NPN Low Power Silicon Transistor




Rev. V1

#### Features

- Available in JAN, JANTX and JANTXV per MIL-PRF-19500/225
- TO-5 and TO-39 Packages
- General Purpose Transistors for Low Power Applications
- Ideal for High Performance Low Noise Amplifiers, Oscillators and Switching Circuits

#### Electrical Characteristics (25°C unless otherwise specified)

| Parameter                             | Test Conditions                                                                             | Symbol                | Units | Min.     | Max.       |
|---------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|-------|----------|------------|
| Collector - Emitter Breakdown Voltage | I <sub>C</sub> = 30 mA dc<br>2N1711, 2N1711S<br>2N1890, 2N1890S                             | V <sub>(BR)CEO</sub>  | V dc  | 30<br>60 |            |
| Collector - Emitter Breakdown Voltage | I <sub>C</sub> = 100 mA dc, R <sub>BE</sub> = 10 Ω<br>2N1711, 2N1711S<br>2N1890, 2N1890S    | V <sub>(BR)CER</sub>  | V dc  | 50<br>80 | _          |
| Collector - Base Cutoff Current       | V <sub>CB</sub> = 60 V dc 2N1711, 2N1711S<br>V <sub>CB</sub> = 80 V dc 2N1890, 2N1890S      | I <sub>CBO1</sub>     | nA dc | _        | 10<br>10   |
| Emitter - Base Cutoff Current         | V <sub>EB</sub> = 5 Vdc                                                                     | I <sub>EBO1</sub>     | nA dc | _        | 5.0        |
| Collector - Base Cutoff Current       | V <sub>CB</sub> = 75 V dc 2N1711, 2N1711S<br>V <sub>CB</sub> = 100 V dc 2N1890, 2N1890S     | I <sub>CBO2</sub>     | µA dc | _        | 100<br>100 |
| Emitter - Base Cutoff Current         | V <sub>EB</sub> = 7 Vdc                                                                     | I <sub>EBO2</sub>     | µA dc | _        | 100        |
| Collector-Emitter Saturation Voltage  | I <sub>C</sub> = 150 mA dc, I <sub>B</sub> = 15 mA dc<br>2N1711, 2N1711S<br>2N1890, 2N1890S | V <sub>CE(SAT)1</sub> | V dc  | _        | 1.5<br>5.0 |
| Collector-Emitter Saturation Voltage  | I <sub>C</sub> = 50 mA dc, I <sub>B</sub> = 5 mA dc,<br>2N1890, 2N1890S                     | V <sub>CE(SAT)2</sub> | V dc  | —        | 1.2        |
| Base-Emitter Saturation Voltage       | I <sub>C</sub> = 150 mA dc, I <sub>B</sub> = 15 mA dc<br>2N1711, 2N1711S<br>2N1890, 2N1890S | V <sub>BE(SAT)1</sub> | V dc  | _        | 1.3<br>1.3 |
| Base-Emitter Saturation Voltage       | I <sub>C</sub> = 50 mA dc, I <sub>B</sub> = 5 mA dc<br>2N1890, 2N1890S                      | V <sub>BE(SAT)2</sub> | V dc  | _        | 0.9        |



VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

NPN Low Power Silicon Transistor




Rev. V1

### Electrical Characteristics (25°C unless otherwise specified)

| Parameter                                                                 | Test Conditions                                                                                                                          | Symbol                               | Units | Min.       | Max.                                       |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------|------------|--------------------------------------------|
| Forward - Current Transfer Ratio                                          | $V_{CE}$ = 10 V dc; I <sub>C</sub> = 10 µA dc<br>V <sub>CE</sub> = 10 V dc; I <sub>C</sub> = 150 mA dc                                   | h <sub>FE1</sub><br>h <sub>FE2</sub> |       | 20<br>100  | 300                                        |
| Forward - Current Transfer Ratio                                          | V <sub>CE</sub> = 10 V dc; I <sub>C</sub> = 500 mA dc<br>2N1711, 2N1711S                                                                 | h <sub>FE3</sub>                     |       | 50         |                                            |
| Collector Base Cutoff Current                                             | $T_A = 150^{\circ}C$<br>$V_{CB} = 60 V dc, 2N1711, 2N1711S$<br>$V_{CB} = 80 V dc, 2N1890, 2N1890S$                                       |                                      | µA dc | _          | 10<br>15                                   |
| Forward - Current Transfer Ratio                                          | $T_A = -55^{\circ}C$<br>$V_{CE} = 10 V dc; I_C = 10 mA dc$                                                                               | h <sub>FE4</sub>                     |       | 35         |                                            |
| Small-Signal Short-Circuit Forward Current<br>Transfer Ratio              | $V_{CE}$ = 5 V dc; I <sub>C</sub> = 1 mA dc; f = 1 kHz<br>V <sub>CE</sub> = 10 V dc; I <sub>C</sub> = 5 mA dc; f = 1 kHz                 | h <sub>fe1</sub><br>h <sub>fe2</sub> |       | 80<br>90   | 200<br>270                                 |
| Magnitude of Small-Signal Short-Circuit<br>Forward Current Transfer Ratio | $V_{CE}$ = 10 V dc; I <sub>C</sub> = 50 mA dc; f = 20 MHz                                                                                | h <sub>fe</sub>                      |       | 3.5        | 12                                         |
| Small-Signal Short-Circuit Input Impedance                                | $V_{CB}$ = 10 V dc; I <sub>C</sub> = 5 mA dc; f = 1 kHz                                                                                  | h <sub>ib</sub>                      | Ω     | 4          | 8                                          |
| Small-Signal Short-Circuit Input Admittance                               | V <sub>CB</sub> = 10 V dc; I <sub>C</sub> = 5 mA dc; f = 1 kHz<br>2N1711, 2N1711S<br>2N1890, 2N1890S                                     | h <sub>ob</sub>                      | µmhos | 0.0<br>0.0 | 1.0<br>.3                                  |
| Small-Signal Open-Circuit Reverse Voltage<br>Transfer Ratio               | V <sub>CB</sub> = 10 V dc; I <sub>C</sub> = 5 mA dc; f = 1 kHz<br>2N1711, 2N1711S<br>2N1890, 2N1890S                                     | h <sub>rb</sub>                      | µmhos |            | 5x10 <sup>-4</sup><br>1.5x10 <sup>-4</sup> |
| Open Circuit Output Capacitance                                           | V <sub>CB</sub> = 10 V dc; I <sub>E</sub> = 0 mA dc;<br>f = 100 kHz <u><f<< u=""> 1mHz<br/>2N1711, 2N1711S<br/>2N1890, 2N1890S</f<<></u> | C <sub>obo</sub>                     | pF    | 8<br>5     | 25<br>15                                   |
| Pulse Response                                                            | Test condition A, except test circuit and<br>pulse requirements. See figure 6 of<br>MIL=PRF-19500/225                                    | t <sub>on</sub> + t <sub>off</sub>   | ns    |            | 30                                         |

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

<sup>2</sup> 





Rev. V1

#### Absolute Maximum Ratings (25°C unless otherwise specified)

| Ratings                                                                         | Symbol                            | Value               |
|---------------------------------------------------------------------------------|-----------------------------------|---------------------|
| Collector - Emitter Voltage<br>2N1711, 2N1711S<br>2N1890, 2N1890S               | V <sub>CEO</sub>                  | 30 V dc<br>60 V dc  |
| Collector - Emitter Voltage<br>2N1711, 2N1711S<br>2N1890, 2N1890S               | V <sub>CER</sub>                  | 50 V dc<br>80 V dc  |
| Collector - Base Voltage<br>2N1711, 2N1711S<br>2N1890, 2N1890S                  | V <sub>CBO</sub>                  | 75 V dc<br>100 V dc |
| Emitter - Base Voltage                                                          | $V_{\text{EBO}}$                  | 7 V dc              |
| Collector Current                                                               | Ι <sub>C</sub>                    | 500 mA dc           |
| Total Power Dissipation<br>(a) $T_c = +25^{\circ}C$<br>(b) $T_A = +25^{\circ}C$ | P <sub>T</sub> <sup>(2)</sup>     | 3.0 W<br>0.8 W      |
| Junction & Storage Temperature Range                                            | T <sub>J</sub> , T <sub>STG</sub> | -65°C to +200°C     |

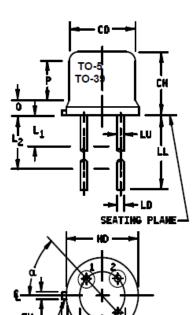
### Thermal Characteristics <sup>(3)</sup>

| Characteristics                        | Symbol           | Max. Value |
|----------------------------------------|------------------|------------|
| Thermal Resistance Junction to Case    | R <sub>ejc</sub> | 30°C/W     |
| Thermal Resistance Junction to Ambient | R <sub>eja</sub> | 175°C/W    |

(1) Also applies to the corresponding "S" suffix device.

