HIGH VOLTAGE NPN SILICON TRANSISTOR

. . . designed for use in high-voltage switching regulators, inverters, converters and line operated amplifiers.

- High Collector-Emitter Voltage 400 Volts
- DC Current Gain –
 hFE = 10 (Min) @ IC = 3.5 Adc
- Low Collector-Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 2.5 Adc
- Switching Times @ I_C = 2.5 Adc
 t_{On} = 0.8 µs (Max)
 t_{Off} = 1.7 µs (Max)

5.0 AMPERE POWER TRANSISTOR NPN SILICON

400 VOLTS 125 WATTS

*MAXIMUM RATINGS

Rating	Symbol	Value	Unit Vdc	
Collector-Emitter Voltage	VCEO	400		
Collector-Base Voltage	V _{CB}	400	Vdc	
Emitter-Base Voltage	VEB	5.0	Vdc	
Collector Current Continuous	¹с	5.0	Adc	
Base Current	IВ	2.0	Adc	
Total Device Dissipation @ T _C = 62.5 ^o C Derate above 62.5 ^o C	PD	125 1.43	Watts W/ ^O C	
Operating Junction Temperature Range	Tj	-65 to +150	°C	
Storage Temperature Range	T _{stg}	-65 to +200	°C	

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case θ IC 0.7 °C/W	Characteristic	Symbol	Max	Unit
130	Thermal Resistance, Junction to Case	θJC	0.7	°C/W

*Indicates JEDEC Registered Data

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
DFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (I $_{\rm C}$ = 100 mAdc, I $_{\rm B}$ = 0)	BVCEO(sus)	325	. =	Vdc
Collector Cutoff Current (V _{CE} = 400 Vdc; I _B = 0)	CEO	-	2.5	mAdc
Collector Cutoff Current (V _{CE} = 400 Vdc, V _{EB} (off) = 1.5 Vdc) (V _{CE} = 400 Vdc, V _{EB} (off) = 1.5 Vdc, T _C = 125°C)	CEX		0.5 5.0	mAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I $_{\rm C}$ = 0)	EBO		2.0	mAdc
ON CHARACTERISTICS			: 1	
DC Current Gain (I _C = 2.5 Adc, V _{CE} = 5.0 Vdc) (I _C = 3.5 Adc, V _{CE} = 5.0 Vdc)	hFE	15 10	35	
Collector-Emitter Saturation Voltage ($I_C = 2.5$ Adc, $I_B = 0.5$ Adc) ($I_C = 5.0$ Adc, $I_B = 1.0$ Adc)	VCE(sat)		0.7 2.5	Vdc
Base-Emitter Saturation Voltage $ (I_C = 2.5 \text{ Adc}, I_B = 0.5 \text{ Adc}) $	V _{BE(sat)}		1.5 2.0	Vdc
DYNAMIC CHARACTERISTICS				
Current-Gain—Bandwidth Product ($I_C = 0.2$ Adc, $V_{CE} = 12$ Vdc, $f = 1.0$ MHz)	f⊤	2.5		MHz
SWITCHING CHARACTERISTICS				
Turn-On Time $(V_{CC} = 125 \text{ Vdc}, I_C = 2.5 \text{ Adc}, I_{B1} = 0.25 \text{ Adc})$	t _{on}	_	0.8	μς
Turn-Off Time $(V_{CC} = 125 \text{ Vdc}, I_C = 2.5 \text{ Adc}, I_{B1} = 0.25 \text{ Adc}, I_{B2} = 0.5 \text{ Adc})$	^t off		1.7	μs
Pulse Energy Test $(V_{CC} = 200 \text{ Vdc}, I_C = 0.3 \text{ Adc}, t_p = 5.0 \text{ ms}, \text{Duty Cycle} = 1.0\%)$		300	_	mJ

FIGURE 2 - ACTIVE-REGION SAFE OPERATING AREA

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 1 is based on $T_{J(pk)}=150^{o}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)}=150^{o}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. (See AN-415)

FIGURE 5 - SWITCHING CIRCUIT

