Silicon Tuning Diodes

Designed for electronic tuning and harmonic–generation applications, and provide solid–state reliability to replace mechanical tuning methods.

- Guaranteed High–Frequency Q
- Guaranteed Wide Tuning Range
- Standard 10% Capacitance Tolerance
- Complete Typical Design Curves

6.8-47 pF EPICAP VOLTAGE-VARIABLE CAPACITANCE DIODES

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Reverse Voltage	V _R	60	Volts	
Forward Current	١F	250	mAdc	
RF Power Input ⁽¹⁾	Pin	5.0	Watts	
Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.67	mW mW/°C	
Device Dissipation @ T _C = 25°C Derate above 25°C	PC	2.0 13.3	Watts mW/°C	
Junction Temperature	Тј	+175	°C	
Storage Temperature Range	T _{stg}	-65 to +200	°C	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μ Adc)	V _(BR) R	60	70	—	Vdc
Reverse Voltage Leakage Current (V _R = 55 Vdc, T _A = 25°C) (V _R = 55 Vdc, T _A = 150°C)	IR			0.02 20	μAdc
Series Inductance (f = 250 MHz, L \approx 1/16")	LS	_	4.0	—	nH
Case Capacitance (f = 1.0 MHz, $L \approx 1/16''$)	С _С	_	0.17	—	pF
Diode Capacitance Temperature Coefficient (V_R = 4.0 Vdc, f = 1.0 MHz)	TCC	_	200	—	ppm/°C

-||◀-

1. The RF power input rating assumes that an adequate heatsink is provided.

	C _T , Diode Capacitance V _R = 4.0 Vdc, f = 1.0 MHz pF		Capacitance Q, Figure of Merit dc, f = 1.0 MHz V _R = 4.0 Vdc, pF f = 50 MHz V _R = 4.0 Vdc, f = 1.0 Vdc, f		x e, f = 1.0 MHz	TR, Tuning Ratio C_4/C_{60} z f = 1.0 MHz		
Device	Min	Тур	Max	Min	Min	Тур	Min	Тур
1N5148	42.3	47	51.7	200	0.43	0.45	3.2	3.4
1N5148A	44.7	47	49.3	200	0.43	0.45	3.2	3.4

PARAMETER TEST METHODS

1. LS, SERIES INDUCTANCE

LS is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 250A RX Meter). L = lead length.

2. CC, CASE CAPACITANCE

C_C is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

3. CT, DIODE CAPACITANCE

 $(C_T = C_C + C_J)$. C_T is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

4. TR, TUNING RATIO

TR is the ratio of CT measured at 4.0 Vdc divided by CT measured at 60 Vdc.

5. Q, FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admittance bridge at the quency and substituting in the following

(Boonton Electronics Model 33AS8).

6. α, DIODE CAPACITANCE REVERSE VOLTAGE SLOPE The diode capacitance, C_T (as measured at $V_R = 4.0$ Vdc, f = 1.0 MHz) is compared to C_T (as measured at V_R = 60 Vdc, f = 1.0 MHz) by the following equation which defines α.

$$\alpha = \frac{\log C_{T}(4) - \log C_{T}(60)}{\log 60 - \log 4}$$

Note that a CT versus VR law is assumed as shown in the following equation where C_C is included.

$$CT = \frac{K}{V\alpha}$$

7. TCC, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

TC_C is guaranteed by comparing C_T at $V_R = 4.0$ Vdc, f = 1.0 MHz, $T_A = -65^{\circ}C$ with C_T at $V_R = 4.0$ Vdc, f = 1.0 MHz, $T_A = +85^{\circ}C$ in the following equation which defines TC_C:

t the specified freq
g equations:
$$Q = \frac{2\pi fC}{G}$$

PERCENT OF Q @ 25°C

 $V_R = 4 V dc$

f = 50 MHz

110

100

90

80

70

Figure 5. Reverse Current versus Reverse Bias Voltage

Figure 6. Figure of Merit versus Frequency