(2) For derating see figure 2 and figure 3 as shown on pages 5 and 6.

(3) For thermal impedance curves see figure 4 and figure 5 on pages 7 and 8.


NPN Low Power Silicon Transistor



Rev. V1

#### Outline Drawing: TO-5, TO-39 Package Types

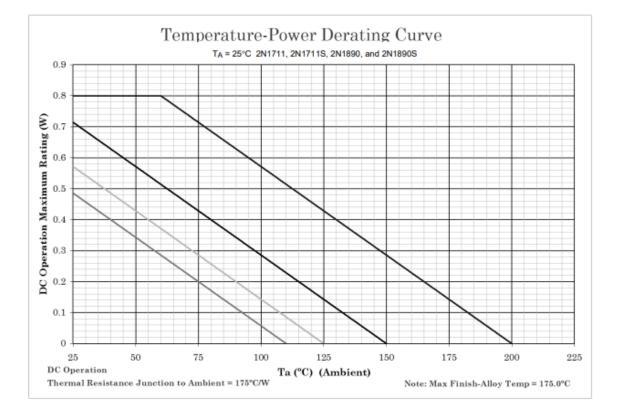
|                | Dimensions |          |           |       |   |
|----------------|------------|----------|-----------|-------|---|
| Ltr            | Inches     |          | Millin    | Notes |   |
|                | Min        | Max      | Min       | Max   |   |
| CD             | .305       | .335     | 7.75      | 8.51  |   |
| CH             | .240       | .260     | 6.10      | 6.60  |   |
| HD             | .335       | .370     | 8.51      | 9.40  |   |
| LC             | .200       | .200 TYP |           | TYP   | 7 |
| LD             | .016       | .021     | 0.41      | 0.53  | 6 |
| LL             | S          | ee notes | 7, 9, and | 10    |   |
| LU             | .016       | .019     | 0.41      | 0.48  | 7 |
| L <sub>1</sub> |            | .050     |           | 1.27  | 7 |
| L <sub>2</sub> | .250       |          | 6.35      |       | 7 |
| Р              | .100       |          | 2.54      |       | 5 |
| Q              |            | .050     |           | 1.27  |   |
| r              |            | .010     |           | 0.254 | 8 |
| TL             | .029       | .045     | 0.74      | 1.14  | 4 |
| TW             | .028       | .034     | 0.71      | 0.86  | 3 |
| α              | 45° TP     |          | 45° TP    |       | 6 |
| Term 1         | Emitter    |          |           |       |   |
| Term 2         | Base       |          |           |       |   |
| Term 3         | Collector  |          |           |       |   |



#### NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r maximum, TW must be held to a minimum length of .021 inch (0.53 mm).
- 4. TL measured from maximum HD.
- CD shall not vary more than ±.010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
  Leads at gauge plane .054 .055 inch (1.37 1.40 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at a maximum material condition (MMC) relative to the tab at MMC.
- The device may be measured by direct methods or by gauge and gauging procedure.
- LU applies between L<sub>1</sub> and L<sub>2</sub>. LD applies between L<sub>2</sub> and L minimum. Diameter is uncontrolled in L<sub>1</sub> and beyond LL minimum.
- 8. r (radius) applies to both inside corners of tab.
- \* 9. For transistor types 2N1711S and 2N1890S, LL is .500 inch (12.70 mm) minimum, and .750 inch (19.05 mm) maximum (TO-39).
- For transistor types 2N1711 and 2N1890, LL is 1.500 inches (38.10 mm) minimum, and 1.750 inches (44.45 mm) maximum (TO-5).
- 11. In accordance with ASME Y14.5M, diameters are equivalent to \$\$\phix\$ symbology.

\* FIGURE 1. Physical dimensions (TO-5 and TO-39).


