown without tolerances.


See ASME Y14.5M

- 2. REF: Reference Dimension, usually without tolerance, for information purposes only.
- See ASME Y14.5M

3. Contact profiles may vary.

JEDEC equivalent: M0-220 Drawing No. C04-103

28-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)

	Units	s INCHES*		MILLIMETERS		;	
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15


* Controlling Parameter § Significant Characteristic

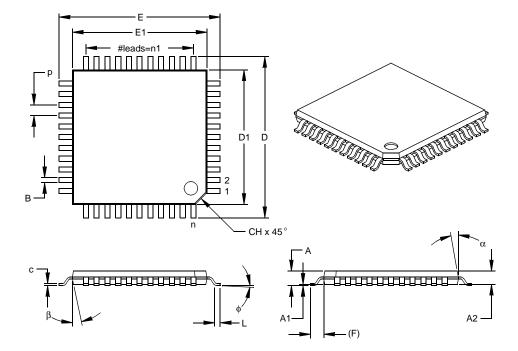
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

28-Lead Plastic Shrink Small Outline (SS) – 209 mil Body, 5.30 mm (SSOP)

	Units		INCHES		М	ILLIMETERS*	
Dimension Lim	its	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	A	-	-	.079	-	-	2.0
Molded Package Thickness	A2	.065	.069	.073	1.65	1.75	1.85
Standoff	A1	.002	-	-	0.05	-	-
Overall Width	E	.295	.307	.323	7.49	7.80	8.20
Molded Package Width	E1	.009	.209	.220	5.00	5.30	5.60
Overall Length	D	.390	.402	.413	9.90	10.20	10.50
Foot Length	L	.022	.030	.037	0.55	0.75	0.95
Lead Thickness	с	.004	-	.010	0.09	-	0.25
Foot Angle	f	0°	4°	8°	0°	4°	8°
Lead Width	В	.009	-	.015	0.22	-	0.38


*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units	Units INCHES		М	MILLIMETERS*		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	¢	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	51	01	5	5	10	15
Mold Draft Angle Bottom	β	51	01	5	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

NOTES:

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Updated Peripheral Features. Page 2, Table: Corrected I/O numbers. Figure 8-3: Revised Comparator I/O operating modes. Register 9-1, Table: Corrected max. number of pixels.

Revision C

Correction to Pin Description Table. Correction to IPD base and T1OSC.

Revision D

Revised references 31.25 kHz to 31 kHz. Revised Standby Current to 100 nA. Revised 9.1: i nternal R C oscillator to i nternal L F oscillator.

Revision E

Removed "Ad vance In formation" from Se ction 19.0 Electrical Spe cifications. R emoved 28 -Lead Plas tic Quad Flat No Lead Package (ML) (QFN-S) package.

APPENDIX B: MIGRATING FROM OTHER PICmicro® DEVICES

This discusses some of the issues in migrating from other PICmicro devices to the PIC16F917/916/914/913 family of devices.

B.1 PIC16F676 to PIC16F917/916/914/ 913

TABLE B-1: FEATURE COMPARISON

Feature	PIC16F676	PIC16F917/ 916/914/913
Max Operating Speed	20 MHz	20 MHz
Max Program Memory (Words)	1K	8K
Max SRAM (Bytes)	64	352
A/D Resolution	10-bit	10-bit
Data EEPROM (bytes)	128	256
Timers (8/16-bit)	1/1	2/1
Oscillator Modes	8	8
Brown-out Reset	Y	Y
Internal Pull-ups	RB0/1/2/4/5	RB<7:0>
Interrupt-on-change	RB0/1/2/3 /4/5	RB<7:4>
Comparator	1	2
USART	N	Y
Extended WDT	N	Y
Software Control Option of WDT/BOR	NY	
INTOSC Frequencies	4 MHz	32 kHz - 8M Hz
Clock Switching	Ν	Y

