PNP Low Power, High Voltage Silicon Transistor

Features

- Available in JAN, JANTX, JANTXV and JANS per MIL-PRF-19500/485
- TO-39, TO-5 and UA Package Types
- Suitable For Drivers in High-Voltage, Low Current Inverters, Switching and Series Regulators

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Emitter - Base Cutoff Current	V_{EB} = -6.0 V dc	I _{EBO}	µA dc	_	-20
Collector - Emitter Cutoff	V _{CE} = -150 V dc 2N5415, S, UA V _{CE} = -250 V dc 2N5416, S, UA	I _{CEO1}	µA dc		-50
Collector - Emitter Cutoff	V _{CE} = -200 V dc 2N5415, S, UA V _{CE} = -300 V dc 2N5416, S, UA	I _{CEO2}	mA dc		-1
Collector - Emitter Cutoff Current	V_{BE} = -1.5 V dc V _{CE} = -200 V dc 2N5415, S, UA V _{CE} = -300 V dc 2N5416, S, UA	I _{CEX}	µA dc	_	-50
Collector - Base Cutoff Current	V _{CB} = -175 V dc 2N5415, S, UA V _{CB} = -280 V dc 2N5416, S, UA	I _{CBO1}	µA dc	_	-50
Collector - Base Cutoff Current	V _{CB} = -200 V dc 2N5415, S, UA V _{CB} = -350 V dc 2N5416, S, UA	I _{CBO2}	µA dc	_	-500
Base - Emitter Voltage Saturation	V_{CE} = -10 V dc, I _C = -50 mA dc	V_{BE}	V dc		-1.5
Collector - Emitter Voltage (saturated)	$I_{\rm C}$ = -50 mA dc, $I_{\rm B}$ = -5 mA dc	V _{CE(sat)}	V dc		-2.0
Forward Current Transfer Ratio	V_{CE} = -10 V dc, I _C = -50 mA dc V _{CE} = -10 V dc, I _C = -1 mA dc	h _{FE1} h _{FE2}	-	30 15	120

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

Rev. V2

1

PNP Low Power, High Voltage Silicon Transistor

Rev. V2

Electrical Characteristics (+25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Base Cutoff Current	$T_A = +150^{\circ}C$ $V_{CB} = -175$ V dc 2N5415, S, UA $V_{CB} = -280$ V dc 2N5416, S, UA	I _{CBO3}	mA dc		-1
Forward – Current Transfer Ratio	$T_{A} = -65^{\circ}C$ $V_{CE} = -10 \text{ V dc, } I_{C} = -50 \text{ mA dc}$	h _{FE3}		15	
Parameter	Test Conditions	Symbol	Units	Min.	Max.
Dynamic Characteristics				L	L
Small-Signal Short-Circuit Forward-Current Transfer Ratio	V_{CE} = -10 V dc, I _C = -10 mA dc, f = 5 MHz	h _{FE}		3	15
Output Capacitance Output Capacitance	V_{CB} = -10 V dc, I _E = 0, 100 kHz ≤ f ≤ 1 MHz	C _{obo}	pF	_	15
Small-Signal Short-Circuit Forward-Current Transfer Ratio	V _{CE} = -10 V dc, I _C = -5 mA dc, f <u><</u> 1 kHz	h _{fe}		25	_
Input Capacitance (Output Open Circuited)	V_{EB} = -5 V dc, I _C = 0, 100 kHz ≤ f ≤ 1 MHz	C _{ibo}	pF	_	75
Switching Characteristics			-	-	
Turn-On Time	V_{CC} = -200 V dc, I _C = -50 mA dc, I _{B1} = -5 mA dc	t _{on}	μs	—	1.0
Turn-Off Time	V_{CC} = -200 V dc, I _C = -50 mA dc, I _{B1} = I _{B2} = -5 mA dc	t _{off}	μs	_	10

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Ratings	Symbol	2N5415	2N5416			
Collector - Emitter Voltage	V_{CEO}	-200 V dc	-300 V dc			
Collector - Base Voltage	V _{CBO}	-200 V dc	-350 V dc			
Emitter - Base Voltage	V _{EBO}	-6.0 V dc				
Collector Current	Ι _C	-1.0 A dc				
Junction & Storage Temperature Range	T_J, T_{STG}	-65°C to +200°C				

²

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Low Power, High Voltage Silicon Transistor

Rev. V2

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Thermal Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Ambient 2N5415, 2N5415S, 2N5415UA 2N5416, 2N5416S, 2N5416UA	R _{θJA}	234°C/W 234°C/W
Thermal Resistance, Junction to Case 2N5415, 2N5415S 2N5416, 2N5416S	R _{θJC}	17.5°C/W 17.5°C/W
Thermal Resistance, Junction to Solder Pad 2N5415UA, 2N5416UA	$R_{\theta JSP}$	80°C/W

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Low Power, High Voltage Silicon Transistor

Rev. V2

Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise specified)

Characteristics	Symbol	Max. Value
T _A = +25°C 2N5415, 2N5415S, 2N5415UA 2N5416, 2N5416S, 2N5416UA	P _T ⁽¹⁾	0.75 W 0.75 W
T _C = +25°C 2N5415, 2N5415S 2N5416, 2N5416S	P _T ⁽²⁾	10 W 10 W
T _{SP} = +25°C 2N5415UA, 2N5416UA	P _T ⁽³⁾	2.0 W

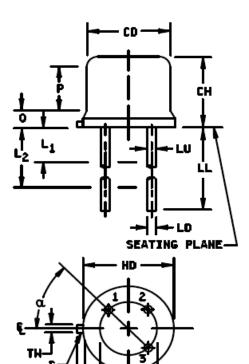
(1) Derate linearly 4.29 mW/°C for $T_A > +25^{\circ}C$.

