

PNP Radiation Hardened Amplifier

Rev. V2

Features

- Available in JAN, JANTX, JANTXV and JANS per MIL-PRF-19500/357
- Ideal for General Purpose Switching and Amplifier Applications
- Available in TO-5, TO-39, UB and UBN packages

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Off Characteristics		<u>'</u>	'	<u>'</u>	
Collector - Base Cutoff Current Voltage	V_{CB} = 140 V dc 2N3634, L, UB, UBN V_{CB} = 140 V dc 2N3635, L, UB, UBN V_{CB} = 175 V dc 2N3636, L, UB, UBN V_{CB} = 175 V dc 2N3637, L, UB, UBN	I _{CBO1}	μA dc	_	10
Collector - Emitter Breakdown Voltage	I _C = 10 mA dc 2N3634, L, UB, UBN 2N3635, L, UB, UBN 2N3636, L, UB, UBN 2N3637, L, UB, UBN	V _{(BR)CEO}	V dc	140 140 175 175	_
Collector - Base Cutoff Current	V _{CB} = 100 V dc	I _{CBO2}	nA dc	_	100
Emitter - Base Cutoff Current	V _{EB} = 5 V dc	I _{EBO1}	μA dc	_	10
Emitter - Base Cutoff Current	V _{EB} = 3 V dc	I _{EBO2}	nA dc		50
Collector - Emitter Cutoff Current	V _{CE} = 100 V dc	I _{CEO}	μA dc		10
On Characteristics ¹					
	V _{CE} = 10 V dc, I _C = 0.1 mA dc 2N3634, L, UB, UBN 2N3636, L, UB, UBN 2N3635, L, UB, UBN 2N3637, L, UB, UBN	h _{FE1}		25 55	
Forward Current Transfer Ratio	V_{CE} = 10 V dc, I_{C} = 1.0 mA dc 2N3634, L, UB, UBN 2N3636, L, UB, UBN	h _{FE2}	_	45	
	2N3635, L, UB, UBN 2N3637, L, UB, UBN $V_{CE} = 10 \text{ V dc, } I_{C} = 10 \text{ mA dc}$ $2N3634, L, UB, UBN$ $2N3636, L, UB, UBN$	h _{FE3}		90 50	
	2N3635, L, UB, UBN 2N3637, L, UB, UBN			100	

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.vptcomponents.com for additional data sheets and product information.

1

PNP Radiation Hardened Amplifier

Rev. V2

On Characteristics ¹					
Forward Current Transfer Ratio	V _{CE} = 10 V dc, I _C = 50 mA dc 2N3634, L, UB, UBN 2N3636, L, UB, UBN 2N3635, L, UB, UBN 2N3637, L, UB, UBN V _{CE} = 10 V dc, I _C = 150 mA dc 2N3634, L, UB, UBN 2N3636, L, UB, UBN 2N3635, L, UB, UBN 2N3637, L, UB, UBN	h _{FE4}	-	50 100 30 60	150 300
Collector - Emitter Voltage (saturated)	I_C = 10 mA dc, I_B = 1 mA dc I_C = 50 mA dc, I_B = 5 mA dc	V _{CE(SAT)1}	V dc	_	0.3 0.6
Base - Emitter Voltage (saturated)	I_{C} = 10 mA dc, I_{B} = 1.0 mA dc I_{C} = 50 mA dc, I_{B} = 5.0 mA dc	V _{BE(SAT)1}	Vdc	0.65	0.8 0.90
Collector-Base Cutoff Current	T _A = +150°C V _{CB} = -100 V dc	I _{CBO3}	μA dc		10
Forward-Current Transfer Ratio	$T_A = -55^{\circ}\text{C}$ $V_{CE} = 10 \text{ V dc}, I_C = 50 \text{ mA dc}$ $2\text{N}3634, \text{ L}, \text{ UB}, \text{ UBN}$ $2\text{N}3636, \text{ L}, \text{ UB}, \text{ UBN}$ $2\text{N}3635, \text{ L}, \text{ UB}, \text{ UBN}$ $2\text{N}3637, \text{ L}, \text{ UB}, \text{ UBN}$	h _{FE6}	25 50		

