

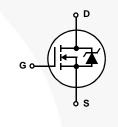
Data Sheet

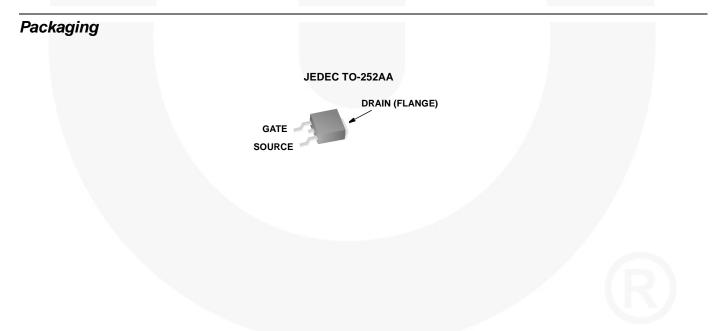
September 2013

N-Channel Power MOSFET 50V, 16A, 47 mΩ

The RFD16N05 and RFD16N05SM N-channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits.

Formerly developmental type TA09771.


Ordering Information


PART NUMBER	PACKAGE	BRAND
RFD16N05SM9A	TO-252AA	D16N05

Features

- 16A, 50V
- r_{DS(ON)} = 0.047Ω
- Temperature Compensating PSPICE[®] Model
- Peak Current vs Pulse Width Curve
- UIS Rating Curve
- 175⁰C Operating Temperature
- Related Literature
 - TB334 "Guidelines for Soldering Surface Mount Components to PC Boards"

Symbol

Absolute Maximum Ratings T_C = 25^oC, Unless Otherwise Specified

	RFD16N05SM9A	UNITS
Drain to Source Voltage (Note 1)	50	V
Drain to Gate Voltage (Note 1)	50	V
Continuous Drain Current	16	А
Pulsed Drain Current (Note 3)	Refer to Peak Current Curve	
Gate to Source VoltageV _{GS}	±20	V
Pulsed Avalanche Rating	Refer to Figure 5	
Power Dissipation	72	W
Derate above 25°C	0.48	W/ ^o C
Operating and Storage Temperature	-55 to 175	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s.	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

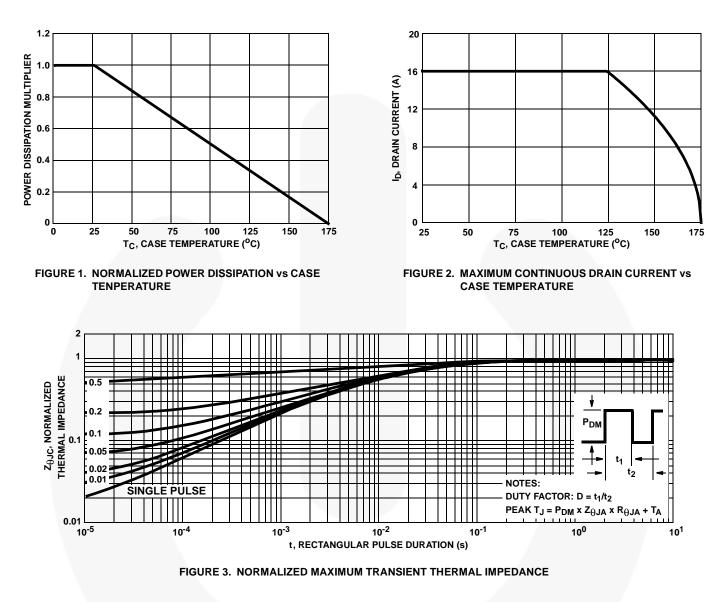
NOTE:

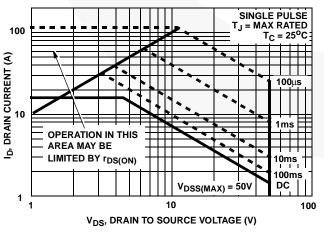
1. $T_J = 25^{\circ}C$ to $150^{\circ}C$.

