

Monolithic Dual N Channel JFET

Rev. V1

Features

- Available in JAN, JANTX and JANTXV per MIL-PRF-19500/430
- Monolithic Design
- Low Offset/Drift Voltage
- Low Noise, Low Gate Leakage
- Ideal for Hi-Rel High Speed, Temp-Compensated, Single-Ended Input Amps
- High-Speed Comparators
- TO-71 package

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Reverse Gate Current	$V_{GS} = -50 \text{ V dc}; V_{DS} = 0$	I _{GSS1}	μA dc		-1.0
Reverse Gate Current	$V_{GS} = -30 \text{ V dc}; V_{DS} = 0$	I _{GSS2}	nA dc	_	-0.1
Drain Current	$V_{DS} = 15 \text{ V dc}; V_{GS} = 0$	I _{DSS}	mA dc	0.5	8.0
Gate Current	V_{DG} = 15 V dc; I_{D} = 200 μA dc	I _G	pA dc	ĺ	-50
Gate Source Cutoff Voltage	V_{DS} = 15 V dc; I_{D} = 0.5 nA dc	$V_{GS(off)}$	V dc	-0.5	-4.5
Gate-Source Voltage Differential	V_{DG} = 15 V dc; I_{D} = 50 μ A dc 2N5545 2N5546 2N5547	IV _{GS1} -V _{GS2} I ¹	mV dc	_	5 10 15
Gate-Source Voltage Differential	V_{DG} = 15 V dc; I_{D} = 200 μ A dc; 2N5545 2N5546 2N5547	IV _{GS1} -V _{GS2} I ²	mV dc	_	5 10 15
Gate-Source Voltage Differential Change With Temperature	V_{DG} = 15 V dc; I_{D} = 200 μ A dc; $T_{A(1)}$ = +25°C; $T_{A(2)}$ = -55°C 2N5545 2N5546 2N5547	$I\Delta V_{GS1}$ - V_{GS2} $_{\Delta}T_{A}I$		_	.8 1.6 3.2

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.vptcomponents.com for additional data sheets and product information.

1

Monolithic Dual N Channel JFET

Rev. V1

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Gate-Source Voltage Differential Change With Temperature	V_{DG} = 15 V dc; I_{D} = 200 μ A dc; $T_{A(1)}$ = +25°C; $T_{A(2)}$ = +125°C 2N5545 2N5546 2N5547	$I\Delta V_{GS1}\text{-}V_{GS2)\Delta}T_{A}I$	mV dc	_	1 2 4
Zero-Gate-Voltage Drain Current Ratio	V_{DS} = 15 V dc; V_{GS} = 0; 2N5545 2N5546 2N5547	I _{DSS1}		0.95 0.90 0.90	1.05 1.10 1.10
Small-Signal Common-Source Short-Circuit Forward Transfer Admittance Ratio	V_{DG} = 15 V dc; I_{D} = 200 μA dc; f = 1 kHz	$\frac{ y_{fs} ^1}{ y_{fs} ^2}$		0.97 0.95 0.90	1.03 1.05 1.10
Small-Signal Common-Source Short-Circuit Output Admittance Differential	V_{DS} = 15 V dc; V_{GS} = 0; f = 1 kHz 2N5545 2N5546 2N5547	lly _{os} l ¹ -ly _{os} l ^{l2l}	μmho		1 2 3

Electrical Characteristics (T_A = 150°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Reverse Gate Current	$V_{GS} = -30 \text{ V dc}; V_{DS} = 0$	I _{GSS3}	nA dc	_	-150
Gate Current Differential	V_{DG} = 15 V dc; I_{D} = 200 uA dc; T_{A} = +125°C	_{G1} - _{G2}	nA dc	_	5

