

PNP Silicon Transistor

Rev. V2

Features

- Available in JAN, JANTX, JANTXV and JANS per MIL-PRF-19500/512
- 2N4029 available in TO-18
- 2N4033 available in TO-39, UA and UB package styles
- Suitable for High Speed Switching and Driver Applications

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Off Characteristics					
Collector - Base Cutoff Current	V _{CB} = -80 V dc	I _{CBO1}	μA dc	_	-10
Emitter - Base Cutoff Current	V _{EB} = -5 V dc	I _{EBO1}	μA dc	_	-10
Collector - Base Cutoff Current	V _{CB} = -60V dc	I _{CBO2}	nA dc	_	-10
Collector - Emitter Cutoff Current	$V_{BE} = -2.0 \text{ V dc}; V_{CE} = -60 \text{V dc}$	I _{CEX1}	nA dc	_	-25
Base - Emitter Cutoff Current	V _{BE} = -3.0 V dc	I _{EBO2}	nA dc	_	-25
Collector-Base Cutoff Current	$T_A = +150^{\circ}C$ $V_{CB} = -60 \text{ V dc}$	I _{CBO3}	μA dc	_	-25
On Characteristics					
Forward Current Transfer Ratio	V_{CE} = -5.0 V dc; I_{C} = -100 μA dc V_{CE} = -5.0 V dc; I_{C} = -100 mA dc V_{CE} = -5.0 V dc; I_{C} = -500 mA dc V_{CE} = -5.0 V dc; I_{C} = -1.0 A dc	h _{FE1} h _{FE2} h _{FE3} h _{FE4}	-	50 100 70 25	300
Collector - Emitter Saturated Voltage	I_C = -150 mA dc; I_B = -15 mA dc I_C = -500 mA dc; I_B = -50 mA dc I_C = -1.0 A dc; I_B = -100 mA dc	V _{CE(SAT)1} V _{CE(SAT)2} V _{CE(SAT)3}	V dc	_	-0.15 -0.50 -1.0
Base - Emitter Saturated Voltage	I_C = -150 mA dc; I_B = -15 mA dc I_C = -500 mA dc; I_B = -50 mA dc	V _{BE(SAT)1}	V dc	_	-0.9 -1.2
Forward Current Transfer Ratio	$T_A = -55^{\circ}\text{C}$ $V_{CE} = -5.0 \text{ V dc}; I_C = -500 \text{ mA dc}$	h _{FE5}	-	30	

PNP Silicon Transistor

Rev. V2

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Dynamic Characteristics					
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	V_{CE} = -10 V dc; I_{C} = -50 mA dc; f = 100 MHz	h _{FE}	-	1.5	6.0
Open Circuit Output Capacitance	V _{CB} = -10 V dc; I _E = 0; 100 kHz <u><</u> f <u><</u> 1 MHz	C _{obo}	pF	_	20
Input Capacitance (Output Open-Circuited)	V_{EB} = -0.5 V dc; I_{C} = 0; 100 kHz \leq f \leq 1 MHz	C _{ibo}	pF	_	80
Pulse Response					
On-Time	$I_{\rm C}$ = -500 mA dc; $I_{\rm B1}$ = -50 mA dc	td	ns	_	15
Rise Time	$I_{\rm C}$ = -500 mA dc; $I_{\rm B1}$ = -50 mA dc	tr	ns	_	25
Storage Time	$I_{\rm C}$ = -500 mA dc; $I_{\rm B1}$ = -50 mA dc	ts	ns	_	175
Fall Time	$I_{\rm C}$ = -500 mA dc; $I_{\rm B1}$ = -50 mA dc	tf	ns	_	35

PNP Silicon Transistor

Rev. V2

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage	V _{CEO}	-80 V dc
Collector - Base Voltage	V _{CBO}	-80 V dc
Emitter - Base Voltage	V _{EBO}	-5.0 V dc
Collector Current	I _C	-1.0 A dc
Total Power Dissipation $T_{A} = +25^{\circ}C^{(1)(2)}$ $2N4033$ $2N4029$ $2N4033UA$ $2N4033UB$	P _T	0.800 W 0.500 W 0.500 W 0.500 W ⁽⁴⁾
Total Power Dissipation $T_{C} = +25^{\circ}C^{(1)(2)}$ $2N4033$ $2N4029$ $2N4033UA$ $2N4033UB$	P _T	4 W 1 W N/A N/A
Total Power Dissipation $T_{SP(IS)} = +25^{\circ}C^{(1)(2)}$ $2N4033$ $2N4029$ $2N4033UA$ $2N4033UB$	P _T	N/A N/A 1.5 W 1.5 W
Junction & Storage Temperature Range	T_J , T_{STG}	-65°C to +200°C

