New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.

SPRINGFIELD, NEW JERSEY 07081

U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

2N1038, 2N1039*, 2N1040. 2N1041* 2N2552, 2N2553*, 2N2554, 2N2555* 2N2556, 2N2557*, 2N2558, 2N2559*

PNP GERMANIUM ALLOY JUNCTION POWER TRANSISTERS

These hermetically sealed and dynamically tested units are designed to switch reactive and resistive loads at maximum efficiency by using a unique internal heat-sink design. Each unit can dissipate up to .4 watt in free air at 25°C and up to 1 watt in forced air at 25°C and can also be pressed into suitable heat-sink wells to dissipate up to 8 watts at 71°C. Typical applications include relay drivers, pulse amplifiers, audio amplifiers and high current switching circuits. The collector lead is internally connected to the case.

MAXIMUM DESIGN LIMITS

	2N1038 2N2552 2N2556	2N1039 2N2553 2N2557	2N1040 2N2554 2N2558	2N1041 2N2555 2N2559	Units
Collector-to-Base Voltage, Vcs	-40	-60	80	-100	Volts
Collector-to-Emitter Voltage, V _{CE} Acting Region Emitter Forward Biased Cutoff Region Emitter Reverse Biased	-30 -40	-40 -60	-50 -80	60 100	Volts Volts
Emitter-to-Base Voltage, V _€		-20			Volts
Collector Current, Ic		-3.0			Amp
Base Current, Is		-1.0			Amp
Operating and Junction Temp. T		- 55	to +100		°C
Thermal Resistance, Junction to Free Air Θ JA		185			°C/W
Thermal Resistance, Junction to Case ↔ JC		3.67			°C/W

CHARACTERISTICS AT 25°C CASE TEMPERATURE

Parameter	Symbol	Condition	Min.	Max.	Units
Current Gain, Common Emitter	H _{FEI}	$V_{CE} = -0.5V$, $I_{C} = -1$ A	20	60	
Current Gain, Common Emitter	H _{FE2}	$V_{CE} = -0.5V$, $I_{C} = -50$ mA	33	200	
Base-to-Emitter Voltage	V _{BE1} Y _{FE1}	$V_{CE} = -0.5V$, $I_C = -1.0 \text{ A}$	1.0	-1.0	Volts mhos
Base-to-Emitter Voltage	V _{BE2} Y _{FE2}	$V_{CE} = -0.5V$, $I_C = -50$ mA	0.143	-0.35	Volts mhos
Collector-Emitter Saturation Voltage*	V _{CE} (sat)	$I_{C} = -1 \text{ A}, I_{a} = -100 \text{ m/s}$		0.25	Volts
Collector Junction Leakage Current 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	Iceo	$V_{CB} = -20V$ $V_{CB} = -30V$ $V_{CB} = -40V$ $V_{CB} = -50V$		- 125	μAmp
Collector-Base Breakdown Voltage 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555. 2N2559	BVcso	Ic=-750	-40 -60 -80 -100		Volts
Collector Cutoff Current 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	I _{CEX}	$\begin{array}{l} V_{\text{BE}} = +0.2V \\ V_{\text{CE}} = -40V \\ V_{\text{CE}} = -60V \\ V_{\text{CE}} = -80V \\ V_{\text{CE}} = -100V \end{array}$		-650	<i>µ</i> Атр

^{*}Note: Measured adjacent to header to minimize lead effects.

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

CHARACTERISTICS AT 25°C CASE TEMPERATURE

Parameter	Symbol	Condition	Min.	Max.	Units
Collector Cutoff Current 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	Iceo	$I_0 = 0$, $V_{CE} = -15V$ $I_0 = 0$, $V_{CE} = -20V$ $I_0 = 0$, $V_{CE} = -25V$ $I_0 = 0$, $V_{CE} = -30V$,	-25 -20 -20 -20	m A
Collector Emitter Breakdown Voltage 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	V _{CEO} (SUS)	l _c = 100 mA	30 40 50 60		Volts
Emitter-Junction Leakage Current	EBO	$V_{E0} = -20V$		 650	µАтр
Emitter-Base Breakdown Voltage	BVEIO	I _E =750 μAmps	20		Volts

CHARACTERISTICS AT 85°C CASE TEMPERATURE

Parameter	Symbol	Condition	Min.	Max.	Units
Collector Cutoff Current 2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	Ісьх	$V_{0E} = +0.2V$ $V_{CE} = -20V$ $V_{CE} = -30V$ $V_{CE} = -40V$ $V_{CE} = -50V$		5.0	mA

DYNAMIC CHACTERISTICS

Parameter	Condition	Min.	Max.	Units
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio, h.	$V_{CE} = -0.5V$, $I_{C} = 0.5 \text{ A}$ f = 112.5 kc	2		
Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio, h _{ie}	$V_{CE} = -1.5V$, $I_{C} = -0.5 \text{ A}$ f=1 kc	18	72	_

Environmental Characteristics

In addition to meeting the degradation limits imposed by MIL-S-19500/89C, these units exhibit the following more rigid environmental requirements.

- 1. A typical decrease in $H_{\rm FE}$ of less than 10% at 100°C storage for 1000 hours (I_c = -1 amp and $V_{\rm CE}=-\frac{1}{2}V$).
- 2. Typical He @ 100C°C storage dips to a minimum gain level at 500 hours and stabilizes out to 1000 hours.
- A typical increase in H_{FE} of less than 15% after 100°u eperations for 1000 hours. (I_C = −1 amp and V_{CE} = −½V).
- 4. Typical H_{FE} at 100°C operation rises to a maximum level at 100 hours and stabilizes out to 1000 hours.
- 5. Typical $f_{\rm cbo}$ at 100°C operation stabilizes at an average reduction of 15% at 1000 hours. Most of this decrease occurs in the first 100 hours.**
- **When devices are used in applications which require prolonged exposure at 100°C, optimum stability is obtained when maintained in an operating mode. ("on" or "off" condition).

MECHANICAL DATA