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATION

Characteristic	PIC16F917/916/914/913	PIC16F87X	PIC16F87XA
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	14 or 15
Communication	USART, SSP (SPI™, I ² C™ Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)
Frequency	20 MHz	20 MHz	20 MHz
Voltage	2.0V-5.5V	2.2V-5.5V	2.0V-5.5V
A/D	10-bit, 7 conversion clock selects	10-bit, 4 conversion clock selects	10-bit, 7 conversion clock selects
CCP 2		2	2
Comparator	2		2
Comparator Voltage Reference	Yes	_	Yes
Program Memory	4K, 8K EPROM	4K, 8K Flash (Erase/Write on single-word)	4K, 8K Flash (Erase/Write on four-word blocks)
RAM	256, 352 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	256 bytes	128, 256 bytes	128, 256 bytes
Code Protection	On/Off	Segmented, starting at end of program memory	On/Off
Program Memory Write Protection	_	On/Off	Segmented, starting at beginning of program memory
LCD Module	16, 24 segment drivers, 4 commons		
Other	In-Circuit Debugger, Low-Voltage Programming	In-Circuit Debugger, Low-Voltage Programming	In-Circuit Debugger, Low-Voltage Programming

INDEX

Α

A/D	
Acquisition Requirements	149
Analog Port Pins	
Associated Registers	
Block Diagram	143
Calculating Acquisition Time	149
Channel Selection	
Configuration and Operation	144
Configuring	
Configuring Interrupt	
Conversion (TAD) Cycles	
Conversion Clock	
Effects of Reset	151
Internal Sampling Switch (Rss) Impedance	149
Operation During Sleep	
Output Format	
Reference Voltage (VREF)	
Source Impedance	
Specifications	
Starting a Conversion	
TAD vs. Operating Frequencies	144
Absolute Maximum Ratings	219
AC Characteristics	
Industrial and Extended	229
Load Conditions	228
ACK pulse	
ADCON0 Register	146
ADCON1 Register	147
Addressable Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Analog Input Connections	
Analog-to-Digital Converter Module. See A/D	
ANSEL Register	146
Assembler	
MPASM Assembler	216
Asynchronous Reception	
Associated Registers	135, 137
Asynchronous Transmission	
Associated Registers	133
-	

В

Baud Rate Generator	
Associated Registers	129
BF bit	
Block Diagrams	
A/D	
Analog Input Model	94, 150
Capture Mode	
Comparator 1	
Comparator 2	
Comparator Modes	
Comparator Voltage Reference (CVREF)	
Compare Mode	
Fail-Safe Clock Monitor (FSCM)	79
In-Circuit Serial Programming Connections	
Interrupt Logic	
LCD Clock Generation	
LCD Driver Module	
LCD Resistor Ladder Connection	
MCLR Circuit	
On-Chip Reset Circuit	
PIC16F913/916	8
PIC16F914/917	9

PWM Mode	181
RA0 Pin	33
RA1 Pin	34
RA2 Pin	35
RA3 Pin	36
RA4 Pin	37
RA5 Pin	38
RA6 Pin	39
RA7 Pin	40
RB Pins	45
RB4 Pin	46
RB5 Pin	47
RB6 Pin	48
RB7 Pin	49
RC0 Pin	52
RC1 Pin	53
RC2 Pin	53
RC3 Pin	
RC4 Pin	-
RC5 Pin	
RC6 Pin	
RC7 Pin	-
RD Pins	
RD0 Pin	
RD1 Pin	
RD2 Pin	-
RE Pins	
Resonator Operation	
SSP (I ² C Mode)	169
SSP (SPI Mode)	162
System Clock	
Timer1	
Timer2	
TMR0/WDT Prescaler	
USART Receive	
USART Transmit	
Watchdog Timer (WDT)	
BRGH bit	
Brown-out Reset (BOR)	
Associated Registers	
Calibration	
Specifications	
Timing and Characteristics	

С

C Compilers	
MPLAB C18	216
MPLAB C30	216
Capture/Compare/PWM (CCP)	177
Associated Registers	
Capture, Compare and Timer1	182
PWM and Timer2	183
Capture Mode	179
Block Diagram	179
CCP1CON Register	178
CCP1IF	
Prescaler	179
CCP Timer Resources	177
Compare	
Special Trigger Output of CCP1	180
Special Trigger Output of CCP2	180
Compare Mode	180
Block Diagram	180
Software Interrupt Mode	180