PNP Silicon Transistor

Rev. V2

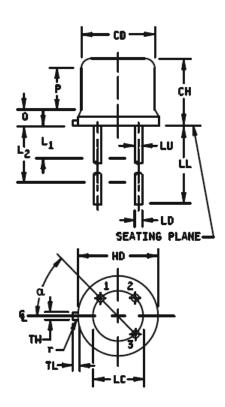
Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)

Ratings	Symbol	Value
Thermal Resistance, Junction to Ambient ^{(2) (3)} 2N4033 2N4029 2N4033UA 2N4033UB	$R_{ heta JA}$	195 °C/W 325 °C/W 325 °C/W 325 °C/W
Thermal Resistance, Junction to Case (2) (3) 2N4033 2N4029 2N4033UA 2N4033UB	$R_{ heta JC}$	40 °C/W 150 °C/W N/A N/A
Thermal Resistance, Junction to Case Kovar ^{(2) (3)} 2N4033 2N4029 2N4033UA 2N4033UB	$R_{ heta JC}$	35 °C/W N/A N/A N/A
Thermal Resistance, Junction to Solder Pad, Infinite Sink ^{(2) (3)} 2N4033 2N4029 2N4033UA 2N4033UB	$R_{\theta JSP(IS)}$	N/A N/A 110 °C/W 90 °C/W
Thermal Resistance, Junction to Solder Pad, Ambient ^{(2) (3)} 2N4033 2N4029 2N4033UA 2N4033UB	R _{0JSP(AM)}	N/A N/A 40 °C/W N/A

⁽¹⁾ For derating, for encapsulated devices, see figures 7, 8, 9, 10 and 11 of MIL-PRF-19500/512

⁽²⁾ See paragraph 3.3 of MIL-PRF-19500/512

⁽³⁾ For thermal impedance curves, see figures 12, 13, 13a, 14, 15, 16, 17 and 18 of MIL-PRF-19500/512

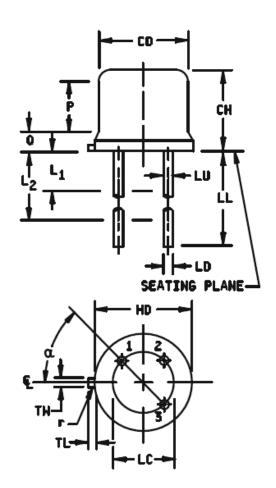

⁽⁴⁾ For non-thermal conductive PCB or unknown PCB surface mount conditions in free air, substitute figures 8 and 16 for the UB package and use R_{0JA}

Rev. V2

Outline Drawing (TO-18)

		Dimer	nsions		
Symbol	Incl	nes	Millim	eters	Notes
	Min	Max	Min	Max	
CD	.178	.195	4.52	4.95	
СН	.170	.210	4.32	5.33	
HD	.209	.230	5.31	5.84	
LC	.100 TP		2.54 TP		6
LD	.016	.021	0.41	0.53	7, 8
LL	.500	.750	12.70	19.05	7, 8, 12
LU	.016	.019	0.41	0.48	7, 8
L ₁		.050		1.27	7.8
L ₂	.250		6.35		7, 8
Q		.040		1.02	5
TL	.028	.048	0.71	1.22	3, 4
TW	.036	.046	0.91	1.17	3
R		.010		0.25	10
Р	.100		2.54		
α	45°TP		459	TP	6

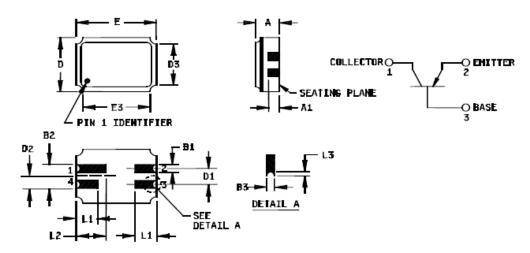
- 1. Dimensions are in inches.
- 2. Millimeters equivalents are given for general information only.
- Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- Dimension TL measured from maximum HD.
- Body contour optional within zone defined by HD, CD, and Q.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 –0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- Dimension r (radius) applies to both inside comers of tab.
- In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.


