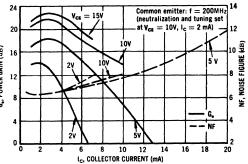

2N3291 thru 2N3294 (SILICON)


NPN silicon annular transistor for TV and FM mixer, RF and IF amplifier and general-purpose, low-noise, high-gain amplifier applications.

MAXIMUM RATINGS

Rating	Symbol	2N3291 2N3292	2N3293 2N3294	Unit
Collector - Base Voltage	v _{CB}	25	20	Volts
Collector - Emitter Voltage	V _{CES}	25	20	Volts
Emitter - Base Voltage	V _{EB}	3.0	3.0	Volts
Collector Current	I _C	50	50	mA
Power Dissipation at 25 ^o C Case Above 25 ^o C derate 1.71 mW/ ^o C	PD	300	300	mW
Power Dissipation at 25 ⁰ C Amb. Above 25 ⁰ C derate 1.14 mW/ ⁰ C	P _D	200 200		mW
Junction Temperature	т _J	+ 200	+ 200	°C
Storage Temperature Range	T _{stg}	65 to	°C	

POWER GAIN AND NOISE FIGURE versus COLLECTOR CURRENT

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_C = 25 \ \mu \text{Adc}, V_{BE} = 0$ 2N3291, 2N3292 2N3293, 2N3294	25 20	35 30	<u> </u>	Vdc
Collector Cutoff Current	I _{CBO}	$V_{CB} = 10 Vdc, I_E = 0$	-	.01	0.1	μ Adc
Emitter Cutoff Current	IEBO	$V_{EB} = 0.5 V dc, I_{C} = 0$	-	-	100	μ Adc
DC Forward Current Transfer Ratio	h _{FE}	$V_{CE} = 10 \text{ Vdc}, I_{C} = 2 \text{ mAdc}$	10	-	-	—
AC Current Gain	h _{fe}	V_{CE} = 10 Vdc, I_{C} = 2 mAdc, f = 1 kHz	10	·	200	-
Output Capacitance	C _{ob}	$V_{CB} = 10 \text{ Vdc}, I_E = 0,$ f = 100 kHz , Note 1	-	1.0	2.0	pF
AC Current Gain	h _{fe}	V_{CE} = 10 Vdc, I_{C} = 2 mAdc f = 100 MHz	2.5	6.0	12	-
Collector-Base Time Constant	rb'Cc	V_{CB} = 10 Vdc, I_{C} = 2 mAdc f = 31.8 MHz	-	15	30	ps
Maximum Frequency of Oscillation	f _{max}	$V_{CE} = 10 \text{ Vdc}, I_C = 2 \text{ mA}$	-	2000	-	MHz

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Power Gain	G _e	V = 10 V do $I = 2$ m A do	16	20	24	dB
Noise Figure	NF	$V_{CE} = 10 \text{ Vdc}, I_{C} = 2 \text{ mAdc},$ f = 200 MHz	_	6.0	8.0	dB
Power Gain (AGC)	G _e	Note 2 $V_{CE} = 5$ Vdc, $I_{C} = 20$ mAdc f = 200 MHz			0	dB

2N3292

2N3291

Power Gain	G _e	W 10 Mds X 0 stads	16	20	24	dB
Noise Figure	NF	$V_{CE} = 10 \text{ Vdc}, I_{C} = 2 \text{ mAdc}$ f = 200 MHz	— .	7.0	9.0	dB
Power Gain (AGC)	G _e	Note 2 $V_{CE} = 5$ Vdc, $I_{C} = 20$ mAdc f = 200 MHz		0	_	dB

2N3293

Power Output	Pout	V _{EE} = -11 Vdc, f = 257 MHz	2.0	·	-	mW
						A

2N3294

Power Gain	G _e		14	—	_	dB
Noise Figure	NF	$V_{CE} = 10$ Vdc, $I_{C} = 2$ mAdc f = 200 MHz	-	7.0	-	dB

Note 1. \mathbf{C}_{ob} is measured in guarded circuit such that the can capacitance is not included.

Note 2. AGC is obtained by increasing I_{C} . The circuit remains adjusted for V_{CE} = 10 Vdc,

 $I_C = 2$ mAdc operation.