Special Event Trigger180
Interaction of Two CCP Modules (table)
PWM Mode
Block Diagram
Duty Cycle
Example Frequencies/Resolutions (table) 182
PWM Period
Special Event Trigger and A/D Conversions
CCP. See Capture/Compare/PWM
CCP1CON Register
CCPR1H Register 177
CCPR1L Register 177
CCPxM0 bit 178
CCPxM1 bit
CCPxM2 bit
CCPxM3 bit
CCPxX bit
CCPxY bit
CKE bit
CKP bit
CMCON0 Register
-
CMCON1 Register
Code Examples
A/D Conversion
Assigning Prescaler to Timer0
Assigning Prescaler to WDT83
Call of a Subroutine in Page 1 from Page 029
Indirect Addressing
Initializing PORTA
Initializing PORTB 41
Initializing PORTC51
Initializing PORTD60
Initializing PORTE
Loading the SSPBUF (SSPSR) Register
Saving Status and W Registers in RAM198
Code Protection
Comparator Module
Comparator Voltage Reference (CVREF)
Associated Registers
Effects of a Reset
Response Time
Comparator Voltage Reference (CVREF)
Accuracy/Error
Configuring
5 5
Specifications
Comparators
Comparators Associated Registers
Comparators
Comparators Associated Registers
Comparators Associated Registers
Comparators Associated Registers
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186 Configuration Bits 186
Comparators 100 Associated Registers 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186 Conversion Considerations 258
Comparators 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186 Conversion Considerations 258 CPU Features 185
Comparators 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186 Conversion Considerations 258 CPU Features 185 Customer Change Notification Service 267
Comparators 100 C2OUT as T1 Gate 86, 97 Configurations 95 Effects of a Reset 99 Interrupts 97 Operation 94 Operation During Sleep 99 Outputs 97 Response Time 99 Specifications 236 Synchronizing C2OUT w/ Timer1 97 CONFIG Register 186 Conversion Considerations 258 CPU Features 185

D

Ð
D/A bit
Data EEPROM Memory 153
Associated Registers 158
Reading 156
Writing 156
Data Memory 14
Data/Address bit (D/A)
DC Characteristics
Extended and Industrial 226
Industrial and Extended 221
Development Support
Device Overview7
F
-
EEADRH Registers
EEADRL Registers
EECON1 Register
EECON2 Register
EEDATH Register
EEDATL Register
Electrical Specifications
Enhanced Capture/Compare/PWM (ECCP)
Enhanced PWM Mode
TMR2 to PR2 Match
Errata5
F
Fail-Safe Clock Monitor
Fail-Safe Condition Clearing
Reset and Wake-up from Sleep
Firmware Instructions
Flash Program Memory
Fuses. See Configuration Bits
ruses. See Comiguration Ello
G
General Purpose Register File 14
I
I/O Ports
I ² C Mode
Addressing
Associated Registers
Master Mode
Mode Selection
Multi-Master Mode
Operation
Reception
•
Slave Mode
•

In-Circuit Debugger204In-Circuit Serial Programming (ICSP)203Indirect Addressing, INDF and FSR Registers30Instruction Format206Instruction Set205ADDLW208ADDWF208ANDLW208ANDWF208BCF208BSF208BTFSC209BTFSS208

PIC16F917/916/914/913

CALL
CLRF
CLRW
CLRWDT
COMF
DECF
DECFSZ
GOTO
INCF
INCFSZ
IORLW
IORWF
MOVF
MOVLW
MOVWF
NOP
RETFIE
RETLW
RETURN
RLF
RRF
SLEEP
SUBLW
SUBWF
SUBWI
XORLW
XORUW
Summary Table
INTCON Register
Inter-Integrated Circuit (I ² C). See I ² C Mode
Internal Oscillator Block
INTOSC
Specifications
Internal Sampling Switch (Rss) Impedance
Internet Address
Interrupt Sources
USART Receive/Transmit Complete
Interrupts
A/D
Associated Registers
Comparators
Context Saving
Interrupt-on-change
PORTB Interrupt-on-Change
RB0/INT/SEG0
TMR0
TMR1
TMR2 to PR2 Match
TMR2 to PR2 Match (PWM) 90
INTOSC Specifications
IOCB Register

L

LCD	
Associated Registers	
Bias Types	
Clock Source Selection	
Configuring the Module	124
Frame Frequency	
Interrupts	121
LCDCON Register	101
LCDDATA Register	101
LCDPS Register	101
LCDSE Register	101
Multiplex Types	
Operation During Sleep	122

Pixel Control1	07
Prescaler1	06
Segment Enables 1	07
Waveform Generation1	10
CDCON Register 1	01
CDDATA Register 1	
CDPS Register 1	01
LP Bits 1	06
CDSE Register 1	01
iquid Crystal Display (LCD) Driver1	01
oad Conditions 2	28