FIGURE 1. Physical dimensions (type 2N4029) (TO-18).

Rev. V2

Outline Drawing (TO-39)

		Dime	nsions		
Symbol	Inc	hes	Millir	neters	Notes
	Min	Max	Min Max		
CD	.305	.335	7.75	8.51	
СН	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200 TP		5.08 TP		6
LD	.016	.021	0.41	0.53	7, 8
LL	.500	.750	12.70	19.05	7, 8, 12
LU	.016	.019	0.41	0.48	7, 8
L ₁		.050		1.27	7, 8
L ₂	.250		6.35		7, 8
Q		.050		1.27	5
TL	.029	.045	0.74	1.14	3, 4
TW	.028	.034	0.71	0.86	3
R		.010		0.25	10
Р	.100		2.54		
α	45°TP		45	°TP	6



- 1. Dimensions are in inches.
- 2. Millimeters equivalents are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC. The device may be measured by direct methods.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside comers of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.
- For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.

FIGURE 2. Physical dimensions (type 2N4033) (TO-39).

Rev. V2

Outline Drawing (UA Package)

		Dime	nsions				Dimensions				
Ltr	Inc	hes	Millin	neters	Notes	Ltr	Inc	hes	Millir	meter	Notes
	Min	Max	Min	Max]		Min	Max	Min	Max]
Α	.061	.075	1.55	1.91	3	D ₂	.0375	BSC	0.952	BSC	
A ₁	.029	.041	0.74	1.04		D ₃		.155		3.94	
B ₁	.022	.028	0.56	0.71		E	.215	.225	5.46	5.72	
B ₂	.075	REF	1.91	1.91 REF		E ₃		.225		5.72	
Вз	.006	.022	0.15	0.56	5	L1	.032	.048	0.81	1.22	
D	.145	.155	3.68	3.9		L2	.072	.088	1.83	2.24	
D ₁	.045	.055	1.14	1.39		L ₃	.003		0.08		5

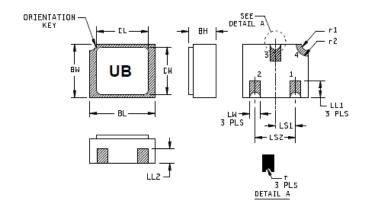
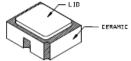

- Dimensions are in inches.
- 2. Millimeters equivalents are given for general information only.
- Dimension "A" controls the overall package thickness. When a window lid is used, dimension "A" must increase by a minimum of .010 inch (0.254 mm) and a maximum of .040 inch (1.020 mm).
- The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- 5. Dimensions "B3" minimum and "L3" minimum and the appropriately castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension "B3" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of these dimensions may be made prior to solder dipping.

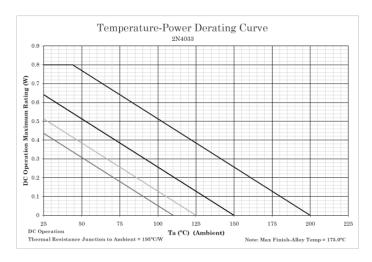
FIGURE 3. Physical dimensions, surface mount (UA version).



Rev. V2

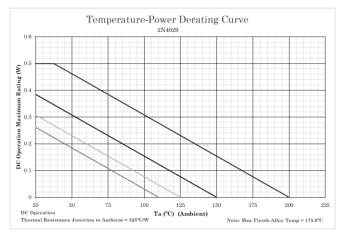
Outline Drawing (UB Package)

Symbol		Note			
	Inc	hes	Millin	neters	
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.97	
LL2	.017	.035	0.43	0.89	


Symbol		Note			
	Inches Millimeters				
	Min Max Min M		Max		
LS ₁	.036	.040	0.91	1.02	
LS ₂	.071 .079		1.80	2.01	
LW	.016	.024	0.41	0.61	
Г		.008		.203	
r1		.012		.305	
r2	.022			.559	

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas
- Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

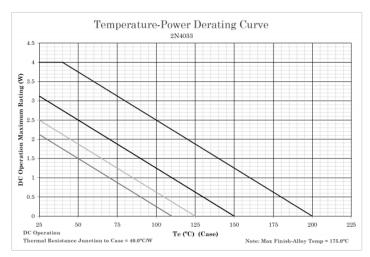
FIGURE 4. Physical dimensions, surface mount (UB version).


