MAXIMUM RATINGS

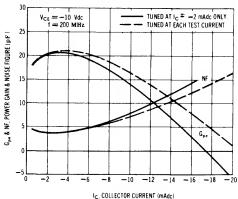
Rating	Symbol	2N3307	2N3308	Unit
Collector-Emitter Voltage	VCEO	35	25	Vdc
Collector-Emitter Voltage	VCES	40	30	Vdc
Collector-Base Voltage	VCBO	40	30	Vdc
Emitter-Base Voltage	VEBO	3	.0	Vdc
Collector Current — Continuous	^I C	5	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	-	00 14	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	-	00 71	mW mW/°C
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 te	o + 200	°C

2N3307 2N3308

CASE 20, STYLE 10 TO-72 (TO-206AF)

GENERAL PURPOSE TRANSISTOR

PNP SILICON


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

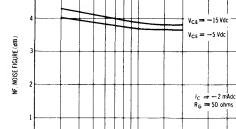
Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $(I_{C} = 2.0 \text{ mAdc}, I_{B} = 0)$	2N3307 2N3308	V _{(BR})CEO	35 25		Vdc
Collector-Emitter Breakdown Voltage ($I_C = 10 \ \mu Adc, V_{BE} = 0$)	2N3307 2N3308	V _(BR) CES	40 30	—	Vdc
Collector-Base Breakdown Voltage(1) ($I_C = 10 \ \mu Adc, I_E = 0$)	2N3307 2N3308	V _(BR) CBO	40 30		Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc, I_C = 0$)		V _(BR) EBO	3.0	-	Vdc
Collector Cutoff Current (V _{CB} = 15 Vdc) (V _{CB} = 15 Vdc, T = 150° C)	2N3307	СВО		0.010 3.0	μAdc
ON CHARACTERISTICS					
DC Current Gain (V _{CE} = 10 Vdc, I _C = 2.0 mAdc)	2N3307 2N3308	hfE	40 25	250 250	_
Collector-Emitter Saturation Voltage ($I_C = 3.0 \text{ mAdc}$, $I_B = 0.6 \text{ mAdc}$)		V _{CE(sat)}	_	0.4	Vdc
Base-Emitter Saturation Voltage ($I_C = 3.0 \text{ mAdc}, I_B = 0.6 \text{ mAdc}$		V _{BE(sat)}	-	1.0	Vdc
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain — Bandwidth Product ($V_{CE} = 10$ Vdc, $I_C = 2.0$ mAdc, f = 100 MHz		fT	300	1200	MHz
Maximum Frequency of Operation (V _{CE} = 10 Vdc, I _C = 2.0 mAdc)		f _{max}	Typical 2000		MHz
Output Capacitance (V_{CB} = 10 Vdc, I _E = 0, f = 0.1 MHz	2N3307 2N3308	C _{obo}	_	1.3 1.6	pF
Small-Signal Current Gain (V _{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 1 kHz)	2N3307 2N3308	hfe	40 25	250 250	-
Collector Base Time Constant (V_{CB} = 10 Vdc, I _C = 2.0 mAdc, f = 31.8 MHz)	2N3307 2N3308	rb'C _C	2.0 2.0	15 20	ps

Characteristic		Symbol	Min	Max	Unit
Noise Figure (V_{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 200 MHz)	2N3307 2N3308	NF	_	4.5 6.0	dB
SWITCHING CHARACTERISTICS				L	1
Power Gain(2) (V _{CE} = 10 Vdc, I _C = 2.0 mAdc, f = 200 MHz)		Ge	17	_	dB
Power Gain (AGC)(2) (V _{CE} = 5.0 Vdc, I _C = 20 mAdc, f = 200 MHz)	2N3307 2N3308	G _e		0	dB

ELECTRICAL CHARACTERISTICS (continued) ($T_{\Delta} = 25^{\circ}$ C unless otherwise noted.)

(1) C_{obo} is measured in guarded circuit such that the can capacitance is not included. (2) AGC is obtained by increasing I_C. The circuit remains adjusted for V_{CE} = -10 Vdc, I_C = -2 mAdc operation.

& NOISE FIGURE versus COLLECTOR CURRENT


COMMON EMITTER AVERAGE SMALL POWER GAIN

f, FREQUENCY (MHz)

200 300 500

NOISE FIGURE versus FREQUENCY

50 70 100

0L 20

30