Μ

MCLR	. 188
Internal	. 188
Memory Organization	13
Data	14
Program	13
Microchip Internet Web Site	. 267
Migrating from other PICmicro Devices	. 257
MPLAB ASM30 Assembler, Linker, Librarian	. 216
MPLAB ICD 2 In-Circuit Debugger	. 217
MPLAB ICE 2000 High-Performance Universal	
In-Circuit Emulator	. 217
MPLAB ICE 4000 High-Performance Universal	
In-Circuit Emulator	. 217
MPLAB Integrated Development Environment Software.	. 215
MPLAB PM3 Device Programmer	. 217
MPLINK Object Linker/MPLIB Object Librarian	. 216

Ο

OPCODE Field Descriptions	205
OPTION_REG Register	22, 82
OSCCON Register	70
Oscillator	
Associated Registers	80
Oscillator Configurations	69
Oscillator Delay Examples	72
Special Cases	71
Oscillator Specifications	229
Oscillator Start-up Timer (OST)	
Specifications	233
Oscillator Switching	
Fail-Safe Clock Monitor	79
Two-Speed Clock Start-up	
OSCTUNE Register	

Ρ

P (Stop) bit	160
Packaging	247
Marking	247, 248
PDIP Details	249
SOIC Details	
TSSOP Details	
Paging, Program Memory	29
PCL and PCLATH	
Computed GOTO	
Stack	
PCON Register	190
PICSTART Plus Development Programmer	
PIE1 Register	
PIE2 Register	25
Pin Diagram	
PIC16F913/916, 28-pin	
PIC16F914/917, 40-pin	
PIC16F914/917, 44-pin	

PIC16F917/916/914/913

Pinout Description	10
PIR1 Register	
PIR2 Register	27
PORTA	
Associated Registers	40
Pin Descriptions and Diagrams	33
RA0	33
RA1	34
RA2	35
RA3	36
RA4	37
RA5	38
RA6	39
RA7	40
Registers	31
Specifications2	231
PORTA Register	32
PORTB	
Additional Pin Functions	41
Weak Pull-up	41
Associated Registers	50
Interrupt-on-change	41
Pin Descriptions and Diagrams	44
RB0	44
RB1	44
RB2	44
RB3	44
RB4	46
RB5	47
RB6	48
RB7	49
Registers	41
PORTB Register	42
PORTC	
Associated Registers	59
Pin Descriptions and Diagrams	52
RC0	52
RC1	52
RC2	52
RC3	54
RC4	55
RC5	56
RC6	57
RC6/TX/CK/SCK/SCL/SEG9 Pin1	28
RC7	
RC7/RX/DT Pin 1	29
RC7/RX/DT/SDI/SDA/SEG8 Pin 1	
Registers	51
Specifications2	231
TRISC Register 1	
PORTC Register	51
PORTD	
Associated Registers	
Pin Descriptions and Diagrams	61
RD0	61
RD1	61
RD2	61
RD3	61
RD4	
RD5	61 61
RD6	61 61 61
RD6 RD7	61 61 61 61
RD6 RD7 Registers	61 61 61 61 60
RD6 RD7	61 61 61 61 60

Associated Registers 67
Pin Descriptions and Diagrams
RE0
RE1
RE2
RE3
Registers65
PORTE Register
Power-Down Mode (Sleep)
Power-on Reset 188
Power-up Timer (PWRT) 188
Specifications 233
Precision Internal Oscillator Parameters
Prescaler
Shared WDT/Timer083
Switching Prescaler Assignment
Product Identification System
Program Memory 13
Map and Stack (PIC16F913/914) 13
Map and Stack (PIC16F916/917) 13
Paging 29
Programmable Low-Voltage Detect (PLVD) Module 125
Programming, Device Instructions
Pulse W idth Modulation.SeeCapture/Compare/PWM, P WM Mode.

