

2N4870, 2N4871

High-reliability discrete products and engineering services since 1977

SILICON CONTROLLED RECTIFIERS

FEATURES

- Available as "HR" (high reliability) screened per MIL-PRF-19500, JANTX level. Add "HR" suffix to base part number.
- Available as non-RoHS (Sn/Pb plating), standard, and as RoHS by adding "-PBF" suffix.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit		
RMS power dissipation ⁽¹⁾	PD	300	mW		
RMS emitter current	l _e	50	mA		
Peak pulse emitter current ⁽²⁾	i _e	1.5	Amp		
Emitter reverse voltage	V _{B2E}	30	Volts		
Interbase voltage †	V _{B2B1}	35	Volts		
Operating junction temperature range	Tj	-55 to 125	°C		
Storage temperature range	T _{stg}	-55 to 150	°C		

Note 1: Derate 3.04mW/°C increase in ambient temperature.

Note 2: Duty cycle \leq 1%. PRR = 10PPS.

⁺ Base upon power dissipation at $T_A = 25^{\circ}C$.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Characteristic		Symbol	Min	Тур	Max	Unit
Intrinsic standoff ratio						
$(V_{B2B1} = 10V)^{(1)}$	2N4870	η	0.56	-	0.75	-
	2N4871		0.70	-	0.85	
Interbase resistance		2				L = h = = =
(V _{B2B1} = 3.0V, I _E = 0)		R _{BB}	4.0	6.0	9.1	kohms
Interbase resistance temperature coeffi	cient	- 0				0/ /80
$(V_{B2B1} = 3.0v, I_E = 0, T_A = -65^{\circ} \text{ to } 125^{\circ}\text{C}$		αR_{BB}	0.1	-	0.9	%/°C
Emitter saturation voltage		N) (alta
$(V_{B2B1} = 10V, I_E = 50mA)^{(2)}$		$V_{EB1(sat)}$	-	2.5	-	Volts
Modulated interbase current (V _{B2B1} = 10V, I _E = 50mA)		I _{B2(mod)}				mA
			-	15	-	
Emitter reverse current						
$(V_{B2E} = 30V, I_{B1} = 0)$		I _{EB20}	-	0.005	1.0	μΑ
Peak point emitter current						
(V _{B2B1} = 25V)		Ip	-	1.0	5.0	μΑ
Valley point current						
(V _{B2B1} = 20V, R _{B2} = 100ohms) ⁽²⁾	2N4870	Iv	2.0	5.0	-	mA
	2N4871		4.0	7.0	-	
Base-one peak pulse voltage						
	2N4870	V _{OB1}	3.0	6.0	-	Volts
	2N4871		5.0	8.0	-	

Note 1: Intrinsic standoff ration: VP = η VB2B1+ VF, where VF is about 0.49V at 25°C @ IF = 10µA and decreases with temperature at about 2.5mV/°C. Components R1, C1, and the UJT form a relaxation oscillator; the remaining circuitry serves as a peak –voltage detector. The forward drop of diode D1 compensates for VR. To use, the "cal" button is pushed and R3 is adjusted to make the current meter, M1, read full scale. When the "cal" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.0. Note 2: Use pulse techniques: PW \approx 300µs duty cycle ≤ 2% to avoid internal heating due to interbase modulation which may result in erroneous readings.

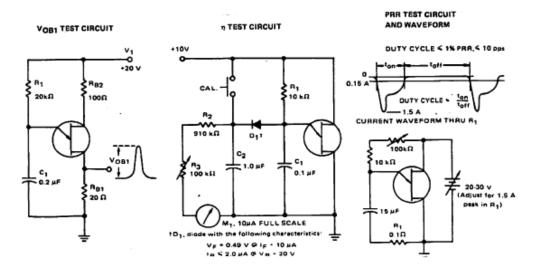
High-reliability discrete products and engineering services since 1977

