2N5164 thru 2N5171 (SILICON) 2N5164R thru 2N5171R

THYRISTORS SILICON CONTROLLED RECTIFIERS

... designed for industrial and consumer applications such as power supplies, battery chargers, temperature, motor, light and welder controls.

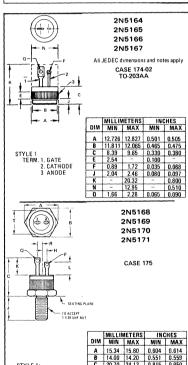
- Supplied in Either Pressfit or Stud Package
- High Surge Current Rating ITSM = 240 Amp
- Low On-State Voltage − 1.2 V (Typ) @ I_{TM} = 20 Amp
- Practical Level Triggering and Holding Characteristics 10 mA (Typ) @ T_C = 25°C

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
*Peak Reverse Blocking Voltage (1)	VRRM		Volts	
2N5164,2N5168		50		
2N5165,2N5169		200		
2N5166,2N5170		400		
2N5167,2N5171		600		
*Non-repetitive Peak Reverse Blocking Voltage	VRSM		Volts	
2N5164,2N5168		75		
2N5165,2N5169		300		
2N5166,2N5170		500		
2N5167,2N5171		700		
Forward Current RMS	IT(RMS)	20	Amp	
Circuit Fusing Considerations	l2t	235	A ² s	
$(T_J = -40 \text{ to } +100^{\circ}\text{C}, \text{ t} \le 8.3 \text{ ms})$				
*Peak Forward Surge Current	¹ TSM	240	Amp	
(One cycle, 60 Hz, $T_J = -40 \text{ to } +100^{\circ}\text{C}$)				
*Peak Forward Gate Power	PGFM	5.0	Watts	
*Average Forward Gate Power	PGF(AV)	0.5	Watt	
*Peak Forward Gate Current	^I GFM	2.0	Amp	
Peak Gate Voltage — Forward (2)	V _{GFM}	10	Volts	
Reverse	VGRM	10		
*Operating Junction Temperature Range	Tj	-40 to +100	°C	
*Storage Temperature Range	T _{stg}	-40 to +150	°C	
Stud Torque (3) 2N5168-2N5171		30	in. lb.	

THERMAL CHARACTERISTICS

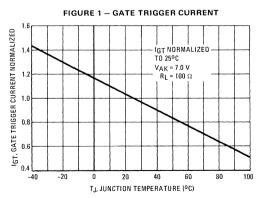
Ch	aracteristic	Symbol	Тур	Max	Unit
*Thermal Res	istance, Junction	θJC			°C/W
to Case	2N5164,65,66,67	1 " 1	1.0	1.5	
	2N5168,69,70,71	1	1.1	1.6	

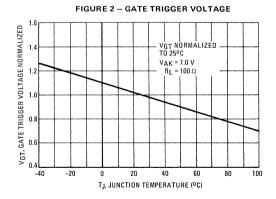

- *Indicates JEDEC Registered Data.
- $^{(1)}V_{RRM}$ for all types can be applied on a continuous dc basis without incurring damage. Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking capability in a manner such that the voltage applied exceeds the rated blocking voltage.
- (2) Devices should not be operated with a positive bias applied to the gate concurrent with a negative potential applied to the anode.
- (3) Reliable operation can be impaired if torque rating is exceeded, terminal tubes bent, or glass seal broken.

THYRISTORS PNPN

50-600 VOLTS 20 AMPERES RMS

		MILLIMETERS		INCHES	
	DIM	MIN	MAX	MIN	MAX
	Α	15.34	15.60	0.604	0.614
	В	14.00	14.20	0.551	0.559
STYLE 1:	C	20.70	24.13	0.815	0.950
TERM 1. CATHODE	F	1.40	1.65	0.055	0.065
2. GATE	Н	2.29 REF		0.090 REF	
STUD : ANODE	J	10.67	11.56	0.420	0.455
0.00 17.11002	K	9.78	10.54	0.385	0.415
	L	6.99	7.75	0.275	0.305
	Q	2.03	2.41	0.080	0.095
	R	1 65 REF		0.065 REF	
	T	12.70	12.83	0.500	0.505

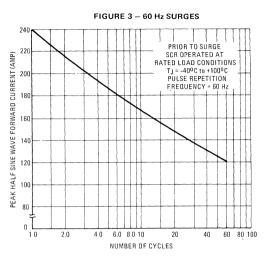

2N5164 thru 2N5171, 2N5164R thru 2N5171R (continued)


ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
*Peak Forward Blocking Voltage (T _J = 100°C) 2N5164, 2N516 2N5165, 2N516 2N5166, 2N51; 2N5167, 2N515	69 70	50 200 400 600	 	Volts
*Peak Forward Blocking Current (Rated V _{DRM} @ T _J = 100 ^o C, gate open)	IDRM	_	5.0	mA
Peak Reverse Blocking Current (Rated V_{RRM} @ T_J = 100 o C, gate open)	IRRM	_	5.0	mA
Gate Trigger Current (Continuous dc) (Anode Voltage = 7.0 Vdc, R_L = 100 Ω) *(Anode Voltage = 7.0 Vdc, R_L = 100 Ω , T_C = -40°C)	I _{GT} (2)		40 75	mA
Gate Trigger Voltage (Continuous dc) (Anode Voltage = 7.0 Vdc, R_L = 100 Ω) *(Anode Voltage = 7.0 Vdc, R_L = 100 Ω , T_C = -40°C)	V _{GT}	- - 0.2	1.5 2.5	Volts
*(Anode Voltage = Rated V_{DRM} , R_{L} = 100 Ω , T_{J} = 100 $^{\circ}$ C) Forward "ON" Voltage (pulsed, 1.0 ms max, duty cycle \leq 1%) (I _{TM} = 20 A) (I _{TM} = 41 A)	VTM	— —	1.5	Volts
*(Anode Voltage = 7.0 Vdc, gate open) *(Anode Voltage = 7.0 Vdc, gate open, T _C = -40°C)	¹н		50 90	mA
Turn-On Time $(t_d + t_r)$ $(I_{TM} = 20 \text{ A, } I_{GT} = 40 \text{ mAdc})$	^t on	TYPICAL 1.0		μs
Turn-Off Time $(I_{TM} = 10 \text{ A}, I_R = 10 \text{ A})$ $(I_{TM} = 10 \text{ A}, I_R = 10 \text{ A}, T_J = 100^{\circ}\text{C})$ $(V_{DRM} = \text{rated voltage})$ $(dv/dt = 30 \text{ V/}\mu\text{s})$	^t off	20 30		μs
Forward Voltage Application Rate (Gate open, $T_J = 100^{\circ}C$)	dv/dt	(50	V/μs

^{*}Indicates JEDEC Registered Data.

EFFECT OF TEMPERATURE UPON TYPICAL TRIGGER CHARACTERISTICS



⁽¹⁾ V_{DRM} for all types can be applied on a continuous dc basis without incurring damage. Ratings apply for zero or negative gate voltage. These devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

⁽²⁾For optimum operation, i.e. faster turn-on, lower switching losses, best di/dt capability, recommended $I_{GT} = 200 \text{ mA}$.

MAXIMUM ALLOWABLE NON-RECURRENT SURGE CURRENT

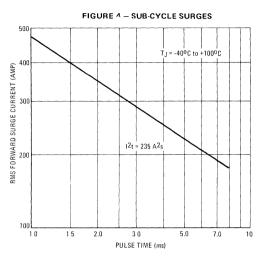


FIGURE 5 - GATE TRIGGER CHARACTERISTICS

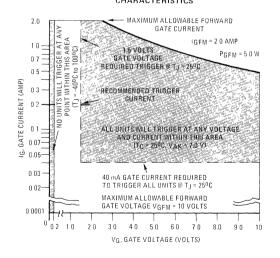
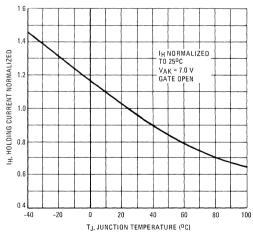



FIGURE 6 — EFFECT OF TEMPERATURE ON TYPICAL HOLDING CURRENT

DERATING AND DISSIPATION FOR RESISTIVE AND INDUCTIVE LOADS (f = 60 to 400 Hz, SINE WAVE)

FIGURE 7 - CURRENT DERATING(1)

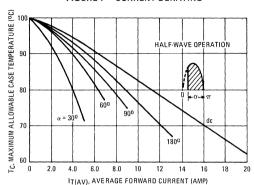


FIGURE 8 - FORWARD POWER DISSIPATION

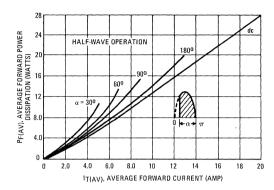


FIGURE 9 - FORWARD CONDUCTION CHARACTERISTICS

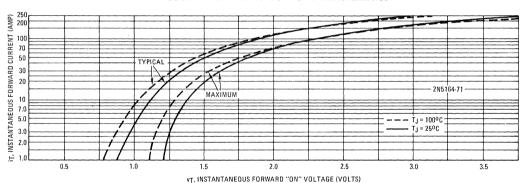
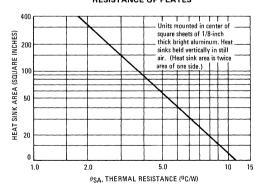



FIGURE 10 – TYPICAL THERMAL RESISTANCE OF PLATES

(1) Reverse polarity units must be derated an additional 10%; i.e., in Figure 7 the maximum allowable case temperature of the 2N5164 at 16 Adc is 70°C, a derating of 30°C below the maximum junction temperature. For the 2N5164R the derating would be an additional 10% or 3.0°C, making the allowable case temperature 67°C.

For additional mounting information, refer to the Motorola brochure "Mounting Techniques for Pressfit Silicon Rectifiers and Silicon Controlled Rectifiers".