1N 5461A,B,C (SILICON) thru 1N 5476A,B,C

V	VC -	▶ -		
				VOLTAGE-VARIABLE CAPACITANCE DIODES
SILICON	EPICA	P DIODES		6.8 – 100 pF 30 VOLTS
a PREMIUM line of epitaxial, passivated, abrupt-junction tuning diodes for critical and sophisticated frequency control applications through the UHF range.				
 High Q at High Guaranteed High 	Frequen	cies		
	n Capaci	lance i uning hange		
Excement Unit-t Guaranteed Ten	o-onit C	e Coefficient		
Capacitance Tol	erances	- 10%, 5.0%, and 2.0%		
Complete Typic	al Desig	n Curves		
** MAXIMUM RATINGS				
Rating	Symbol	Value	Unit	
Reverse Voltage	VR	30	Volts	
Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	PD	400 2.67	mW mW/ ^o C	K
Operating Junction Temperature Range	тј	+175	°c	
Storage Temperature Range	T _{stg}	-65 to +200	°C	
				MILLIMETERS INCHES DIM MIN MAX MIN MAX A 5.84 7.62 0.230 0.300 6 B 2.16 2.72 0.085 0.107 0 0.46 0.56 0.018 0.022 F - 1.27 - 0.650 K 25.40 - 1.000 - - AII JEDEC dimensions and notes apply CASE 51-02 DO DO - DO - DO - DO -

**Indicates JEDEC Registered Data.

**FLECTRICAL	CHARACTERISTICS /T	A = 250C upless otherwise not	(hai
ELECINICAL	CHANAGIENISIIUS ().	$\Delta = 20^{\circ}$ C unless otherwise not	eur

Characteristic-All Types	Test Conditions	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage	I _R = 10 μAdc	BVR	30	-	-	Vdc
Reverse Voltage Leakage Current	V _R = 25 Vdc, T _A = 25 ^o C V _R = 25 Vdc, T _A = 150 ^o C	IR		-	0.02 20	μAdc
Series Inductance	f = 250 MHz, lead length \approx 1/16"	LS	-	4.0	10	nH
Case Capacitance	f = 1.0 MHz, lead length \approx 1/16"	CC	0.1	0.17	0.25	pF
Diode Capacitance Temperature Coefficient (Note 6)	V _R = 4.0 Vdc, f = 1.0 MHz	TCc	-	300	400	ppm/ ⁰ C

Device	C _T , Diode Capacitance [*] V _R = 4.0 Vdc, f = 1.0 MHz pF			TR, Tuning Ratio C2/C30 f = 1.0 MHz		Q, Figure of Merit V _R = 4.0 Vdc f = 50 MHz	
f (Non	Min (Nom -10%)	Nom	Max (Nom +10%)	Min	Мах	Min	
1N5461A	6.1	6.8	7.5	2.7	3.1	600	
1N5462A	7.4	8.2	9.0	2.8	3.1	600	
1N5463A	9.0	10.0	11.0	2.8	3.1	550	
1N5464A	10.8	12.0	13.2	2.8	3.1	550	
1N5465A	13.5	15.0	16.5	2.8	3.1	550	
1N5466A	16.2	18.0	19.8	2.9	3.1	500	
1N5467A	18.0	20.0	22.0	2.9	3.1	500	
1N5468A	19.8	22.0	24.2	2.9	3.2	500	
1N5469A	24.3	27.0	29.7	2.9	3.2	500	
1N5470A	29.7	33.0	36.3	2.9	3.2	500	
1N5471A	35.1	39.0	42.9	2.9	3.2	450	
1N5472A	42.3	47.0	51.7	2.9	3.2	400	
1N5473A	50.4	56.0	61.6	2.9	3.3	300	
1N5474A	61.2	68.0	74.8	2.9	3.3	250	
1N5475A	73.8	82.0	90.2	2.9	3.3	225	
1N5476A	90.0	100.0	110.0	2.9	3.3	200	

*To order devices with CT Nom $\pm 5.0\%$ or $\pm 2.0\%$ add Suffix B or C respectively.

**Indicates JEDEC Registered Data.

1. LS, Series Inductance

 L_S is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 250A RX Meter or equivalent).

2. C_C, Case Capacitance

 C_{C} is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

3. CT, Diode Capacitance

 $(C_T = C_C + C_J)$. C_T is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

4. TR, Tuning Ratio

TR is the ratio of C_T measured at 2.0 Vdc divided by C_T measured at 30 Vdc.

5. Q, Figure of Merit

 ${\bf Q}$ is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

$$Q = \frac{2\pi fC}{G}$$

(Boonton Electronics Model 33AS8 or equivalent).

PARAMETER TEST METHODS

6. TC_c, Diode Capacitance Temperature Coefficient TC_c is guaranteed by comparing C_T at V_R = 4.0 Vdc, f = 1.0 MHz, T_A = -65° C with C_T

at $V_R = 4.0 \text{ Vdc}$, f = 1.0 MHz, $T_A = +85^{\circ}C$

in the following equation, which defines TC_c :

Accuracy limited by C_T measurement to $\pm 0.1 \text{ pF}$.

FIGURE 1 – NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE

1-38

