

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage	VCEO	30	Vdc	
Collector-Base Voltage	VCBO	30	Vdc	
Emitter-Base Voltage	VEBO	3.0	Vdc	
Collector Current — Continuous	ſC	30	mAdc	
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	200 1.14	mW mW/°C	
Operating and Storage Junction Temperature Range	Tj, T _{stg}	-65 to +200	°C	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage ($I_C \approx 1.0$ mAdc, $I_B = 0$)		V(BR)CEO	30	_		Vdc
Collector-Base Breakdown Voltage (I _C \approx 100 μ Adc, I _E = 0)		V _{(BR)CBO}	30		-	Vdc
Emitter-Base Breakdown Voltage (I _E = 100 μ Adc, I _C = 0)	8	V(BR)EBO	3.0	_	-	Vdc
Collector Cutoff Current (V _{CB} = 10 Vdc, I _E = 0) (V _{CB} = 10 Vdc, I _E = 0, T_A = 150°C)		ICBO		_	0.1 100	μAdc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 2.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)		hFE	20	40	150	
SMALL SIGNAL CHARACTERISTICS			0			
Current-Gain — Bandwidth Product(1) ($I_E \approx 2.0$ mAdc, $V_{CE} = 10$ Vdc, f = 100 MHz)	2N4957, 2N5829 2N4958, 2N4959	fŢ	1200 1000	1600 1500	2500 2500	MHz
Collector-Base Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{cb}	—	0.4	0.8	pF
Small Signal Current Gain ($I_C \approx 2.0$ mAdc, $V_{CE} = 10$ Vdc, f = 1.0 kHz)		h _{fe}	20	_	200	-
Collector Base Time Constant ($I_E \approx 2.0$ mAdc, $V_{CB} = 10$ Vdc, f = 63.6 MHz)		rb'C _C	1.0	_	8.0	ps
Noise Figure (Figure 1) ($I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, f = 450 \text{ MHz}$)	2N5829 2N4957 2N4958 2N4958 2N4959	NF		2.3 2.6 2.9 3.2	2.5 3.0 3.3 3.8	dB
FUNCTIONAL TEST						
Common-Emitter Amplifier Power Gain (Figure 1) (V_{CE} = 10 Vdc, I_C = 2.0 mAdc, f = 450 MHz)	2N4957, 2N5829 2N4958 2N4959	G _{pe}	17 16 15		25 25 25	dB

(1) $f_{\overline{T}}$ is defined as the frequency at which $|h_{\overline{fe}}|$ extrapolates to unity.

2N4957 • 2N4958 • 2N4959 • 2N5829

FIGURE 1 - NOISE FIGURE AND POWER GAIN TEST CIRCUIT

FIGURE 3 - NOISE FIGURE versus FREQUENCY

FIGURE 5 – CONTOURS OF NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

FIGURE 2 – UNILATERALIZED POWER GAIN versus FREQUENCY

FIGURE 4 - NOISE FIGURE AND POWER GAIN versus COLLECTOR CURRENT

FIGURE 6 – CONTOURS OF NOISE FIGURE versus SOURCE RESISTANCE AND COLLECTOR CURRENT

(VCE = 10 Vdc, IC = 2.0 mAdc)

NOTE 1

Figures 7 through 18 are included to assist the circuit designer in determining the stability of his particular circuit. Two stability criteria are given in these figures.

The Linvill "C" factor* is a measure of transistor stability when the input and output are terminated in the worst case (open circuit) condition. When * "Transistors and Active Circuits," Linvill and Gibbons, McGraw Hill, 1961

f, FREQUENCY (MHz)

FIGURE 10 – LOAD ADMITTANCE versus FREQUENCY (IMAGINARY)

 $^\circ C''$ is less than 1.0, the circuit is unconditionally stable. When $^\circ C''$ is greater than 1.0, the circuit is potentially unstable

that in 0, the circuit is potentially unstable The Stern "K" factor! has been defined to determine the stability of a practical amplifier terminated in finite load and source admittances. If "K" is greater than 1.0, the circuit will be stable. If less than 1.0, the circuit will be unstable. For further details, see Application Note AN 215A.

[†] "Stability and Power Gain of Tuned Transistor Amplifiers," Arthur P. Stern, Proc. I.R.E., March 1967.

COMMON BASE CIRCUIT DESIGN DATA

(VCB = 10 Vdc, IC = 2.0 mAdc)

7

2N4957 • 2N4958 • 2N4959 • 2N5829

IC. COLLECTOR CURRENT (mAdc)

0

Apply reverse bias between emitter and base and measure capacitance between these terminals. Collector is open

FIGURE 20 - POLAR hfe

FIGURE 22 - DC CURRENT GAIN

FIGURE 24 - COLLECTOR CHARACTERISTICS

HORIZONTAL SCALE - VCE = 1.0 V/DIV

Apply reverse bias between collector and base and measure capacitance between these terminals. Emitter is guarded.

Y PARAMETERS versus CURRENT

COMMON BASE y PARAMETER VARIATIONS

(V_{CB} = 10 Vdc, I_C = 2.0 mAdc)

COMMON EMITTER y PARAMETER VARIATIONS

(VCE = 10 Vdc, IC = 2.0 mAdc)

7

26

60

6.0