

NPN Medium Power Silicon Transistor

Rev. V4

Features

- Available in JAN, JANTX, JANTXV, JANS and JANSR 100K rads(Si) per MIL-PRF-19500/393
- TO-5 & TO-39 (TO-205AD) Packages
- Ideal for Medium Power Applications Requiring High Frequency Switching

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.		
Off Characteristics							
Collector - Emitter Breakdown Voltage	I _C = 50 mA dc 2N3418, S, 2N3420, S 2N3419, S, 2N3421, S		V dc	60 80	_		
Collector - Emitter Cutoff Current	V_{CE} = 80 Vdc, V_{BE} = -0.5 Vdc 2N3418, S, 2N3420, S V_{CE} = 120 Vdc, V_{BE} = -0.5 Vdc 2N3419, S, 2N3421, S			_	0.3		
Collector - Emitter Cutoff Current	V _{CE} = 45 2N3418, S, 2N3420, S V _{CE} = 60 2N3419, S, 2N3421, S	2N3418, S, 2N3420, S V _{CE} = 60		_	5.0 5.0		
Emitter - Base Cutoff Current	$V_{EB} = 6 \text{ Vdc}, I_{C} = 0$ $V_{EB} = 8 \text{ Vdc}, I_{C} = 0$		μA dc	_	0.5 10.0		
On Characteristics ¹							
Forward Current Transfer Ratio	$\begin{split} I_C &= 100 \text{ mA dc, } V_{CE} = 2 \text{ V dc} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3420, \text{ S, } 2\text{N}3421, \text{ S} \\ I_C &= 1 \text{ A dc, } V_{CE} = 2 \text{ V dc} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3420, \text{ S, } 2\text{N}3421, \text{ S} \\ I_C &= 2 \text{ A dc, } V_{CE} = 2 \text{ V dc} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3420, \text{ S, } 2\text{N}3421, \text{ S} \\ I_C &= 5 \text{ A dc, } V_{CE} = 5 \text{ V dc} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S} \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, \text{ S, } 2\text{ N}3419, \text{ S, } \\ &= 2\text{N}3418, $	H _{FE}	-	20 40 20 40 15 30	 60 120 		
Base - Emitter Voltage	2N3420, S, $2N3421$, S $I_C = 1 \text{ A dc}$, $I_B = 0.1 \text{ A dc}$ $I_C = 2 \text{ A dc}$, $I_B = 0.2 \text{ A dc}$	V _{BE(SAT)}	Vdc	0.6 0.7	1.2 1.4		
Collector - Emitter Saturation Voltage	$I_C = 1 \text{ A dc}, I_B = 0.1 \text{ A dc}$ $I_C = 2 \text{ A dc}, I_B = 0.2 \text{ A dc}$	V _{CE(SAT)}	Vdc	_	0.25 0.50		

NPN Medium Power Silicon Transistor

Rev. V4

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Cutoff Current	$T_A = +150^{\circ}\text{C}$ $V_{CE} = 80 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc}$ 2N3418, S, 2N3420, S $V_{CE} = 120 \text{ Vdc}, V_{BE} = -0.5 \text{ Vdc}$ 2N3419, S, 2N3421, S	I _{CEX2}	μA dc	_	16 16
Forward Current Transfer Ratio	T _A = -55°C	h _{fe5}		10	

NPN Medium Power Silicon Transistor

Rev. V4

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Dynamic Characteristics						
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	I _C = 0.1 A dc, V _{CE} = 10 Vdc, f = 20 MHz		-	1.3	8.0	
Output Capacitance	V _{CB} = 10 Vdc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz		pF	_	150	
Switching Characteristics						
Delay Time Rise Time	$V_{BE (off)} = -3.7 \text{ Vdc};$ $I_{C} = 1 \text{ A dc}; I_{B2} = 100 \text{ mA dc}$	t _d t _r	μs	<u>—</u>	0.08 0.22	
Storage Time Fall Time	$V_{BE (off)} = -3.7 \text{ Vdc};$ $I_C = 1 \text{ A dc}; I_{B2} = 100 \text{ mA dc}$	t _s	μs	_	1.10 0.20	

