20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

2N3756

TELEPHONE: (973) 376-2922 (212) 227-8008 FAX: (973) 376-8960

Silicon Controlled Rectifier

RMS On-State Current, I _{T(RMS)}
- vail one of ore parke (non-left) one-praise children in the contract of the
300 Ampara? seconds
101 time = 0.5 miniseconds (See Unart 9)
60 Wette for 500 misses and
Average Gate Power Dissipation, $P_{G(AV)}$
Storage Temperature, T _{STG}
Operating Temperature, I
Maximum Stud Torque

(4) di/dt rating is established in accordance with EIA Standards Proposal No. 1101, Section 5.2.2.6. Off-state (blocking) voltage capability may be temporarily lost immediately after each current pulse for duration less than the period of the applied pulse repetition rate. The pulse repetition rate for this test is 60 Hz. The duration of the JEDEC di/dt test condition is 300 pulses minimum at 60 Hz.

CHARACTERISTICS

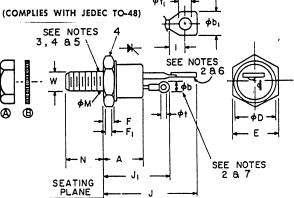
Test	Symbol	Min.	Max.	Units	Test Conditions
Peak Off-State or Reverse Current (1) (2)	I _{DRM} or			mA	$T_C = -65^{\circ} \text{C to } +125^{\circ} \text{C}$
C137E	IRRM	_	4.0		V _{DRM} = V _{RRM} = 300 Volts Peak
D.C. Gate Trigger Current	I _{GT}	_	40	mAdc	$T_C = +25^{\circ}C$, $V_D = 6$ Vdc, $R_L = 12$ ohms
		_	80	1	$T_C = -65^{\circ}C$, $V_D = 12 \text{ Vdc}$, $R_L = 12 \text{ ohms}$
D.C. Gate Trigger Voltage	V _{GT}	_	2.2	Vdc	$T_C = +25^{\circ}C$, $V_D = 6$ Vdc, $R_L = 12$ ohms
	1 1	_	3.0	1	$T_C = -65^{\circ}C$, $V_D = 12 \text{ Vdc}$, $R_L = 12 \text{ ohms}$
		0.25	_	1	$T_C = +125$ °C, Rated V_{DRM} , $R_L = 1000$ ohms
Peak On-State Voltage	V _{TM}	-	2,3	Volts	$T_C = +25^{\circ}C$, $I_{TM} = 70$ A peak, 1 msec wide pulse. Duty cycle $\leq 2\%$.
Holding Current	I _H			mAdc	Anode supply = 24 Vdc, Gate supply = 10 V, 20 ohms. Initial Forward Current Pulse = 0.5 A, 0.1 to 10.0 msec wi
	1	, -	100	1	$T_C = +25$ °C
		·	200		T _C = -65℃
Critical Rate of Rise of Off-state Voltage. (Higher values may cause device switching.)	dv/dt	100	-	Volts/ μsec	T _C = +125℃, Rated V _{DRM} , Gate open circuited.
Thermal Resistance	ReJC		1.0	°C/watt	Junction-to-case, dc
Circuit Commutated Turn-Off Time	t _q	· <u>-</u>	_(3)	μsec	T _C = 125°C, I _{TM} = 10A Peak Rectangular Current Pulse, 50 μsec duration. DI/DT < 10 Amps per microsecond. Commutation Rate \leq 5 A per μsec. PRV = Rated V _{RRM} Volts max. Reverse Voltage at end of Turn-Off Time interverse volts. Repetition Rate = 60 PPS. Rate of Rise of Reapplied Off-State Voltage (dv/dt) = 100V/μsec. Off-State Voltage = Rated V _{DRM} Volts. Gate Bias during Turn-Off Time interval = 0 Volts, 100 ohms.

NOTES:

- (1). Values apply for gate terminal open-circuited. (Negative gate bias is permissible.)
- Maximum case-to-ambient thermal resistance for which maximum V_{DRM} and V_{RRM} ratings apply equals 5.0°C per watt for full sine wave or full-wave rectified sinusoidal voltage waveform. (3.0°C per watt is maximum case-to-ambient thermal resistance for pure dc voltage waveform.)
- (3) Turn-off time is not 100% factory tested. Special selections are available upon request. Consult factory. The test conditions shown represent standard factory test conditions for special selections.

NOTES:

plane. Diameter of unthreaded gonal portions is optional. portion. 249" (6.32MM) Maxi5. Case is anode connection.
mum, .220" (5.59MM) Mini6. Large terminal is cathode conmum.


2. Angular orientation of these 7. Small terminal is gate connecterminals is undefined.

3. 1/4-28 UNF-2A. Maximum pitch 8. Insulating kit available upon 🔕 shall be basic pitch diameter .2268" (5.76MM), minimum pitch diameter .2225" 8. Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter .2225" 8. Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext. tooth lockwasher, ... Ext. blinders and shall be basic pitch diameter ... Ext (5.66MM), reference: screw thread standards for Federal Service 1957, Handbook H28, 1957, P1.

1. Complete threads to extend 4. A chamfer (or undercut) on within 21/2 threads of seating one or both ends of hexaone or both ends of hexa-gonal portions is optional.

nection.

steel, Ni. plated, .023 min. thk.

	INC	HES	MILLIMETERS	
SYMBOL	MIN.	MAX.	MIN.	MAX.
Α.	.330	.505	8.38	12.83
φb	.115	.140	2.92	3.56
φbı	.210	.300	5.33	7.62
·φD		.544		13.82
E	.544	.562	13.82	14.27
F	.113	.200	2.87	5.08
F۱	.060		1.52	
J		1.193		30.30
Jı		.875		22.23
ı	.120		3.05	
φΜ				
N	.422	.453	10.72	11.51
φt	.060	.075	1.52	1.91
φtı	.125	.165	3.18	4.19
14/				