MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	V _{DG}	30	Vdc
Gate-Source Voltage*	V _{GS}	30	Vdc
Drain Current	^I D	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/℃
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	800 4.56	mW mW/℃
Junction Temperature Range	Tj	175	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

2N4351 CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOS FET SWITCHING

N-CHANNEL --- ENHANCEMENT

*Transient potentials of ±75 Volt will not cause gate-oxide failure.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit		
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage ($I_D = 10 \ \mu$ A, V _{GS} = 0)		V(BR)DSX	25	-	Vdc		
Zero-Gate-Voltage Drain Current ($V_{DS} = 10 V, V_{GS} = 0$) $T_A = 25^{\circ}C$ $T_A = 150^{\circ}C$		IDSS		10 10	nAdc μAdc		
Gate Reverse Current (V _{GS} = \pm 15 Vdc, V _{DS} = 0)		IGSS	_	± 10	pAdc		
ON CHARACTERISTICS		·					
Gate Threshold Voltage $(V_{DS} = 10 V, I_{D} = 10 \mu A)$		V _{GS(Th)}	1.0	5	Vdc		
Drain-Source On-Voltage (I _D = 2.0 mA, V _{GS} = 10 V)		V _{DS(on)}	-	1.0	v		
On-State Drain Current (V _{GS} = 10 V, V _{DS} = 10 V)		^I D(on)	3.0	-	mAdc		
SMALL-SIGNAL CHARACTERI	ISTICS						
Forward Transfer Admittance $(V_{DS} = 10 \text{ V}, I_D = 2.0 \text{ mA},$	f = 1.0 kHz)	Yfs	1000	-	μmho		
Input Capacitance (V _{DS} = 10 V, V _{GS} = 0, f =	140 kHz)	C _{iss}	—	5.0	pF		
Reverse Transfer Capacitance $\langle V_{DS} = 0, V_{GS} = 0, f = 14$	0 kHz)	C _{rss}	-	1.3	pF		
Drain-Substrate Capacitance (VD(SUB) = 10 V, f = 140 k	Hz)	C _{d(sub)}	-	5.0	pF		
Drain-Source Resistance (VGS = 10 V, ID = 0, f = 1.0 kHz)		^r ds(on	-	300	ohms		
SWITCHING CHARACTERISTI	ĊS						
Turn-On Delay (Fig. 5)	$I_D = 2.0 \text{ mAdc}, V_{DS} = 10 \text{ Vdc},$	td1	—	45	ns		
Rise Time (Fig. 6)		tr	_	65	ns		
Turn-Off Delay (Fig. 7)	(See Figure 9; Times Circuit Determined)	td2	_	60	ns		
Fall Time (Fig. 8)		tf	-	100	ns		

FIGURE 3 - DRAIN-SOURCE "ON" RESISTANCE

ş.,

2N4351

SWITCHING CHARACTERISTICS $(T_A = 25 \degree C)$

FIGURE 9 — SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10. At the beginning of the switching interval, the gate voltage is at ground and the gate-source capacitance (C_{gs} = C_{iss} — C_{rss}) has no charge. The drain voltage is at V_{DD} , and thus the feedback capacitance (C_{rss}) is charged to V_{DD} . Similarly, the drain-substrate capacitance ($C_{d(sub)}$) is charged to V_{DD} since the substrate and source are connected to ground.

During the turn-on interval, C_{gs} is charged to V_{GS} (the input voltage) through R_S (generator impedance). C_{rss} must be discharged to V_{GS} — $V_{D(on)}$ through R_S and the parallel combination of the load resistor (R_D) and the channel resistance (rds). In addition, $C_{d(sub)}$ is discharged to a low value ($V_{D(on)}$) through R_D in parallel with rds. During turn-off this charge flow is reversed.

Predicting turn-on time proves to be somewhat difficult since the channel resistance (r_{ds}) is a function of the gate-source voltage (V_{GS}). As C_{gs} becomes charged, V_{GS} is approaching V_{in} and r_{ds} decreases (see Figure 4) and since C_{rss} and C_{d(sub)} are charged through r_{ds}, turn-on time is quite non-linear.

If the charging time of C_{gS} is short compared to that of C_{rsS} and $C_{d(sub)}$, then r_{dS} (which is in parallel with R_D) will be low compared to R_D during the switching interval and will largely determine the turn-on time. On the other hand, during turn-off r_{dS} will be almost an open circuit requiring C_{rsS} and $C_{d(sub)}$ to be charged through R_D and resulting in a turn-off time that is long compared to the turn-on time. This is especially noticeable for the curves where $R_S=0$ and C_gs is charged through the pulse generator impedance only.

The switching curves shown with $R_S = R_D$ simulate the switching behavior of cascaded stages where the driving source impedance is normally the same as the load impedance. The set of curves with $R_S = 0$ simulates a low source impedance drive such as might occur in complementary logic circuits.