R

R/W bit	160
RCSTA Register	
ADDEN Bit	128
CREN Bit	128
FERR Bit	128
OERR Bit	128
RX9 Bit	128
RX9D Bit	128
SPEN Bit	. 127, 128
SREN Bit	128
Reader Response	268
Read-Modify-Write Operations	
Receive Overflow Indicator bit (SSPOV)	161
Registers	
ADCON0 (A/D Control 0)	146
ADCON1 (A/D Control 1)	147
ANSEL (Analog Select)	146
CCP1CON (CCP Control 2)	
CCP2CON (CCP Control 1)	
CMCON0 (Comparator Control 0)	
CMCON1 (Comparator Control 1)	
CONFIG (Configuration Word)	186
EEADRH (EEPROM Address)	
EEADRL (EEPROM Address)	
EECON1 (EEPROM Control 1)	155
EEDATH (EEPROM Data)	154
EEDATL (EEPROM Data)	154
INTCON (Interrupt Control)	23
IOCB (PORTB Interrupt-on-change)	42
LCDCON (LCD Control)	103
LCDDATAx (LCD Datax)	
LCDPS (LCD Prescaler Select)	
LCDSEn (LCD Segment)	
LVDCON (Low-Voltage Detect Control)	125
OPTION_REG	
OSCCON (Oscillator Control)	70
OSCTUNE	
PCON (Power Control)	
PIE1 (Peripheral Interrupt Enable 1)	24

PIC16F917/916/914/913

PIE2 (Peripheral Interrupt Enable 2)25
PIR1 (Peripheral Interrupt Register 1)
PIR2 (Peripheral Interrupt Register 2)
PORTA
PORTB
PORTC
PORTD
PORTE
RCSTA (Receive Status and Control)
Reset Values
Reset Values (Special Registers) 194
Special Function Register Map
PIC16F913/91615
PIC16F914/91716
Special Register Summary
Bank 017
Bank 1
Bank 219
Bank 3
SSPCON (Sync Serial Port Control) Register
SSPSTAT (Sync Serial Port Status) Register
Status
T1CON (Timer1 Control)
T2CON (Timer2 Control)
TRISA (PORTA Tri-state)
TRISB (PORTB Tri-state)
TRISC (PORTC Tri-state)
TRISD (PORTD Tri-state)
TRISE (PORTE Tri-state)
TXSTA (Transmit Status and Control) 127
VRCON (Voltage Reference Control) 100
WDTCON (Watchdog Timer Control)
WPUB (Weak Pull-up PORTB)43
Reset
Revision History

S

S (Start) bit	
SCI. See USART	
Serial Communication Interface. See USART.	
Slave Select Synchronization	
SMP bit	
Software Simulator (MPLAB SIM)	
Special Function Registers	
SPI Mode	159, 166
Associated Registers	
Bus Mode Compatibility	
Effects of a Reset	
Enabling SPI I/O	
Master Mode	
Master/Slave Connection	
Serial Clock (SCK pin)	159
Serial Data In (SDI pin)	159
Serial Data Out (SDO pin)	159
Slave Select	
Slave Select Synchronization	
Sleep Operation	
SPI Clock	
Typical Connection	
SSP	
Overview	
SPI Master/Slave Connection	
SSP I ² C Operation	169
Slave Mode	169
SSP Module	
Clock Synchronization and the CKP Bit	175

