NPN High Power Silicon Transistor

F	ea	atı	ur	e	S

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/408
- TO-3 (TO-204AA) Package
- Designed for Medium Speed Switching and Amplifier Applications

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.		
Off Characteristics							
Collector - Emitter Breakdown Voltage	I _c = 10 mA dc, 2N3715 I _c = 10 mA dc, 2N3716	V _{(BR)CEO}	V dc	60 80	_		
Collector - Base Cutoff Current	V _{CE} = 60 V dc, 2N3715 V _{CE} = 80 V dc, 2N3716	I _{CEO}	µA dc	_	10 10		
Emitter - Base Cutoff Current	V _{EB} = 7 Vdc	I _{EBO}	mA dc	—	1		
Collector - Emitter Cutoff Current	V_{CE} = 60 V dc, V_{BE} = 1.5 V dc, 2N3715 V_{CE} = 80 V dc, V_{BE} = 1.5 V dc, 2N3716	I _{CEX1}	µA dc	—	10 10		
Collector - Emitter Cutoff Current	V _{CE} = 50 V dc, 2N3715 V _{CE} = 70 V dc, 2N3716	I _{CEO}	µA dc	—	10 10		
On Characteristics ¹							
Forward Current Transfer Ratio	$ I_{C} = 1 \ A \ dc, \ V_{CE} = 2 \ V \ dc \\ I_{C} = 3 \ A \ dc, \ V_{CE} = 2 \ V \ dc \\ I_{C} = 5 \ A \ dc, \ V_{CE} = 2 \ V \ dc \\ I_{C} = 10 \ A \ dc, \ V_{CE} = 4 \ V \ dc $	h _{FE}	-	50 30 10 5	150 120 —		
Collector - Emitter Saturation Voltage	$I_{C} = 5 \text{ A dc}, I_{B} = 0.5 \text{ A dc}$ $I_{C} = 10 \text{ A dc}, I_{B} = 2.0 \text{ A dc}$	V _{CE(SAT)1} V _{CE(SAT)2}	Vdc		1.0 2.5		
Emitter - Base Saturation Voltage	$I_{C} = 5 \text{ A dc}, I_{B} = 0.5 \text{ V dc}$ $I_{C} = 10 \text{ A dc}, I_{B} = 2.0 \text{ V dc}$	V _{BE(SAT)1} V _{BE(SAT)2}	Vdc	_	1.5 3.0		
Dynamic Characteristics							
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	I_{C} = 4 A dc, V_{CE} = 4 Vdc, f = 100 kHz	h _{fe}		4	20		
Small-Signal Short-Circuit Forward Current Transfer Ratio	$I_{\rm C}$ = 0.5 A dc, $V_{\rm CE}$ = 10 Vdc, f = 1 kHz	H_{FE}		30	300		
Output Capacitance	V _{CB} = 10 Vdc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF		500		

1. Pulse Test: Pulse Width = 300 μ s, Duty Cycle ≤2.0%.

1

Rev. V3

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN High Power Silicon Transistor

					1.00. 00
Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Base Cutoff Current	$T_A = +150^{\circ}C$ $V_{CE} = 50 V dc, 2N3715$ $V_{CE} = 70 V dc, 2N3716$	I _{CES2}	µA dc	_	5.0 5.0
Forward—Current Transfer Ratio	T _A = -55°C	h _{FE5}		12	

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise noted)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N3715 2N3716	V _{CEO}	60 Vdc 80 Vdc
Collector - Base Voltage 2N3715 2N3716	V _{CBO}	80 Vdc 100 Vdc
Emitter - Base Voltage	V_{EBO}	7 Vdc
Base Current	I _B	4 Vdc
Collector Current	Ι _C	10 Adc
Total Power Dissipation (a) $T_A = 25^{\circ}C^2$ (b) $T_A = 25^{\circ}C$	PT	5 W 117 W
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{ ext{ hetaJC}}$	1.5°C/W

(1) Derate linearly 28.57 mW/ $^{\circ}$ C above T_A = +25 $^{\circ}$ C

(2) See figure 2 of MIL-PRF-19500/408 for temperature-power derating curves.
 (3) See figure 3 of MIL-PRF-19500/408 for transient thermal impedance graph.