Monolithic Dual N Channel JFET

Rev. V1

Electrical Characteristics

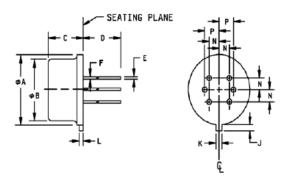
Parameter	Test Conditions	Symbol	Units	Min.	Max.
Dynamic Characteristics					
Spot Noise Figure (2N5545, 2N5546 only)	V_{DS} = 15 V dc; I_D = 200 μA dc; f = 10 Hz; R_G = 1 MΩ; Noise Bandwidth = 5 Hz 2N5545 2N5546	NF	dB	_	3.5 5.0
Small-Signal, Common-Source Short-Circuit Forward Transfer Admittance	V _{DS} = 15 V dc; V _{GS} = 0; f = 100kHz ≤ f≤1 MHz	ly _{fs} l	mmho	1.5	6.0
Small-Signal, Common-Source Short-Circuit Reverse Transfer Capacitance	V _{DS} = 15 V dc; V _{GS} = 0 V dc; f = 100kHz <u><</u> f <u><</u> 1 MHz	C _{rss}	pF	_	2
Small-Signal, Common-Source Short-Circuit Input Capacitance	V _{DS} = 15 V dc; V _{GS} = 0 V dc; f = 100kHz <u><</u> f <u><</u> 1 MHz	C _{iss}	pF	_	6
Small-Signal, Common-Source Short-Circuit Output Admittance	V _{DS} = 15 V dc; V _{GS} = 0 V; f = 100kHz <u>< f<</u> 1 MHz	ly _{os} l	μmho	_	25
Equivalent Input Noise Voltage	V _{DS} = 15 V dc; I _D = 200 µA dc: Noise bandwidth = 5 Hz 2N5545 2N5546	Vn	nV√Hz		180 200
Magnitude of Small-Signal, Common-Source, Short-Circuit Forward Transfer Admittance	V_{DS} = 15 V dc; V_{GS} = 0; F = 1 kHz T_A = -65°C	ly _{fs} l	mmho		10.0

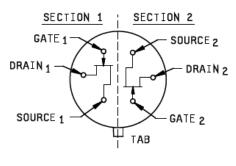
Monolithic Dual N Channel JFET

Rev. V1

Absolute Maximum Ratings (25°C unless otherwise specified)

Ratings	Symbol	Value
Voltage Drain-Gate Breakdown	V_{DG}	50 V dc
Voltage Gate-Source Breakdown	V _{GS}	-50 V dc
Gate Current	I _G	30 mA dc
Maximum Power Dissipation @ T _A = +25°C One section Both sections	P _T ⁽¹⁾	250 mW 400 mW
Storage Temperature Range	T _{STG}	-65°C to +200°C


⁽¹⁾ Derate linearly 1.6 mW/ $^{\circ}$ C for T_A > +25 $^{\circ}$ C one section, 2.67 mW/ $^{\circ}$ C both sections



Monolithic Dual N Channel JFET

Rev. V1

Outline Drawing TO-71

CONNECTION DIAGRAM

Ltr	Inc	hes	Millimeters		Notes
	Min	Max	Min	Max	
φА	.209	.230	5.31	5.84	
φВ	.178	.195	4.52	4.95	
С	.170	.210	4.32	5.33	
D	.500	.750	12.70	19.05	
Е		.021		0.53	3
F	.016	.019	0.41	0.48	4
J	.028	.048	0.71	1.22	7
К	.036	.046	0.91	1.17	
L		.020		0.51	
N	.0146	Nom.	.037 Nom.		5
Р	.0354	Nom.	.90 Nom.		5

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Measured in the zone beyond .250 inch (6.35 mm) from the seating plane.
- 4. Measured in the zone from .50 inch (1.27 mm) to .250 inch (6.35 mm) from the seating plane.
- 5. When measured in a gauging plane .054 +.001, -.000 inch (1.37 -0.03, -0.00 mm) below the seating plane of the transistor, maximum diameter leads shall be within .007 inch (0.18 mm) of their true location relative to a maximum width tab. Smaller diameter leads shall fall within the outline of the maximum diameter lead tolerance.
- 6. All leads electrically insulated from case and each section electrically isolated from the other.
- 7. Measured from the maximum diameter of the actual device.

FIGURE 1. Physical dimensions (similar to TO-71).

Monolithic Dual N Channel JFET

Rev. V1

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.