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Low Power Silicon Transistor



Rev. V1

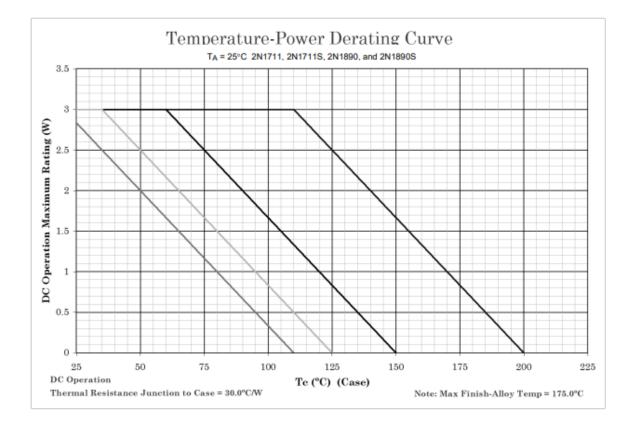
#### **Temperature-Power Derating Curve**



#### NOTES:

- 1. This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at  $\leq T_J$  specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum  $T_J$  allowed.
- 2. Derate design curve constrained by the maximum junction temperature ( $T_J \le 200^{\circ}C$ ) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T<sub>J</sub> ≤ 150°C, where the maximum temperature of electrical test is performed.
- 4. Derate design curves chosen at  $T_J \le 125^{\circ}C$ , and  $110^{\circ}C$  to show power rating where most users want to limit  $T_J$  in their application.

FIGURE 2. Temperature-power derating for 2N1711, 2N1711S, 2N1890, and 2N1890S (TO-5 and TO-39).


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Low Power Silicon Transistor



Rev. V1

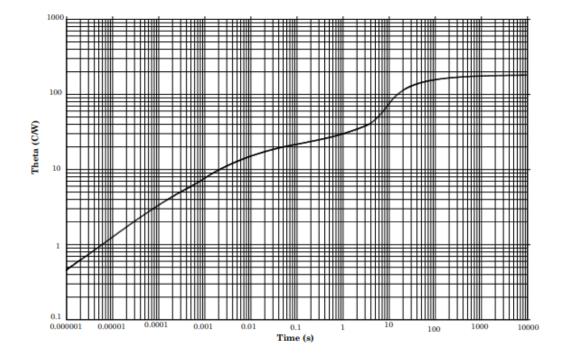
#### **Temperature-Power Derating Curve**



NOTES:

- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at ≤ T<sub>J</sub> specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T<sub>J</sub> allowed.
- Derate design curve constrained by the maximum junction temperature (T<sub>J</sub> ≤ 200°C) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T<sub>J</sub> ≤ 150°C, where the maximum temperature of electrical test is performed.
- Derate design curve chosen at T<sub>J</sub> ≤ 125°C, and 110°C to show power rating where most users want to limit T<sub>J</sub> in their application.

FIGURE 3. Temperature-power derating for 2N1711, 2N1711S, 2N1890, and 2N1890S (TO-5 and TO-39).


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Low Power Silicon Transistor



Rev. V1

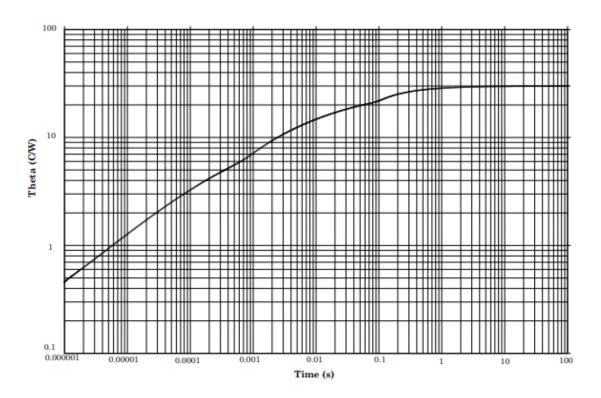
**Thermal Impedance Curves** 



**Maximum Thermal Impedance** 

FIGURE 4. Thermal impedance graph (R<sub>BJA</sub>) for 2N1711, 2N1711S, 2N1890, and 2N1890S (TO-5 and TO-39).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.


For further information and support please visit: info@vptcomponents.com

NPN Low Power Silicon Transistor



Rev. V1

**Thermal Impedance Curves** 



### Maximum Thermal Impedance

FIGURE 5. Thermal impedance graph (ReJC) for 2N1711, 2N1711S, 2N1890, and 2N1890S (TO-5 and TO-39).

NPN Low Power Silicon Transistor



Rev. V1

#### VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURA-CY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

<sup>9</sup> 

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.