Rev. V2

Temperature-Power Derating Curves

- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature ($T_J \le 200^{\circ}C$) and power rating specified. (See 1.3 herein.) Derate design curve chosen at $T_J \le 150^{\circ}C$, where the maximum temperature of electrical test is
- performed. Derate design curves chosen at T_J ≤, 125°C, and 110°C to show power rating where most users want to limit T_J in their application.

FIGURE 7. Derating for 2N4033 (R_{0JA}) (TO-39).

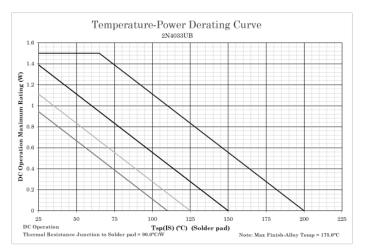


- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ 200°C) and power rating specified. (See 1.3 herein.)
 Derate design curve chosen at T_J ≤ 150°C, where the maximum temperature of electrical test is
- Deriate design curves chosen at Ty ≤ 125°C, and 110°C to show power rating where most users want to

FIGURE 8. Derating for 2N4029 (R_{0JA}) (TO-18), leads .125 inch (3.17 mm).

Rev. V2

Temperature-Power Derating Curves

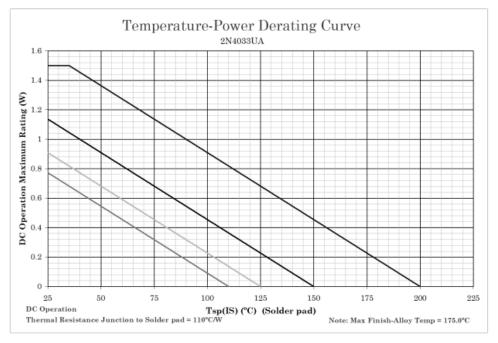


NOTES:

- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating
 at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_{.I} allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ 200°C) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T_J ≤ 150°C, where the maximum temperature of electrical test is
- performed.

 Derate design curve chosen at $T_J \le 125^{\circ}C$, and $110^{\circ}C$ to show power rating where most users want to limit T_J in their application.

FIGURE 9. Derating for 2N4033 (R_{0JC}) (TO-39).


- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ 200°C) and power rating specified. (See 1.3 herein.)
- 3. Derate design curve chosen at $T_J \le 150$ °C, where the maximum temperature of electrical test is
- performed.

 Derate design curve chosen at T_J ≤ 125°C, and 110°C to show power rating where most users want to limit T_J in their application.

FIGURE 10. Derating for 2N4033UB (R_{BUSP(IS)}), infinite sink 3-points.

Rev. V2

Temperature-Power Derating Curves

- This is the true inverse of the worst case thermal resistance value. All devices are capable of operating
 at ≤ T_J specified on this curve. Any parallel line to this curve will intersect the appropriate power for the
 desired maximum T_J allowed.
- Derate design curve constrained by the maximum junction temperature (T_J ≤ 200°C) and power rating specified. (See 1.3 herein.)
- Derate design curve chosen at T_J ≤ 150°C, where the maximum temperature of electrical test is performed.
- Derate design curve chosen at T_J ≤ 125°C, and 110°C to show power rating where most users want to limit T_J in their application.

FIGURE 11. Derating for 2N4033UA (Rouse(IS)).