SPI Master Mode 165
SPI Slave Mode 166
SSPBUF 165
SSPSR 165
SSPEN bit 161
SSPM bits
SSPOV bit 161
Status Register
Synchronous Master Reception
Associated Registers 140
Synchronous Master Transmission
Associated Registers 139
Synchronous Serial Port Enable bit (SSPEN) 161
Synchronous Serial Port Mode Select bits (SSPM) 161
Synchronous Serial Port. See SSP
Synchronous Slave Reception
Associated Registers
Synchronous Slave Transmission
Associated Registers
Associated Registers 142
Т
T1CON Register
Time-out Sequence
•
Timer0
Associated Registers
External Clock
External Clock Requirements
Interrupt 81
Operation
T0CKI
Timer0 Module 81
Timer1
Associated Registers 89
Asynchronous Counter Mode 88
Asynchronous Counter Mode
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 88
Asynchronous Counter Mode
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 10 Inverting Gate 86 Selecting Source 86, 97
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 87
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer1 85 Timer1 85 Timer1 85 Timer1 85 Timer1 86 Solution 87 Module with Gate Control 85
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Postscaler 90
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Postscaler 90 PR2 Register 90
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Postscaler 90 PR2 Register 90 Prescaler 90 Prescaler 90 Prescaler 90
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 1 Inverting Gate 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Postscaler 90 PR2 Register 90 TMR2 Output 91
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Prescaler 90 PR2 Register 90 TMR2 Output 91 TMR2 Register 90
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 PR2 Register 90 TMR2 Output 91 TMR2 to PR2 Match Interrupt 90, 91
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 PR2 Register 90 Prescaler 90 Prescaler <t< td=""></t<>
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Prescaler 9
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Prescaler 90 TMR2 Output 91 TMR2 to PR2 Match Interrupt 90, 91 Timing Diagrams A/D Conversion 243 Asynchronous Master Transmi
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 88 Timer1 Gate 86 Inverting Gate 86 Selecting Source 86 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 PR2 Register 90 PR2 Register 90 TMR2 to PR2 Match Interrupt 90, 91 Timing Diagrams A/D Conversion 243 Asynchronous Master Transmission (Back to Back) 132 Asynchronous Master Transmission 132
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 86 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 PR2 Register 90 PR2 Register 90 TMR2 to PR2 Match Interrupt 90, 91 Timing Diagrams A/D Conversion 243 Asynchronous Master Transmission (Back to Back) 132 Asynchronous Reception 135
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 85 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 86 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 Prescaler 90 TMR2 No PR2 Match Interrupt 90, 91 Timing Diagrams A/D Conversion 243 Asynchronous Master Transmission (Back to Back) 132
Asynchronous Counter Mode 88 Reading and Writing 88 External Clock Requirements 234 Interrupt 86 Modes of Operations 86 Operation During Sleep 89 Prescaler 86 Resetting of Timer1 Registers 89 Resetting Timer1 Using a CCP Trigger Output 86 Selecting Source 86, 97 Synchronizing C2OUT w/ Timer1 97 TMR1H Register 85 Timer1 Module with Gate Control 85 Timer2 90 Associated registers 91 Operation 90 PR2 Register 90 PR2 Register 90 TMR2 to PR2 Match Interrupt 90, 91 Timing Diagrams A/D Conversion 243 Asynchronous Master Transmission (Back to Back) 132 Asynchronous Reception 135

Brown-out Reset Situations189
Capture/Compare/PWM235
CLKO and I/O231
Clock Synchronization176
Comparator Output94
External Clock229
Fail-Safe Clock Monitor (FSCM)80
I ² C Bus Data
I ² C Bus Start/Stop Bits240
I ² C Reception (7-bit Address)
I ² C Slave Mode (Transmission, 10-bit Address)174
I^2C Slave Mode with SEN = 0 (Reception,
10-bit Address)
I ² C Transmission (7-bit Address)
INT Pin Interrupt
LCD Interrupt Timing in Quarter-Duty Cycle Drive 121
LCD Sleep Entry/Exit when SLPEN = 1 or CS = 00 . 123
Reset, WDT, OST and Power-up Timer
Slave Synchronization
SPI Master Mode (CKE = 1, SMP = 1)
SPI Mode (Master Mode)
SPI Mode (Slave Mode with $CKE = 0$)
SPI Slave Mode (CKE = 0)
SPI Slave Mode (CKE = 1)
Synchronous Reception (Master Mode, SREN) 141
Synchronous Transmission
Synchronous Transmission (Through TXEN)
Time-out Sequence Case 1191
Case 2
Case 3191 Timer0 and Timer1 External Clock233
Timer1 Incrementing Edge
Two Speed Start-up79 Type-A in 1/2 Mux, 1/2 Bias Drive111
Type-A in 1/2 Mux, 1/2 Bias Drive
Type-A in 1/3 Mux, 1/2 Bias Drive
Type-A in 1/3 Mux, 1/3 Bias Drive
Type-A in 1/4 Mux, 1/3 Bias Drive
Type-A/Type-B in Static Drive
Type-B in 1/2 Mux, 1/2 Bias Drive
Type-B in 1/2 Mux, 1/3 Bias Drive
Type-B in 1/3 Mux, 1/2 Bias Drive
Type-B in 1/3 Mux, 1/3 Bias Drive
Type-B in 1/4 Mux, 1/3 Bias Drive
USART Synchronous Receive (Master/Slave)
USART Synchronous Transmission (Master/Slave). 234
Wake-up from Interrupt
Timing Parameter Symbology
Timing Requirements
I ² C Bus Data242
I2C Bus Start/Stop Bits241
SPI Mode
TMR1H Register
TMR1L Register
TRISA
Registers
TRISA Register
TRISB
Registers41
TRISB Register
TRISC
Registers 51
TRISC Register

TRISD	
Registers	60
TRISD Register	60
TRISE	
Registers	65
TRISE Register	
Two-Speed Clock Start-up Mode	
TXSTA Register	
BRGH Bit	127
CSRC Bit	127
SYNC Bit	127
TRMT Bit	127
TX9 Bit	127
TX9D Bit	127
TXEN Bit	127

