

### Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

# 1N7066 thru 1N7068 Series

# 10 AMP HYPERFAST RECOVERY RECTIFIER 100 – 200 VOLTS, 30 ns

## **Designer's Data Sheet**

Part Number/Ordering Information <sup>1/</sup>

1N70

L Screening 2/

\_\_ = Not Screened TX = TX Level TXV = TXV Level

S = S Level

Package Type

= Axial Leaded

SMS = Surface Mount Square Tab

FL = Flat Leads

Voltage/Family

66 = 100V

67 = 150V

68 = 200V

#### **FEATURES:**

- Hyper fast reverse recovery: 30ns maximum <sup>4/</sup>
- High surge current: 350 A maximum
- Hermetically sealed
- Low forward voltage drop .95 @10A
- Void free ceramic frit glass construction
- High temperature category I eutectic metallurgical bond
- Available in axial leaded, square tab, and flat leads versions
- TX, TXV, and S-level screening available <sup>2/</sup>
- Available as a QPL product per MIL-PRF-19500/768
- Axial lead higher current replacements for: 1N5807, 1N5809, 1N5811
- Possible SMS replacements for stud mount: 1N5812, 1N5814, 1N5816

| MAXIMUM RATINGS <sup>3/</sup>                                                                                                                                                     |                     |                                                                    |                   |      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------|-------------------|------|--|
| RATING                                                                                                                                                                            |                     | SYMBOL                                                             | VALUE             | UNIT |  |
| Peak Repetitive Reverse Voltage 1N7066 1N7067 and DC Blocking Voltage 1N7068                                                                                                      |                     | $egin{array}{c} oldsymbol{V}_{RRM} \ oldsymbol{V}_{R} \end{array}$ | 100<br>150<br>200 | V    |  |
| Average Rectified Forward Current (Axial $T_L \le 55^{\circ}C$ ; SMS $T_{EC} \le 100^{\circ}C$ ) <sup>5/</sup>                                                                    | lo                  | 10                                                                 | Α                 |      |  |
| <b>Peak Surge Current</b> (8.3 ms pulse, half sine wave, superimposed on Io, V <sub>RWM</sub> = rated, allow junction to reach equilibrium between pulses, T <sub>A</sub> = 25°C) | I <sub>FSM</sub>    | 350                                                                | А                 |      |  |
| Operating & Storage Temperature                                                                                                                                                   | $T_J$ and $T_{STG}$ | -65 to +175                                                        | °C                |      |  |
| Thermal Resistance  Junction to Lead for Axial & FL, L =.125"  Junction to End Tab for Surface Mount                                                                              |                     | $R_{	hetaJL}$ $R_{	hetaJE}$                                        | 8<br>4.5          | °C/W |  |

NOTES:

 $\underline{1}/$  For ordering information, price, operating curves, and availability- contact factory.

- $\underline{2}\!/$  Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
- $\underline{4}$ /  $I_F = 1A$ ,  $I_R = 1A$ ,  $I_{RR} = 0.1A$ ,  $T_A = 25$ °C
- $\underline{5}/$  Operating at higher  $I_{\text{O}}$  currents may be achieved based on specific application and device mounting if  $T_{\text{J}}$  is maintained below  $175^{\circ}\text{C}.$

Axial Leaded

SMS

Flat Leads (FL)







1N7066 thru 1N7068 Series

| 14701 Firestone Blvd * La | Mirada, Ca 90638   |
|---------------------------|--------------------|
| Phone: (562) 404-4474 * F | ax: (562) 404-1773 |
| ssdi@ssdi-power.com * wv  | vw.ssdi-power.com  |