Rev. V2

Thermal Impedance Curves

Maximum Thermal Impedance

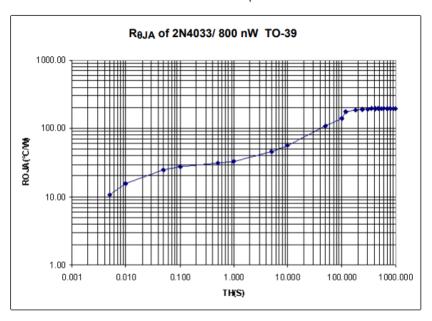
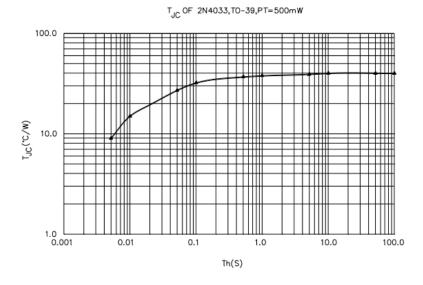
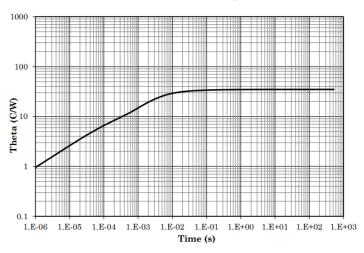


FIGURE 12. Thermal impedance graph (R_{BJA}) for 2N4033 (TO-39).

Maximum Thermal Impedance




FIGURE 13. Thermal impedance graph (R_{NC}) for 2N4033 (TO-39)

Rev. V2

Thermal Impedance Curves

Maximum Thermal Impedance

* FIGURE 13a. Thermal impedance graph (R_{0JC}) for Kovar 2N4033 (TO-39).

Maximum Thermal Impedance

FIGURE 14. Thermal impedance graph (R_{BJA}) for 2N4029 (TO-18)

Rev. V2

Thermal Impedance Curves

Maximum Thermal Impedance T0-18 package with case base in copper heat sink

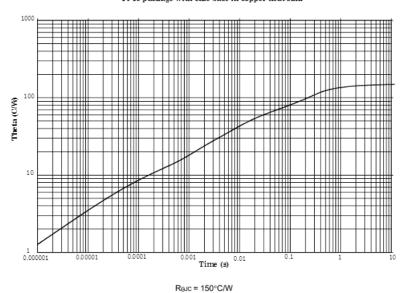


FIGURE 15. Thermal impedance graph (R_{BJC}) for 2N4029 (TO-18).

Maximum Thermal Impedance

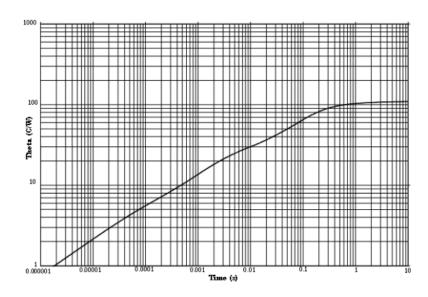
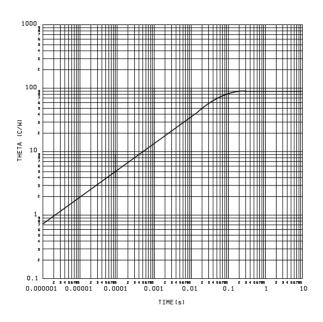
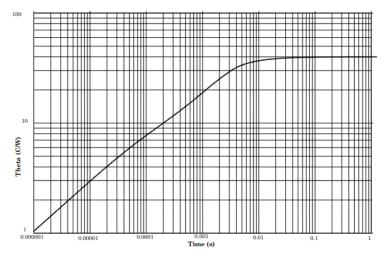



FIGURE 16. Thermal impedance graph (R_{BJSP(IS)}) for 2N4033 (UA).

Rev. V2


Thermal Impedance Curves

Ceramic UB package soldered to PCB 3 points solder pad (infinite sink to PCB). $R_{\text{RJSP(IS)}} = 90^{\circ}\text{C/W}$

FIGURE 17. Thermal impedance graph (R_{BJSP(IS)}) for 2N4029 (UB).

Maximum Thermal Impedance

2N4033UA 4 point solder pad (adhesive mount to PCB), ReJSP(AM) = 40°C/W

FIGURE 18. Thermal impedance graph Reusp(AM) for 2N4033UA.

PNP Silicon Transistor

Rev. V2

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.