
NPN Power Silicon Transistor

Features

- Available in JAN, JANTX, JANTXV, JANS and JANSR per MIL-PRF-19500/544
- Lightweight & Low Power
- Ideal for Space, Military, and Other High Reliability Applications
- Surface Mount U3 Package

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	$I_{\rm C}$ = 100 mA dc; $I_{\rm B}$ = 0	V _{(BR)CEO}	V dc	80	_
Emitter - Base Cutoff Current	$V_{EB} = 4.0 V dc; I_{C} = 0$ $V_{EB} = 5.5 V dc; I_{C} = 0$	I _{EBO1} I _{EBO2}	µA dc mA dc	_	1.0 1.0
Collector - Emitter Cutoff Current	V_{CE} = 60 V dc; V_{BE} = 0 V_{CE} = 100 V dc; V_{BE} = 0	I _{CES1} I _{CES2}	µA dc mA dc	—	1.0 1.0
Collector - Emitter Cutoff Current	$V_{CE} = 40 \text{ V dc}; I_{B} = 0$	I _{CEO}	µA dc	_	50
		r T			
	V _{CE} = 5.0 Vdc; I _C = 50 mA dc 2N5152U3 2N5154U3 V _{CE} = 5.0 Vdc; I _C = 2.5 A dc		-	20 50	
Forward Current Transfer Ratio	2N5152U3 2N5154U3 V _{CE} = 5.0 Vdc; I _C = 5.0 A dc	h _{FE}		30 70	90 200
	2N5152U3 2N5154U3			20 40	_
Collector - Emitter Saturation Voltage	$I_{\rm C}$ = 2.5 A dc; $I_{\rm B}$ = 250 mA dc $I_{\rm C}$ = 5.0 A dc; $I_{\rm B}$ = 500 mA dc	$\begin{array}{c} V_{CE(sat)1} \\ V_{CE(sat)2} \end{array}$	V dc	_	0.75 1.50
Base - Emitter Voltage (Non-Saturated)	V_{CE} = 5.0 V dc; I _C = 2.5 A dc	V _{BE}	V dc	—	1.45
Base - Emitter Saturation Voltage	I_{C} = 2.5 A dc; I_{B} = 250 mA dc I_{C} = 5.0 A dc; I_{B} = 500 mA dc	$\begin{array}{c} V_{\text{BE(sat)1}} \\ V_{\text{BE(sat)2}} \end{array}$	V dc	—	1.45 2.20
	Γ	[1 1		
Magnitude of Common Emitter Small-Signal Short-Circuit, Forward Current, Transfer Ratio	V _{CE} = 5.0 Vdc; I _C = 500 mA dc; f = 10 MHz 2N5152U3 2N5154U3	h _{fe}	-	6 7	_
Common-Emitter, Small-Signal Short-Circuit Forward Current Transfer Ratio	V _{CE} = 5.0 V dc; I _C = 100 mA dc; f = 1 kHz 2N5152U3 2N5154U3	h _{fe}	-	20 50	_
Open-Circuit Output Capacitance	V_{CB} = 10 V dc, I _E = 0, f = 1 MHz	C _{obo}	pF	—	250

¹

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

NPN Power Silicon Transistor

Rev. V3

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Cutoff Current	$T_{C} = +150^{\circ}C$ $V_{CE} = 60 \text{ V dc}; \text{ V}_{BE} = -2 \text{ V dc}$	I _{CEX}	µA dc	_	25
Forward - Current Transfer Ratio	$T_{c} = -55^{\circ}C$ $V_{cE} = 5 V dc; I_{c} = 2.5 A dc$ 2N5152U3 2N5154U3	h _{FE4}	-	15 25	

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage	V _{CEO}	80 V dc
Collector - Base Voltage	V _{CBO}	100 V dc
Emitter - Base Voltage	V _{EBO}	5.5 Vdc
Collector Current	Ι _C	2 A dc 10 A dc ⁽¹⁾
Reverse Pulse Energy ⁽²⁾		15 mj
Total Power Dissipation (a) $T_C = +25^{\circ}C^{(3)}$ (a) $T_{SP} = +25^{\circ}C$	Ρ _T	100 W 1 W
Operating & Storage Temperature Range	T_{J}, T_{STG}	-65°C to +200°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case ⁽⁴⁾	$R_{ extsf{ heta}JC}$	1.7°C/W
Thermal Resistance, Junction to Ambient ⁽⁴⁾	$R_{ extsf{ heta}JA}$	170°C/W ⁽⁵⁾

(1) This collector current value applies for $P_W \le 8.3$ ms, duty cycle ≤ 1 percent .

(2) This rating is based on the capability of the transistors to operate safely in the unclamped inductive load energy test circuit, see subgroup 5 of the group A inspection table of MIL-PRF-19500/544.

(3) For derating, see figures 6, 7, 8 and 9 of MIL-PRF-19500/544.

(4) For thermal impedance curves, see figures 10, 11 and 12 of MIL-PRF-19500/544.

(5) Mounted on an FR4 printed circuit board.

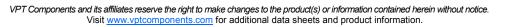
VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

²

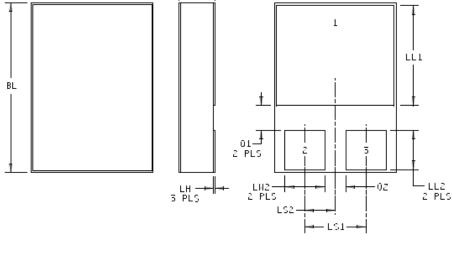
Rev. V3

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions		Units	Min.	Max.			
Switching Characteristics								
Turn-On Time		t _{on}	μs	—	0.5			
Turn-Off Time	$I_{C} = 5 \text{ A dc}; I_{B1} = 500 \text{ mA dc}, R_{L} = 6 \Omega,$	t _{off}	μs		1.5			
Storage Time	I_{B2} = -500 mA dc, $V_{BE(off)}$ = 3.7 Vdc	ts	μs	_	1.4			
Fall Time		t _f	μs	_	0.5			


Safe Operating Area

DC Tests:	$T_{\rm C}$ = +25°C, I Cycle, $t_{\rm p}$ = 1 s	
Test 1: Test 2: Test 3:	$V_{CE} = 5.0 \text{ V dc}; I_C = 2 \text{ A dc}$ $V_{CE} = 32 \text{ Vdc}; I_C = 310 \text{ mA dc}$ $V_{CE} = 80 \text{ Vdc}; I_C = 12.5 \text{ mA dc}$	


ВИ

NPN Power Silicon Transistor

Outline Drawing (U3)

1	1			
	l	•		

сн 🛏

Symbol	Dimensions					
	Inch	es	Millimeters			
	Min	Max	Min	Max		
BL	.395	.405	10.04	10.28		
BW	.291	.301	7.40	7.64		
СН	.1085	.1205	2.76	3.06		
LH	.010	.020	0.25	0.51		
LW1	.281	.291	7.14	7.41		
LW2	.090	.100	2.29	2.54		
LL1	.220	.230	5.59	5.84		
LL2	.115	.125	2.93	3.17		
LS1	.150 E	SC	3.81	BSC		
LS2	.075 E	SC	1.91	1.91 BSC		
Q1	.030		0.762			
Q2	.030		0.762			
TERM 1	Collector					
TERM 2	Base					
TERM 3	Emitter					

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.

FIGURE 2. Physical dimensions and configuration for surface mount (U3).

LM1-

Rev. V3

NPN Power Silicon Transistor

Rev. V3

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RE-LATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTA-BILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMI-TATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

5