Safe Operating Ar	a	
DC Tests:	T _C = +25 °C, I Cycle, t = 1.0 s	
Test 1:	$V_{CE} = 15 \text{ Vdc}, I_{C} = 10 \text{ A dc}$	
Test 2:	V_{CE} = 40 Vdc, I _C = 3.75 A dc	
Test 3:	V_{CE} = 55 Vdc, I _C = 0.9 A dc, 2N3715	
	V _{CE} = 65 Vdc, I _C = 0.9 A dc, 2N3716	

²

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

Dov V2

NPN High Power Silicon Transistor

Rev. V3

Outline Drawing (TO-3)

Symbol	Inches		Millin	Notes	
	Min	Max	Min	Max	
CD		.875		22.23	3
СН	.250	.450	6.35	11.43	
HR	.495	.525	12.57	13.34	
HR ₁	.131	.188	3.33	4.78	4
HT	.060	.135	1.52	3.43	
L ₁		.050		1.27	5, 6
LD	.038	.043	0.97	1.09	5, 6
LL	.312	.500	7.92	12.70	5
MHD	.151	.165	3.84	4.19	4
MHS	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	7
PS ₁	.205	.225	5.21	5.72	7
S ₁	.655	.675	16.64	17.15	7

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- Terminal 1 is the emitter; terminal 2 is the base; and the collector shall be electrically connected to the case.
- 3. Body contour is optional within zone defined by dimension CD.
- 4. Applies to both ends.
- Applies to both terminals.
- Dimension LD applies between dimension L1 and LL. Lead diameter shall not exceed twice dimension LD within dimension L1. Diameter is uncontrolled in dimension L1.
- These dimensions shall be measured at points .050 inch (1.27 mm) to .055 inch (1.4 mm) below the seating plane. When gauge is not used, measurement will be made at the seating plane.
- The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 9. In accordance with ASME Y14.5M, diameters are equivalent to \$\$\phix\$ symbology.

FIGURE 1. Physical dimensions TO-204AA (formerly TO-3).

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

³

NPN High Power Silicon Transistor

Rev. V3

Temperature-Power Derating Curve

NOTES:

- All devices are capable of operating at ≤ TJ specified on this curve. Any parallel line to this curve will 1. intersect the appropriate power for the desired maximum T_J allowed. Derate design curve constrained by the maximum junction temperature (T_J \leq +200°C) and power rating
- 2. specified. (See 1.3 herein.)
- Derate design curve chosen at TJ ≤ +150°C, where the maximum temperature of electrical test is 3.
- performed. $\tilde{}$ Derate design curves, chosen at T_J ≤ +125°C and 110°C to show power rating where most users want to 4 limit T_J in their application.

FIGURE 2. Temperature-power derating graphs for device types 2N3715 and 2N3716.

4

NPN High Power Silicon Transistor

Temperature-Power Derating Curve

NOTES:

- All devices are capable of operating at ≤ TJ specified on this curve. Any parallel line to this curve will
 intersect the appropriate power for the desired maximum TJ allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ +200°C) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T_J ≤ +150°C, where the maximum temperature of electrical test is performed.
- Derate design curves, chosen at T_J ≤ +125°C and 110°C to show power rating where most users want to limit T_J in their application.

FIGURE 2. Temperature-power derating graphs for device types 2N3715 and 2N3716.

5

NPN High Power Silicon Transistor

Rev. V3

Thermal Impedance Curve

Maximum Thermal Impedance

Tc = +25C. Thermal resistance = 1.5°C/W.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN High Power Silicon Transistor

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCI-DENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURA-CY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

⁷

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.