Data Sheet SCALE High Voltage IGBT Driver 1SD210FI-FX200R65KF1

Plug-and-play, compact, high performance, single channel driver for two-level converters

Abstract

The SCALE HVI 1SD210FI-FX200R65KF1 is a compact single-channel intelligent gate driver designed for EUPEC's high-voltage IGBTs type FD200R65KF1-K and FZ200R65KF1. The driver features a fiber optic interface and a short-circuit protection.

For drivers adapted to other types of high-power and high-voltage IGBT modules refer to <u>www.Igbt-Driver.com/HVI</u>

Product Highlights Applications ✓ Plug-and play solution ✓ Two-level converters Medium-voltage converters ✓ Protects the IGBT from short-circuit failure ✓ High-voltage applications Active clamping of Vce at turn-off Extremely reliable; long service life ✓ Industrial drives ✓ No electrolytic capacitors Traction ✓ Gate current up to −6A/+10A ✓ Railroad power supplies ✔ Wind-power converters ✔ Fiber-optic links ✓ Monitoring of supply voltage and fiber optics ✓ Radiology and laser technology ✓ Switching frequency DC to max. 6kHz ✓ Research ✓ Duty cycle 0... 100% ✓ Suitable DC/DC power supply as separate unit ✓ Almost all other conceivable ✓ Shorten application's development time

Important: Please Refer to the Related Manuals!

This data sheet contains only product-specific data. For a detailed description, must-read application notes, and common data that apply to the whole series, please refer to "Description and Application Manual for 1SD210FI SCALE High Voltage IGBT Drivers".

Quality Standard

Manufacturing ISO9001 certified.

Mechanical and Electrical Interfaces

Dimensions: 150 x 74 mm.

Mounting Principle: Direct screw mount on FD200R65KF1-K. (Note 20)

Interface	erface Remarks	
Drive signal input Status output Power supply connector	Fiber optic receiver (Notes 14, 16) Fiber optic transmitter (Notes 14, 17) On board connector (Note 15)	HFBR-2522 HFBR-1522 77315-101-05
Power supply connector	Designator	Pin numbers
	j i i	

Absolute Maximum Ratings

Parameter	Remarks	min max	Unit
Supply voltage V _{DC}	VDC to GND (Note 1)	0 17.3	V
Gate peak current I _{out}	Note 8	-6 +10	Α
Average supply current I_{DC}	Note 3	190	mA
Output power gate driver	Notes 3, 11	2	W
Switching frequency	Note 11	6	kHz
DC link voltage	Note 5	4400	V
Operating temperature	Note 11	-40 +85	°C
Storage temperature		-40 +90	°C

CT-Concept.com

Electrical Characteristics

All data refer to +25°C and V_{DC} = 16.4V unless otherwise specified

Power supply	Remarks	min	typ max	units
Nominal supply voltage V_{DC}	VDC to GND (Note 1)	15.5	16.4 16.8	V
Supply current I_{DC}	Without load (Note 2)		80	mA
Turn-on threshold V_{th}	Note 4		13.7	V
Hysteresis on-/off	Note 4		1.0	V
Short-circuit protection	Remarks	min	typ max	units
Vce-monitoring threshold	Between aux. terminals		750	V
Response time	Notes 6, 18		10.0 11.0	mS
Blocking time	Note 7		1	S
Timing characteristics	Remarks	min	typ max	units
Turn-on delay $t_{pd(on)}$	Note 12		430	ns
Turn-off delay $t_{pd(off)}$ Output rise time $t_{r(out)}$	Note 12		520	ns
Output rise time $t_{r(out)}$	Note 9		100	ns
Output fall time $t_{f(out)}$	Note 9		100	ns
Acknowledge delay time	At status output (Note 13)		450	ns
Acknowledge pulse width	At status output	0.7	1.8	mS
Gate Output	Remarks	min	typ max	units
Turn-on gate resistor $R_{g(on)}$	Note 8		13.2	W
Turn-off gate resistor $R_{g(off)}$	Note 8		75	W
Aux. gate capacitor C_{ge}			22	nF