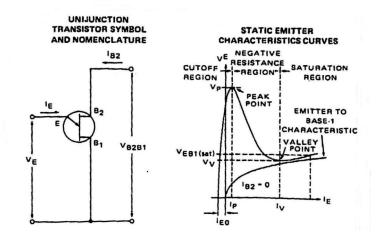
MECHANICAL CHARACTERISTICS

Case:	TO-92
Marking:	Alpha numeric
Pin out:	See below

		_				
	TO-92					
Dim	Inc	hes	Millim	neters		
	Min Max Min		Min	Max		
Α	0.175	0.205	4.450	5.200		
В	0.170	0.210	4.320	5.330		
С	0.125	0.165	3.180	4.190		
D	0.016	0.021	0.407	0.533		
G	0.045	0.055	1.150	1.390		
Н	0.095	0.105	2.420	2.660		
J	0.015	0.020	0.390	0.500		
ĸ	0.500		12.700			
L	0.250	•	6.350			
N	0.080	0.105	2.040	2.660		
Ρ	•	0.100		2.540		
R	0.115		2.930	-		
V	0.135		3.430	-		

2N4870, 2N4871

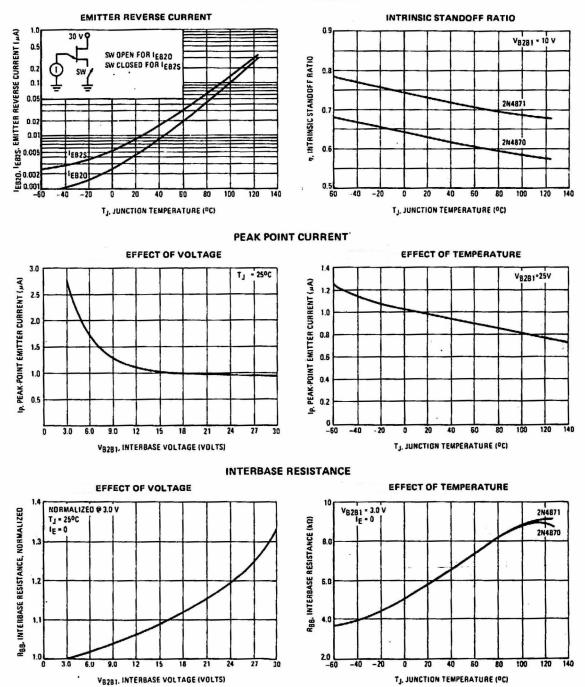

SILICON CONTROLLED RECTIFIERS



High-reliability discrete products and engineering services since 1977

2N4870, 2N4871

SILICON CONTROLLED RECTIFIERS

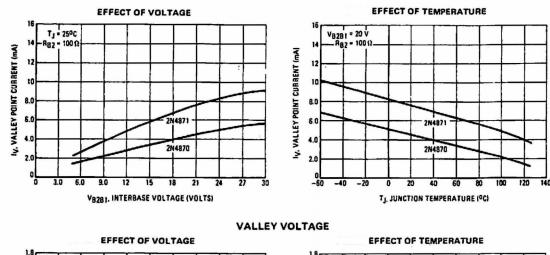


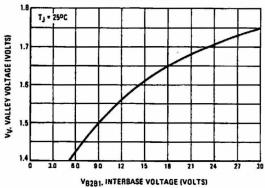
High-reliability discrete products and engineering services since 1977

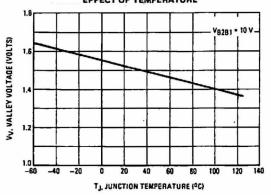
2N4870, 2N4871

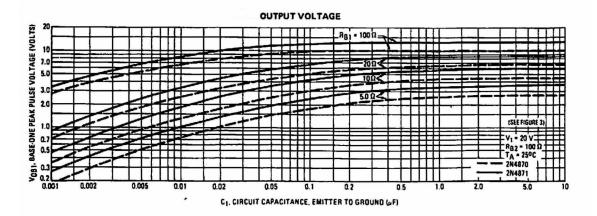
SILICON CONTROLLED RECTIFIERS

TYPICAL CHARACTERISTICS


High-reliability discrete products and engineering services since 1977


2N4870, 2N4871


SILICON CONTROLLED RECTIFIERS


TYPICAL CHARACTERISTICS

VALLEY CURRENT