| ELECTRICAL CHARACTERISTICS                                         | S <sup>3/</sup>                                                                                                                                                                                                                           |                                                                                                                |                   |                                                    |                |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|----------------|
| CHARACTERIS                                                        |                                                                                                                                                                                                                                           | SYMBOL                                                                                                         | MIN               | MAX                                                | UNIT           |
| Instantaneous Forward Voltage Drop<br>300 μs pulse                 | $I_F = 6.0 \text{ Adc}$ $I_F = 10 \text{ Adc}$ $I_F = 20 \text{ Adc}$ $I_F = 6.0 \text{ Adc}$ , $T_A = +125^{\circ}\text{C}$ $I_F = 6.0 \text{ Adc}$ , $T_A = +150^{\circ}\text{C}$ $I_F = 6.0 \text{ Adc}$ , $T_A = -55^{\circ}\text{C}$ | V <sub>F1</sub><br>V <sub>F2</sub><br>V <sub>F3</sub><br>V <sub>F4</sub><br>V <sub>F5</sub><br>V <sub>F6</sub> | -<br>-<br>-<br>-  | 0.900<br>0.950<br>1.050<br>0.850<br>0.780<br>1.050 | Vdc            |
| Reverse Leakage Current<br>At rated V <sub>R</sub> , 300 µs pulse  | T <sub>A</sub> = +25°C<br>T <sub>A</sub> = +125°C<br>T <sub>A</sub> = +150°C                                                                                                                                                              | I <sub>R1</sub><br>I <sub>R2</sub><br>I <sub>R3</sub>                                                          | -<br>-<br>-       | 1<br>100<br>500                                    | μΑ<br>μΑ<br>μΑ |
| Breakdown Voltage<br>I <sub>R</sub> = 100 μA                       | 1N7066<br>1N7067<br>1N7068                                                                                                                                                                                                                | BV <sub>R</sub>                                                                                                | 110<br>160<br>210 | -<br>-<br>-                                        | V              |
| Junction Capacitance<br>V <sub>R</sub> = 10 Vdc, f = 1 MHz         |                                                                                                                                                                                                                                           | CJ                                                                                                             | -                 | 80                                                 | pF             |
| Reverse Recovery Time $I_F = 1 A$ , $I_R = 1 A$ , $I_{RR} = 0.1 A$ |                                                                                                                                                                                                                                           | t <sub>RR</sub>                                                                                                | -                 | 30                                                 | ns             |

Fig.1 Typical Leakage Current I<sub>R</sub> vs V<sub>R</sub> vs T<sub>C</sub>

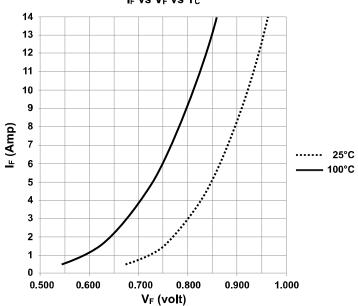
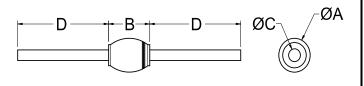
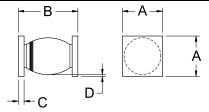



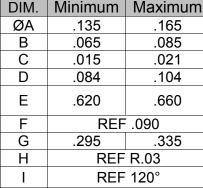

Fig.2 Typical Forward Voltage  $I_F$  vs  $V_F$  vs  $T_C$ 

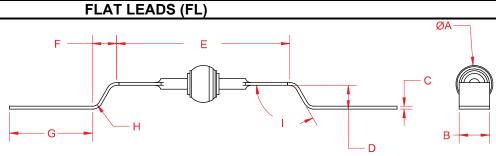






1N7066 thru 1N7068 **Series** 

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com


### Package Outlines:


|                     | AXIAL LEADED |                     | SMS  |         |         |
|---------------------|--------------|---------------------|------|---------|---------|
| DIMENSIONS (inches) |              | DIMENSIONS (inches) |      |         |         |
| DIM.                | Minimum      | Maximum             | DIM. | Minimum | Maximum |
| Α                   | .135         | .165                | Α    | .172    | .180    |
| В                   | .135         | .155                | В    | .180    | .220    |
| С                   | .036         | .042                | С    | .020    | .028    |
| D                   | .900         | 1.30                | D    | .002    |         |





| DIMENSIONS (inches) |         |         |  |
|---------------------|---------|---------|--|
| DIM.                | Minimum | Maximum |  |
| ØΑ                  | .135    | .165    |  |
| В                   | .065    | .085    |  |
| С                   | .015    | .021    |  |
| D                   | .084    | .104    |  |
| Е                   | .620    | .660    |  |





#### FEATURES FOR FLAT LEADS PACKAGE

- Solid silver leads
- Provide stress relief (customizable to customer specifications)
- Ideal for welding to BUS bar
- Typical application: solar array bypass / blocking diodes for photovoltaic (PV) panels