Footnotes to the key data

- 1) Supply voltages higher than specified can lead to the destruction of the driver and protection circuits on the output side. The gate-emitter voltage tracks with the supply voltage. (Not regulated by the gate drive unit.) The recommended DC/DC power supply ISO3116I with high voltage isolation capability is a suitable separate unit.
- 2) Static power consumption of the gate driver.
- 3) If the specified power consumption of the gate driver is exceeded at average, this indicates an overload of the gate driver and the external DC/DC power supply ISO3116I.
- 4) Under-voltage monitoring of supply voltage of the gate driver. For a voltage lower than that limit, the power modules are switched off.
- 5) This limit is due to active clamping. Refer to "Description and Application Manual for 1SD210FI SCALE High Voltage IGBT Drivers".
- 6) Pulswidth of the direct output of the gate drive unit. (Not covering the delay of the gate resistors.)
- 7) Duration of blocking the command input (keeping the gate driver and the IGBT in off-state) after fault detection, i.e. short circuit detection or power supply undervoltage lock out.
- 8) The gate current is limited by on-board gate resistors.
- 9) Refers to the direct output of the gate drive unit. (Not covering the delay of the gate resistors.)
- 10)
- 11) Application-specific self-heating of gate drivers and IGBT modules, especially at high switching frequency, must be taken into account. Commonly, the switching frequency is limited due to switching losses of the IGBT modules. Because CONCEPT cannot predict how the drivers will be incorporated in the user's application, no binding recommended value for self-heating and thus for the maximum useable output power can be made. So, it is recommended to check the gate driver's ambient temperature within the system.
- 12) Including the delay of external fiber optic links. Measured from the transition of turn-on or turn-off command at the host controller side optical transmitter to direct output of the gate drive unit. (Not covering the delay of the gate resistors.)
- 13) Including the delay of external fiber optic links. Measured from the transition of turn-on or turn-off command at the host controller side optical transmitter to the transition of acknowledge signal at the host controller side optical receiver.
- 14) The transceivers required at the host controller side are not delivered with the gate driver. It is recommended to use the same types as used in the gate driver. For product information refer to <u>www.semiconductor.agilent.com</u>
- 15) Connector and cable to the DC/DC power supply are not delivered with the gate driver, but via FCI inc. Recommended crimp contact housing: order code 65039-032; recommended crimp contacts: 5 pcs, order code 48236-002. Refer to <u>www.fciconnect.com</u>
- 16) The recommended transmitter current at the host controller is 30-35mA, suitable for plastic optic fiber with a length of less than 2.5 meters. Higher current may increase jitter or delay at turn-off.
- 17) The transmitter current at the gate driver is 30-35mA.
- 18) The delay from turn-on transition at direct output of the gate drive unit to the turn-on of the IGBT amounts to about 2ms (due to gate resistors). But turn-off at short-circuit happens without delay; so the real short-circuit time is 2ms less than the response time.
- 19) GND of power supply is not the same electrical potential as the aux. emitter terminal of the IGBT and they must never be connected together.
- 20) Since the IGBT FZ200R65KF1 has other mechanical dimensions, the driver cannot be direct screw mounted on the module. The driver must be mounted at about electrical emitter potential and connected via short wires to the aux. terminals of the module.

Exclusion Clause

CONCEPT reserves the right to make modifications to its technical data and product specifications at any time without prior notice. The general terms and conditions of delivery of CT-Concept Technology Ltd. apply.

Technical Support

CONCEPT offers you expert help for your questions and problems:

<u>www.IGBT-Driver.com/support</u> E-Mail: <u>Support@CT-Concept.com</u> Fax international +41 32 341 71 21

Quite Special: Customized SCALE HVI Drivers

If you need an IGBT driver that is not included in the delivery range, don't hesitate to contact CONCEPT or your CONCEPT sales partner.

CONCEPT engineers have more than 15 years experience in the development and manufacture of intelligent drivers for power MOSFETs and IGBTs and have already implemented a large number of customized solutions.

Ordering Information

Related IGBT

EUPEC FD200R65KF1-K EUPEC FZ200R65KF1

CONCEPT Driver Type

1SD210FI- FX200R65KF1 1SD210FI- FX200R65KF1

Information about Other Products

For drivers adapted to other high-voltage IGBT modules

Direct link: www.IGBT-Driver.com/HVI

Other drivers and evaluation boards

Please click: www.IGBT-Driver.com

Manufacturer

Your Distribution Partner

CT-Concept Technology Ltd. Intelligent Power Electronics Renferstrasse 15 CH-2504 Biel-Bienne Switzerland

Phone +41 - 32 341 41 01 Fax +41 - 32 341 71 21 E-Mail <u>Info@IGBT-Driver.com</u> Internet <u>www.IGBT-Driver.com</u>

© Copyright 1999...2002 by CT-Concept Technology Ltd. - Switzerland. We reserve the right to make any technical modifications without prior notice. All rights reserved. Version from 2002-09-16