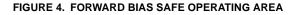
PARAMETER	SYMBOL	TEST	CONDITIONS	MIN	TYP	MAX	UNITS
Drain to Source Breakdown Voltage	BV _{DSS}	$I_{D} = 250 \mu A, V_{GS} = 0$	V (Figure 11)	50	-	-	V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250$	θμΑ	2	-	4	V
Zero Gate Voltage Drain Current	I _{DSS}	I_{DSS} V_{DS} = Rated BV _{DSS} , V_{GS} = 0		-	-	1	μA
		$V_{DS} = 0.8 \text{ x Rated B}$ $T_{C} = 150^{\circ}C$	V _{DSS} , V _{GS} = 0V,	-	-	25	μA
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
Drain to Source On Resistance (Note 2)	rDS(ON)	$I_{D} = 16A, V_{GS} = 10V$	(Figure 9)	-	-	0.047	Ω
Turn-On Time	t _(ON)	$V_{DD} = 25V, I_D = 8A, R_L = 3.125\Omega, V_{GS} = 10V, R_{GS} = 25\Omega$ (Figure 13)		-	-	65	ns
Turn-On Delay Time	t _{d(ON)}			-	14	-	ns
Rise Time	tr			-	30	-	ns
Turn-Off Delay Time	t _{d(OFF)}			-	55	-	ns
Fall Time	t _f			-	30	-	ns
Turn-Off Time	t(OFF)			-	-	125	ns
Total Gate Charge	Q _{g(TOT)}	$V_{GS} = 0V$ to 20V	$V_{DD} = 40V, I_D \approx 16A,$	-	-	80	nC
Gate Charge at 10V	Q _{g(10)}	$V_{GS} = 0V$ to 10V	$R_{L} = 2.5\Omega$ $I_{g(REF)} = 0.8mA$	-	-	45	nC
Threshold Gate Charge	Q _(TH)	$V_{GS} = 0V$ to 2V	(Figure 13)	-	-	2.2	nC
Input Capacitance	C _{ISS}	V _{DS} = 25V, V _{GS} = 0V, f = 1MHz (Figure 12)		-	900	-	pF
Output Capacitance	C _{OSS}			-	325	-	pF
Reverse Transfer Capacitance	C _{RSS}			- /	100	-	pF
Thermal Resistance Junction to Case	R _{θJC}			-	-	2.083	°C/W
Thermal Resistance Junction to Ambient	R _{θJA}	TO-251 and TO-252		- 1	-	100	°C/W

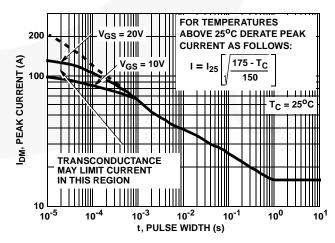
Electrical Specifications T_C = 25°C, Unless Otherwise Specified

Source to Drain Diode Specifications

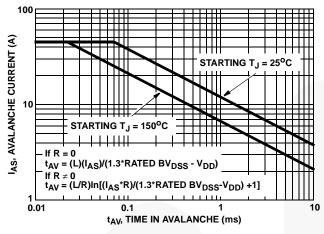

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 16A	-	-	1.5	V
Diode Reverse Recovery Time	t _{rr}	I_{SD} = 16A, d I_{SD} /dt = 100A/µs	-	-	125	ns


NOTES:


2. Pulse test: pulse width $\leq 250 \mu s$, duty cycle $\leq 2\%$.


3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3) and Peak Current Capability Curve (Figure 5).

Typical Performance Curves Unless Otherwise Specified



Typical Performance Curves Unless Otherwise Specified (Continued)

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING

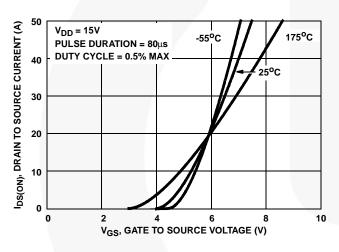
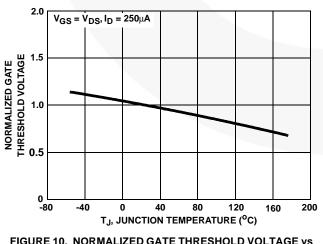



FIGURE 8. TRANSFER CHARACTERISTICS

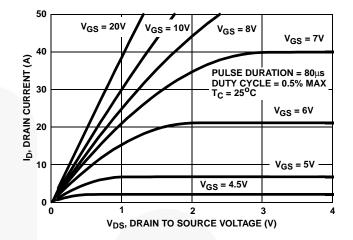


FIGURE 7. SATURATION CHARACTERISTICS

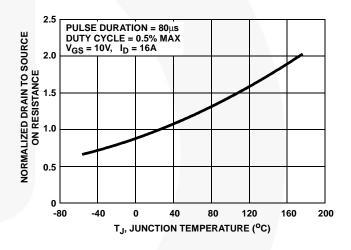
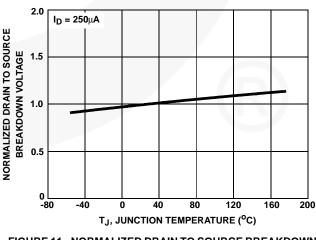



FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

Typical Performance Curves Unless Otherwise Specified (Continued)

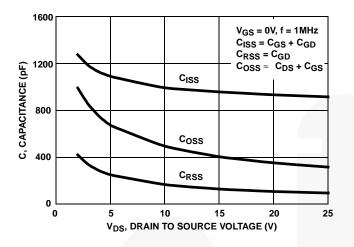
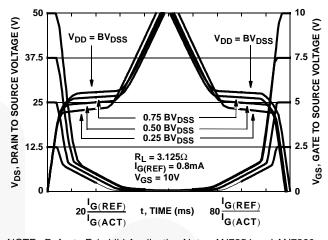



FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT

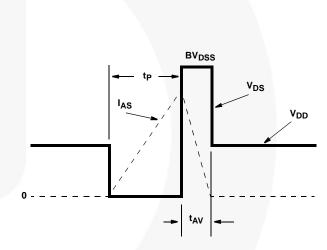


FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

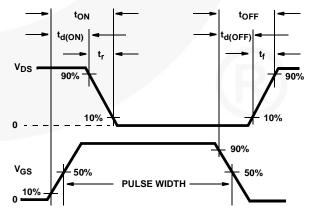


FIGURE 17. RESISTIVE SWITCHING WAVEFORMS

Test Circuits and Waveforms

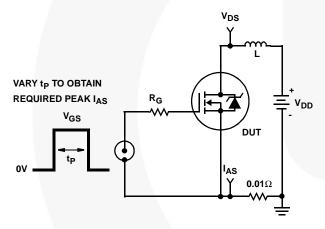


FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

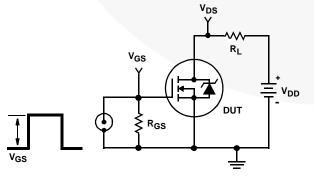


FIGURE 16. SWITCHING TIME TEST CIRCUIT

Test Circuits and Waveforms (Continued)

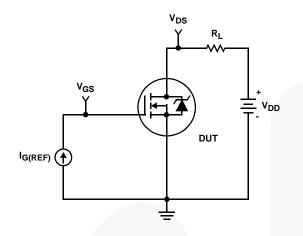
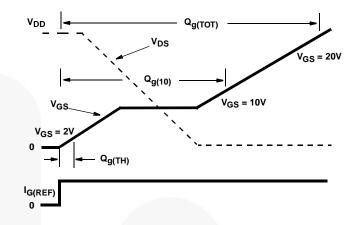
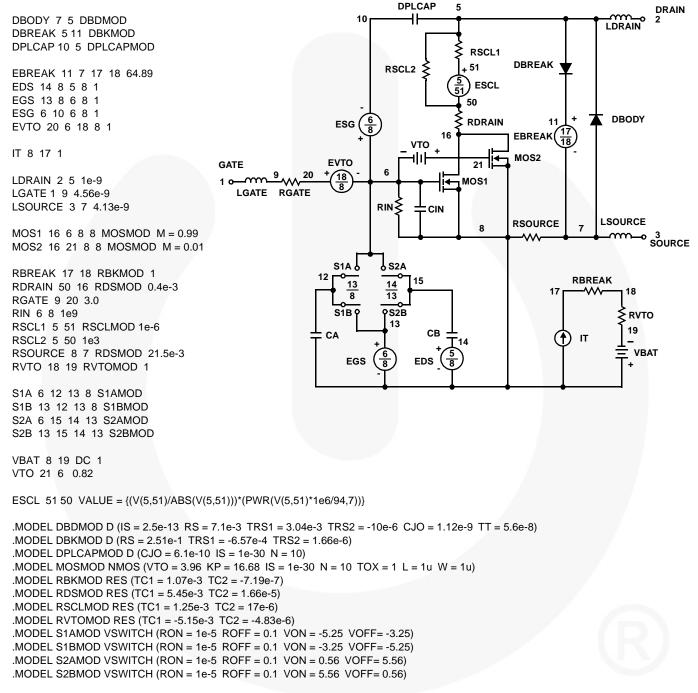



FIGURE 18. GATE CHARGE TEST CIRCUIT



PSPICE Electrical Model

.SUBCKT RFD16N05 2 1 3; rev 10/31/94

CA 12 8 1.788e-10 CB 15 14 1.875e-10 CIN 6 8 8.33e-10

.ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; written by William J. Hepp and C. Frank Wheatley.

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™		Sync-Lock™
AccuPower TM AX-CAP [®] * BitSiC TM Build it Now TM CorePLUS TM CorePOWER TM CROSSVOLT TM CLL TM CUrrent Transfer Logic TM DEUXPEED [®] Dual Cool TM EcoSPARK [®] EfficentMax TM ESBC TM Fairchild [®] Fairchild [®] Fairchild [®] FACT [®] FACT [®] FAST [®] FastvCore TM FastvCore TM FatBench TM	F-PFS™ FRFET® Global Power Resource SM Green Bridge™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Loud and Better™ MegaBuck™ MICROCOUPLER™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MicroPak2™ MotionMax™ mWSaver® OptoHiT™ OPTOLOGIC® OPTOPLANAR®	Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM [®] STEALTH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperSOT™-8 SuperMOS [®]	Sync-Lock [™] System [®] * General TinyBoosf [®] TinyBock [®] TinyCalc [™] TinyCopto [™] TinyPower [™] TinyPower [™] TinyPower [™] TinyPWM [™] TinyPWM [™] TranSiC [™] TranSi
FPS™		SyncFET™	XS™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.