PNP Radiation Hardened Amplifier

Rev. V2

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Dynamic Characteristics						
	V_{CE} = 30 V dc, I_{C} = 30 mA dc, f = 100 MHz 2N3634, L, UB, UBN			4.5	8.0	
Small-Signal Short-Circuit, Forward-Current Transfer Ratio	2N3636, L, UB, UBN 2N3635, L, UB, UBN	h _{FE}	-	1.5		
	2N3637, L, UB, UBN			2.0	8.5	
	$V_{CE} = 10 \text{ V dc}, I_{C} = 10 \text{ mA dc}, f = 1 \text{ kHz}$					
Small-Signal Short-Circuit, Forward-Current Transfer Ratio	2N3634, L, UB, UBN 2N3636, L, UB, UBN	h _{FE}	-	40	160	
	2N3635, L, UB, UBN 2N3637, L, UB, UBN			80	320	
	V_{CE} = 10 V dc, I_C = 10 mA dc, f = 1 kHz					
Small-Signal Short-Circuit Input Impedance	2N3634, L, UB, UBN 2N3636, L, UB, UBN	h _{ie}	Ω	100	600	
	2N3635, L, UB, UBN 2N3637, L, UB, UBN			200	1200	
Small-Signal Open Circuit Reverse Voltage Transfer Ratio	V_{CE} = 10 V dc, I_{C} = 10 mA dc, f = 1 kHz	h _{re}			3x10 ⁻⁴	
Small-Signal Open Circuit Output Admittance	$V_{CE} = 10 \text{ V dc}, I_{C} = 10 \text{ mA dc}, f = 1 \text{ kHz}$	h _{oe}	μs		200	
Open Circuit Output Capacitance	$V_{CB} = 20 \text{ V dc}, I_E = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{obo}	pF	_	10	
Input Capacitance (Output Open Circuited)	$V_{EB} = 1 \text{ V dc}, I_C = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{ibo}	pF	_	75	
Noise Figure	V_{CE} = 10 V dc, I_{C} = 0.5 mA dc, R_{G} = 1 k Ω , f = 100 Hz, f = 10 kHz, f = 1 kHz	NF	dB	_	5 3 3	

PNP Radiation Hardened Amplifier

Rev. V2

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Thermal Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Ambient 2N3634, 2N3634L 2N3635, 2N3635L 2N3636, 2N3636L 2N3637, 2N3637L	R _{θJA} ⁽⁴⁾	175°C/W
Thermal Resistance, Junction to Ambient 2N3634UB, UBN 2N3635UB, UBN 2N3636UB, UBN 2N3637UB, UBN	R _{θJA} ⁽⁴⁾	325°C/W
Thermal Resistance, Junction to Case 2N3634, 2N3634L 2N3635, 2N3635L 2N3636, 2N3636L 2N3637, 2N3637L	R _{θJC} ⁽⁴⁾	35°C/W
Thermal Resistance, Junction to Solder Pad 2N3634UB, UBN 2N3635UB, UBN 2N3636UB, UBN 2N3637UB, UBN	R _{eJSP} (4)	90°C/W

⁽⁴⁾ See figures 10, 11, and 12 of MIL-PRF-19500/357

Rev. V2

Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)

Characteristics	Symbol	Max. Value
T _A = +25°C 2N3634, 2N3634L 2N3635, 2N3635L 2N3636, 2N3636L 2N3637, 2N3637L	P _T ⁽¹⁾	1W
T _A = +25°C 2N3634UB, UBN 2N3635UB, UBN 2N3636UB, UBN 2N3637UB, UBN	P _T ⁽¹⁾	0.5 W
T _C = +25°C 2N3634, 2N3634L 2N3635, 2N3635L 2N3636, 2N3636L 2N3637, 2N3637L	P _T ⁽²⁾	5W
T _{SP} = +25°C 2N3634UB, UBN 2N3635UB, UBN 2N3636UB, UBN 2N3637UB, UBN	P _T ⁽³⁾	1.5W

⁽¹⁾ See figure 6 and 7 of MIL-PRF-19500/357

⁽²⁾ See figure 8 of MIL-PRF-19500/357

⁽³⁾ See figure 9 of MIL-PRF-19500/357

Rev. V2

Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N3634, 2N3635 2N3636, 2N3637	V _{CEO}	140 V dc 175 V dc
Collector - Base Voltage 2N3634, 2N3635 2N3636, 2N3637	V _{CBO}	140 V dc 175 V dc
Emitter - Base Voltage	V _{EBO}	5 V dc
Collector Current	I _C	1 A dc
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C