U

UA	160
Update Address bit, UA	
USART	
Address Detect Enable (ADDEN Bit)	
Asynchronous Mode	
Asynchronous Receive (9-bit Mode)	
Asynchronous Receive with Address Detect.	
See Asynchronous Receive (9-bit Mode).	
Asynchronous Receiver	134
Asynchronous Reception	
Asynchronous Transmitter	
Baud Rate Generator (BRG)	129
Baud Rate Formula	129
Baud Rates, Asynchronous Mode (BRGH = 0)	130
Baud Rates, Asynchronous Mode (BRGH = 1)	
High Baud Rate Select (BRGH Bit)	
Sampling	
Clock Source Select (CSRC Bit)	
Continuous Receive Enable (CREN Bit)	
Framing Error (FERR Bit)	
Mode Select (SYNC Bit)	
Overrun Error (OERR Bit)	
Receive Data, 9th Bit (RX9D Bit)	
Receive Enable, 9-bit (RX9 Bit)	
Serial Port Enable (SPEN Bit) 127,	
Single Receive Enable (SREN Bit)	
Synchronous Master Mode Requirements, Synchronous Receive	
Requirements, Synchronous Transmission	
Timing Diagram, Synchronous Receive	
Timing Diagram, Synchronous Transmission	
Synchronous Master Reception	
Synchronous Master Transmission	
Synchronous Slave Mode	
Synchronous Slave Reception	
Synchronous Slave Transmit	
Transmit Data, 9th Bit (TX9D)	
Transmit Enable (TXEN Bit)	
Transmit Enable, Nine-bit (TX9 Bit)	
Transmit Shift Register Status (TRMT Bit)	
,	

V

Voltage Ref erence.	See Com	parator Volt	age Ref erence
(CVREF)			
VRCON Register			100

W

Wake-up Using Interrupts	
Watchdog Timer (WDT)	199
Associated Registers	200
Clock Source	199
Modes	
Period	199
Specifications	233
WCOL bit	
WDTCON Register	
WPUB Register	43
Write Collision Detect bit (WCOL)	
WWW Address	
WWW, On-Line Support	5

NOTES:

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to m ake fi les an d i nformation e asily av ailable to customers. Accessible by using your favorite Internet browser, the w eb si te c ontains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's c ustomer notification s ervice h elps keep customers current on Microchip products. Subscribers will r eceive e-mail notification w henever t here are changes, upd ates, rev isions or errat a related to a specified product family or development tool of interest.

To register, access t he Microchip w eb s ite a t www.microchip.com, c lick o n Customer C hange Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip p roducts c an rec eive as sistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers sh ould con tact the ir dis tributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A lis ting of s ales offices and lo cations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	m: Name	
	Company	
		FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: LPIC16F917/916/914/913	rature Number: DS41250E
Que	estions:	
1.	What are the best features of this do	cument?
2.	How does this document meet your h	nardware and software development needs?
2		
3.	Do you find the organization of this d	ocument easy to follow? If not, why?
4.	What additions to the document do y	ou think would enhance the structure and subject?
		-
5.	What deletions from the document co	ould be made without affecting the overall usefulness?
6.	Is there any incorrect or misleading in	nformation (what and where)?
7		
7.	How would you improve this docume	mt <i>r</i>

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>/xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	a) PIC16F913-E/SP 3 01 = Extended T emp., skinny P DIP packa ge, 20 MHz, QTP pat tern #301
Device	PIC16F917/916/914/913 ⁽¹⁾ , PIC16F917/916/914/913T ⁽²⁾	b) PIC16F913-I/SO = Industrial Temp., SOIC package, 20 MHz
Temperature Range	$ I = -40^{\circ}C \text{ to } +85^{\circ}C E = 40^{\circ}G \text{ to } +125^{\circ}C $	
Package	ML = Micro Lead Frame (QFN) P = Plastic DIP PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP SS = SSOP	
Pattern	3-Digit Pattern Code for QTP (blank otherwise)	Note 1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = In tape and reel.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 604-646-8870 Fax: 604-646-5086

Philippines - Manila Tel: 632-634-9065

Fax: 632-634-9069 **Singapore** Tel: 65-6334-8870

Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-352-30-52 Fax: 34-91-352-11-47

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820