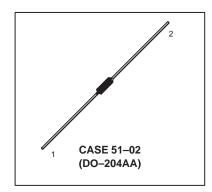
Silicon Tuning Diodes


These are epitaxial passivated abrupt junction tuning diodes designed for electronic tuning, FM, AFC and harmonic–generation applications in AM through UHF ranges, providing solid–state reliability to replace mechanical tuning methods.

- Excellent Q Factor at High Frequencies
- Guaranteed Capacitance Change 2.0 to 30 V
- Capacitance Tolerance 10% and 5.0%
- Complete Typical Design Curves

6.8-100 pF 30 VOLTS VOLTAGE-VARIABLE CAPACITANCE DIODES

-▶|--

MAXIMUM RATINGS(1)

Rating	Symbol	Value	Unit
Reverse Voltage	VR	30	Volts
Device Dissipation @ T _A = 25°C Derate above 25°C	PD	400 2.67	mW mW/°C
Operating Junction Temperature Range	ТJ	+175	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _(BR) R	30	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 25 Vdc, T _A = 25°C) (V _R = 25 Vdc, T _A = 150°C)	IR	_		0.02 20	μAdc
Series Inductance (f = 250 MHz, lead length $\approx 1/16''$)	LS	—	4.0		nH
Case Capacitance (f = 1.0 MHz, lead length $\approx 1/16''$)	СC	—	0.17		pF
Diode Capacitance Temperature Coefficient (Note 6) (V _R = 4.0 Vdc, f = 1.0 MHz)	тс _с	—	300	_	ppm/°C

	C _T , Diode Capacitance V _R = 4.0 Vdc, f = 1.0 MHz pF		TR, Tuning Ratio C ₂ /C ₃₀ f = 1.0 MHz		Q, Figure of Merit V _R = 4.0 Vdc, f = 50 MHz	
Device	Min (Nom –10%)	Nom	Max (Nom +10%)	Min	Мах	Min
1N5446ARL	16.2	18	19.8	2.6	3.2	350
1N5448ARL	19.8	22	24.2	2.6	3.2	350
1N5456A	90	100	110	2.7	3.3	175

1. Indicates JEDEC Registered Data.

PARAMETER TEST METHODS

1. LS, SERIES INDUCTANCE

 L_S is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 250A RX Meter or equivalent).

2. CC, CASE CAPACITANCE

 C_C is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

3. CT, DIODE CAPACITANCE

 $(C_T = C_C + C_J)$. C_T is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

4. TR, TUNING RATIO

TR is the ratio of CT measured at 2.0 Vdc divided by CT measured at 30 Vdc.

5. Q, FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

$$Q = \frac{2\pi f C}{G}$$

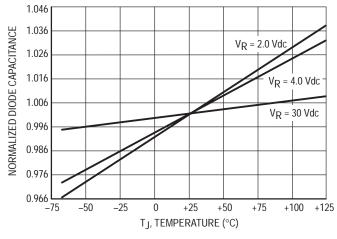
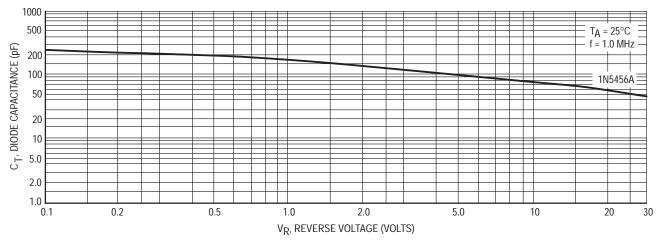
(Boonton Electronics Model 33AS8 or equivalent).

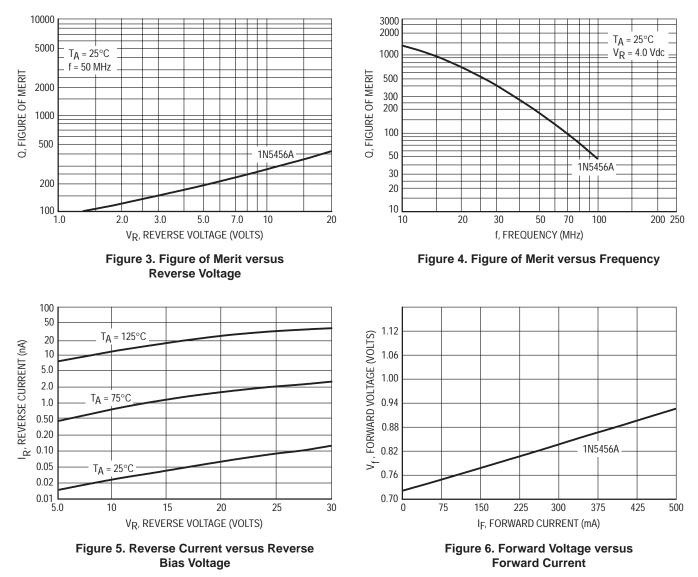
7. TC_C, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

TC_C is guaranteed by comparing C_T at V_R = 4.0 Vdc, f = 1.0 MHz, T_A = -65°C with C_T at V_R = 4.0 Vdc, f = 1.0 MHz, T_A = +85°C in the following equation, which defines TC_C:

$$\mathsf{TC}_{\mathsf{C}} = \left| \frac{\mathsf{C}_{\mathsf{T}}(+85^{\circ}\mathsf{C}) - \mathsf{C}_{\mathsf{T}}(-65^{\circ}\mathsf{C})}{85 + 65} \right| \cdot \frac{10^{6}}{\mathsf{C}_{\mathsf{T}}(25^{\circ}\mathsf{C})}$$

Accuracy limited by CT measurement to ± 0.1 pF.


Figure 1. Normalized Diode Capacitance versus Junction Temperature

TYPICAL DEVICE PERFORMANCE

1N5446ARL 1N5448ARL 1N5456A