(2) Derate linearly 57.2 mW/°C for $T_C > +25^{\circ}C$. (3) Derate linearly 12.5 mW/°C for $T_{SP} > +25^{\circ}C$

Electrical Me	asurements		Test Conditions	Symbol	Units	Min.	Max.
Breakdown Voltage	, Collector-Emitter	I _C = - L =	V _{BR(CEO)}	V dc	-200 -300		
Safe Operating Area							
DC Tests:	DC Tests: $T_{C} = +25^{\circ}C; I Cycle; t = 0.4 s$						
Test 1 (except UA):	V_{CE} = -10 V dc; I _C = -	1.0 A dc					
Test 2: (except UA)	V_{CE} = -100 V dc; I _C =	-100 mA do	2				
Test 3: (except UA)	V_{CE} = -200 V dc; I _C =	-24 mA dc	(2N5415, S, only)				
Test 4:	V_{CE} = -300 V dc; I _C =	-10 mA dc	(2N5416, S, only)				
Test 1: UA only	V_{CE} = -10 V dc; I _C =	0.3 A dc					
Test 2: UA only	V_{CE} = -100 V dc; I _C = -30 mA dc						
Test 3:	V_{CE} = -200 V dc; I _C = -12 mA dc (2N5415UA only)						
Test 4:	V_{CE} = -300 V dc; I _C =	-5 mA dc	(2N5416UA only)				

4

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.


PNP Low Power, High Voltage Silicon Transistor

Rev. V2

Outline Drawing (TO-5, TO-39)

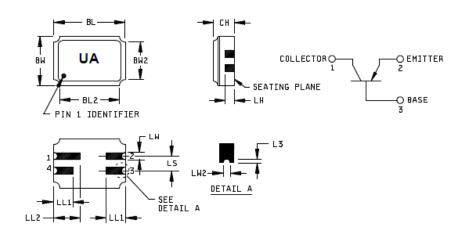
		Di							
	Dimensions								
Symbol				Notes					
	Min	Max	Min	Max					
CD	.305	.335	7.75	8.51					
CH	.240	.260	6.10	6.60					
HD	.335	.370	8.51	9.40					
LC	.200	TP	5.08	TP	6				
LD	.016	.021	0.41	0.53	7, 8				
LL		See	notes	7, 8, 11,12					
LU	.016	.019	0.41	0.48	7, 8				
L1		.050		1.27	7, 8				
L2	.250		6.35	6.35					
Р	.100		2.54	2.54					
Q		.050		1.27	4				
r		.010		0.25	10				
TL	.029	.045	0.74	1.14	3				
TW	.028	.034	0.71	0.86	2				
α	45° `	TP	45° 1	ГР	6				

NOTES:

- 1. Dimension are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TH shall be held for a minimum length of .011 inch (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within.007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L_1 and L_2 . Dimension LD applies between L_2 and LL minimum. Diameter is uncontrolled in L_1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- For transistor types 2N5415 and 2N5416, dimension LL shall be 1.5 inches (38.1 mm) minimum and 1.75 inches (44.4 mm) maximum.
- For transistor types 2N5415S and 2N5416S, dimension LL shall be .5 inch (12.7 mm) minimum and .75 inch (19.0 mm) maximum.
- 14. Lead 1 = emitter, lead 2 = base, lead 3 = collector.

FIGURE 1. Physical dimensions (similar to TO-5).

5


VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Low Power, High Voltage Silicon Transistor

Rev. V2

Outline Drawing (UA Package)

		Dimer	nsions]		Dimensions				
Symbol	Inc	hes	Millin	neters	Note		Symbol	Inches		Millir	neters	Note
-	Min	Max	Min	Max	1			Min	Max	Min	Max]
BL	.215	.225	5.46	5.71		1	LL1	.032	.048	0.81	1.22	
BL2		.225		5.71		1	LL2	.072	.088	1.83	2.23	
BW	.145	.155	3.68	3.93]	LS	.045	.055	1.14	1.39	
BW2		.155		3.93]	LW	.022	.028	0.56	0.71	
CH	.061	.075	1.55	1.91	3	1	LW2	.006	.022	0.15	0.56	5
L3	.003		0.08		5	1						
LH	.029	.042	0.74	1.07		1						
Pin Numb	er		1		2				3		4	
Transistor			Collect	or	Emitter			E	Base		N/C	

NOTES:

1. Dimensions are in inches.

2. Millimeters are given for general information only.

3. Dimension "CH" controls the overall package thickness. When a window lid is used, dimension "CH" must increase by a minimum of .010 inch (0.254 mm) and a maximum of .040 inch (1.016 mm).

- The corner shape (square, notch, radius, etc.) may vary at the manufacturer's option, from that shown on the drawing.
- * 5. Dimensions "LW2" minimum and "L3" minimum and the appropriate castellation length define an unobstructed three-dimensional space traversing all of the ceramic layers in which a castellation was designed. (Castellations are required on bottom two layers, optional on top ceramic layer.) Dimension "LW2" maximum define the maximum width and depth of the castellation at any point on its surface. Measurement of this dimension may be made prior to solder dipping.
 - The coplanarity deviation of all terminal contact points, as defined by the device seating plane, shall not exceed .006 inch (0.15mm) for solder dipped leadless chip carriers.
 - In accordance with ASME Y14.5M, diameters are equivalent to \u03c6 x symbology.

* FIGURE 2. Physical dimensions, surface mount (UA version).

⁶

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP Low Power, High Voltage Silicon Transistor

Rev. V2

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCI-DENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURA-CY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

7

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.