

PNP Power Silicon Transistor

Features

- Available in JAN, JANTX, JANTXV per • MIL-PRF-19500/545
- TO-5 Package: 2N3867, 2N3868 .
- TO-39 (TO-205AD) Package: 2N3867S, 2N3868S .

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.
off Characteristics					
Collector - Base Breakdown Voltage	I _C = 100 μAdc, 2N3867, 2N3867S I _C = 100 μAdc, 2N3868, 2N3868S	V _{(BR)CEO}	Vdc	40 60	_
Collector - Emitter Breakdown Voltage	I _C = 20 mAdc, 2N3867, 2N3867S I _C = 20 mAdc, 2N3868, 2N3868S	V _{(BR)CEO}	Vdc	40 60	
Emitter - Base Breakdown Voltage	I _C = 100 mAdc	V _{(BR)EBO}	Vdc	40	_
Collector - Emitter Cutoff Current	$V_{EB} = 2 \text{ Vdc}, V_{CE} = 40 \text{ Vdc}, \\ 2N3867, 2N3867S \\ V_{EB} = 2 \text{ Vdc}, V_{CE} = 60 \text{ Vdc}, \\ 2N3868, 2N3868S \\ \end{bmatrix} I_{CEX}$		µAdc	_	1.0 1.0
Collector - Base Cutoff Current	V _{CB} = 60 Vdc, 2N3867, 2N3867S V _{CB} = 80 Vdc, 2N3868, 2N3868S	I _{CEO}	µAdc	_	100
Emitter - Base Cutoff Current	V_{EB} = 4.0 Vdc	I _{EBO}	µAdc	_	100
on Characteristics ¹		I			
Forward Current Transfer Ratio	$\begin{split} I_{C} &= 500 \text{ mAdc, } V_{CE} = 1 \text{ Vdc,} \\ & 2N3867, 2N3867S \\ & 2N3868, 2N3868S \\ I_{C} &= 1.5 \text{ Adc, } V_{CE} = 2 \text{ Vdc,} \\ & 2N3867, 2N3867S \\ & 2N3868, 2N3868S \\ I_{C} &= 2.5 \text{ Adc, } V_{CE} = 3 \text{ Vdc,} \\ & 2N3867, 2N3867S \\ \end{split}$		-	50 35 40 30 25	 200 150
	2N3868, 2N3868S I_C = 3.0 mAdc, V_{CE} = 5 Vdc, All Types			20 20	_
Collector - Emitter Saturation Voltage	$I_{C} = 500 \text{ mAdc}, I_{B} = 50 \text{ mAdc}$ $I_{C} = 1.5 \text{ Adc}, I_{B} = 150 \text{ mAdc}$ $I_{C} = 2.5 \text{ Adc}, I_{B} = 250 \text{ mAdc}$		Vdc	_	0.50 0.75 1.50
Base - Emitter Saturation Voltage	I_{C} = 500 mAdc, I_{B} = 50 mAdc I_{C} = 1.5 Adc, I_{B} = 150 mAdc I_{C} = 2.5 Adc, I_{B} = 250 mAdc	V _{BE(SAT)}	Vdc	_	1.0 1.4 2.0

1. Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2.0%.

1

(Continued next page)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

2N3867, 2N3867S & 2N3868, 2N3868S

PNP Power Silicon Transistor

Rev. V1

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.		
Dynamic Characteristics							
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	I_{C} = 100 mAdc, V_{CE} = 5.0 Vdc, f = 20 MHz	h _{FE}	-	3	12		
Output Capacitance	V_{CB} = 10 Vdc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz	C _{OBO}	pF	_	120		
Input Capacitance	V_{CB} = 3 Vdc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz	C _{IBO}	pF	—	800		
Switching Characteristics							
Delay Time	V_{CC} = -30 Vdc, V_{EB} = 0	T_{D}	ns	—	35		
Rise Time	$I_{\rm C}$ = 1.5 Adc, $I_{\rm B1}$ = 150 mAdc	T _R	ns	_	65		
Storage Time	V_{CC} = -30 Vdc, V_{EB} = 0	Ts	ns	_	500		
Fall Time	$I_{\rm C}$ = 1.5 Adc, $I_{\rm B1}$ = 150 mAdc	T _F	ns	_	100		
Turn-On Time	V_{CC} = 30, I _C = 1.5 Adc, I _B = 150 mAdc	T _{ON}	ns	_	100		
Turn-Off Time	V_{CC} = 30, I_{C} = 1.5 Adc, I_{B} = 150 mAdc	T _{OFF}	ns		100		
Safe Operating Area							
DC Tests: $T_c = +25^{\circ}C$, I Cycle, t = 1.0 s Test 1: $V_{CE} = 3.3$ Vdc, $I_c = 3$ Adc Test 2: $V_{CE} = 40$ Vdc, $I_c = 160$ mAdc, 2N3867, 2N3867S Test 3: $V_{CE} = 60$ Vdc, $I_c = 80$ mAdc, 2N3868, 2N3868S							

Absolute Maximum Ratings

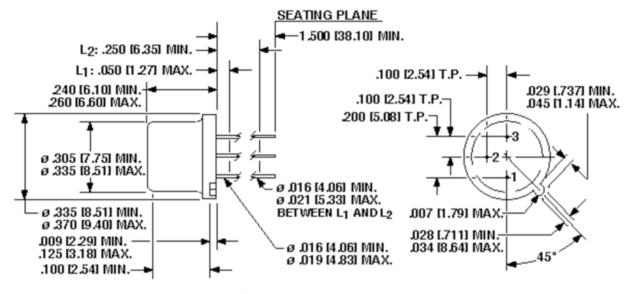
Ratings	Symbol	Value
Collector - Emitter Voltage 2N3867, 2N3867S 2N3868, 2N3868S	V _{CEO}	40 Vdc 60 Vdc
Collector - Base Voltage 2N3867, 2N3867S 2N3868, 2N3868S	V _{CBO}	40 Vdc 60 Vdc
Emitter - Base Voltage	V_{EBO}	4 Vdc
Collector Current	Ι _C	3 Adc
Total Power Dissipation (a) $T_A = 25^{\circ}C^2$ (b) $T_C = 25^{\circ}C^3$	Ρτ	1 W 10 W
Operating & Storage Temperature Range	T_{OP}, T_{STG}	-55°C to +200°C

2. Derate linearly 5.71 mW / °C for T_A >+25°C.

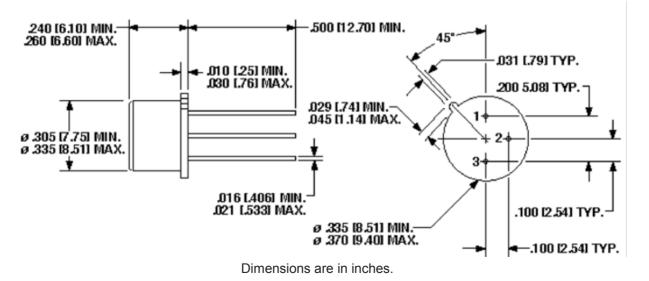
3. Derate linearly 57.1 mW / °C for T_C >+25°C.

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	17.5°C/W


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

2


Outline Drawings

Dimensions are in inches.

TO-39 (TO-205AD) Package (2N3867, 2N3868)

3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

PNP Power Silicon Transistor

Rev. V1

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁴

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.