Switching Characteristics	Test Conditions	Symbol			Max Value
Pulse Delay Time	See Figure 13 of MIL-PRF-19500/357	t_{d}	ns	_	100
Pulse Rise Time	See Figure 13 of MIL-PRF-19500/357	t _r	ns	_	100
Pulse Storage Time	See Figure 13 of MIL-PRF-19500/357	ts	ns	_	500
Pulse Fall Time	See Figure 13 of MIL-PRF-19500/357	t _f	ns	_	150
t _{off}	t _s & t _f	t _{off}	ns	_	600

Safe Operating Area

DC Tests: TO-39 T_{C} = +25°C, I Cycle, t = 1.0 s

Test 1:

2N3634, 2N3634L $V_{CE} = 100 \text{ V dc}, I_{C} = 30 \text{ mA dc}$

2N3635, 2N3635L

2N3636, 2N3636L V_{CE} = 130 V dc, I_{C} = 20 mA dc

2N3637, 2N3637L

 V_{CE} = 50 V dc, I_{C} = 95 mA dc Test 2: Test 3: V_{CE} = 5 V dc, I_{C} = 1 A dc

DC Tests: UB $T_C = +25$ °C, I Cycle, t = 100 ms

Test 1:

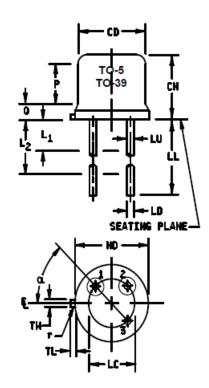
 V_{CE} = 85 V dc, I_{C} = 30 mA dc 2N3634UB, 2N3635UB

2N3634UBN, 2N3635UBN

2N3636UB, 2N3637UB V_{CE} = 125 V dc, I_{C} = 20 mA dc

2N3636BN, 2N3637UBN

 V_{CE} = 50 V dc, I_{C} = 50 mA dc Test 2:


Test 3: $V_{CE} = 5 \text{ V dc}, I_{C} = 500 \text{ mA dc}$

Rev. V2

Outline Drawings TO-5, TO-39

	Dimensions				
Ltr	Inc	hes	Millimeters		Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
CH	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200	TYP	5.08	TYP	7
LD	.016	.021	0.41	0.53	6
LL	S	ee notes	7, 9, and	10	
LU	.016	.019	0.41	0.48	7
L ₁		.050		1.27	7
L ₂	.250		6.35		7
Р	.100		2.54		5
Q		.050		1.27	
r		.010		0.254	8
TL	.029	.045	0.74	1.14	4
TW	.028	.034	0.71	0.86	3
α	45° TP 45° TP				6
Term 1	Emitter				
Term 2	Base				
Term 3	Collector				

NOTES:

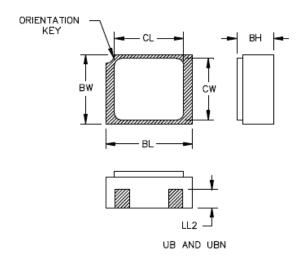

- Dimensions are in inches.
- 2. Millimeters are given for general information only.
- Beyond r maximum, TW must be held to a minimum length of .021 inch (0.53 mm).
- TL measured from maximum HD.
- 5. CD shall not vary more than ±.010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- Leads at gauge plane .054 .055 inch (1.37 1.40 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at a maximum material condition (MMC) relative to the tab at MMC. The device may be measured by direct methods or by gauge and gauging procedure.
- LU applies between L₁ and L₂. LD applies between L₂ and L minimum. Diameter is uncontrolled in L₁ and beyond LL minimum.
- 8. r (radius) applies to both inside corners of tab.
- For transistor types 2N3634 through 2N3637, LL is .500 inch (12.70 mm) minimum, and .750 inch (19.05 mm) maximum (TO-39).
- For transistor types 2N3634L through 2N3637L, LL is 1.500 inches (38.10 mm) minimum, and 1.750 inches (44.45 mm) maximum (TO-5).
- 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1. Physical dimensions (TO-5 and TO-39).

Rev. V2

Outline Drawings UB, UBN



FIGURE 2. Physical dimensions, surface mount 2N3634UB through 2N3637UB (UB and UBN version).

PNP Radiation Hardened Amplifier

Rev. V2

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.