Safe Operating Area

Test 3: $V_{CE} = 60 \text{ Vdc}, I_{C} = 0.185 \text{ mA dc } 2N3418, \text{ S}; 2N3420, \text{ S}$ $V_{CE} = 80 \text{ Vdc}, I_{C} = 0.120 \text{ mA dc } 2N3419, \text{ S}; 2N3421, \text{ S}$

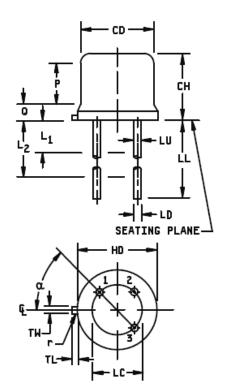
Absolute Maximum Ratings (T_A = +25°C unless otherwise noted)

Ratings	Symbol	Value 2N3418, S 2N3420, S	Value 2N3419, S 2N3421, S
Collector - Emitter Voltage	V _{CEO}	60 Vdc	80 Vdc
Collector - Base Voltage	V _{CBO}	85 Vdc	125 Vdc
Emitter - Base Voltage	V _{EBO}	8 \	/dc
Collector Current $T_P \le 1$ ms, duty cycle $\le 50\%$	I _C	3 Adc 5 Adc	
Total Power Dissipation @ $T_A = 25^{\circ}C^{1}$ @ $T_C = 100^{\circ}C^{1}$	P _T	1 W 5 W	
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C	
Thermal Resistance Junction to Ambient	R _{OJA} 3	175 °C/W	
Thermal Resistance Junction to Case	R _{eJC} ³	18 °C/W	

⁽¹⁾ For derating, see figures 4, 5 and 6 of MIL-PRF-19500/393

(2) This value applies for $t_p \le 1$ ms, duty cycle ≤ 50 percent

⁽³⁾ For thermal impedance curves see figures 7, 8 and 9 of MIL-PRF-19500/393



NPN Medium Power Silicon Transistor

Rev. V4

Outline Drawing (TO-5 & TO-39)

Dimensions					
Symbol	Inc	hes	Millimeters		Note
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200	.200 TP		5.08 TP	
LD	.016	.021	0.41	0.53	
LL	.500	.750	12.7	19.05	7
LU	See notes 7, 13, 14				
L ₁		.050		1.27	7
L ₂	.250		6.35		7
Р	.100		2.54		5
Q		.040		1.02	4
TL	.029	.045	0.74	1.14	3,10
TW	.028	.034	0.71	.86	9,10
r		.010		0.25	11
α	45° TP		45° TP		6

NOTES:

- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Symbol TL is measured from HD maximum.
- 4. Details of outline in this zone are optional.
- Symbol CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 inch (1.37 mm) +.001 inch (0.03 mm) -.000 inch (0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of TP relative to tab. Device may be measured by direct methods or by gauge.
- Symbol LU applies between L₁ and L₂. Dimension LD applies between L₂ and LL minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 8. Lead number 3 is electrically connected to case.
- 9. Beyond r maximum, TW shall be held for a minimum length of .021 inch (0.53 mm).
- 10. Lead number 4 omitted on this variation.
- Symbol r applied to both inside corners of tab.
- For transistor types 2N3418S, 2N3419S, 2N3420S, 2N3421S, LL is .500 (12.70 mm) minimum and .750 (19.05 mm) maximum (short leads).
- For transistor types 2N3418, 2N3419, 2N3420, 2N3421, LL is 1.500 (38.10 mm) minimum, and 1.750 (44.45 mm) maximum (long leads).
- 14. In accordance with ASME Y14.5M, diameters are equivalent to \$\psi\$x symbology.
- 15. Lead 1 is emitter, lead 2 is base, and lead 3 is collector.

FIGURE 1. Physical dimensions.

NPN Medium Power Silicon Transistor

Rev. V4

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.