PNP High Power Silicon Transistor

1

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/466
- TO-3 (TO-204AA) Package
- Designed for Use in High Power Amplifier and Switching Circuit Applications

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I _C = 200 mA dc, 2N5683 I _C = 200 mA dc, 2N5684	V _{(BR)CEO}	V dc	-60 -80	_
Collector - Base Cutoff Current	V _{CB} = -60 Vdc, 2N5683 V _{CB} = -80 Vdc, 2N5684	I _{CBO}	µA dc	_	-5.0
Emitter - Base Cutoff Current	V_{EB} = -5 Vdc, I _C = 0	I _{EBO}	µA dc	_	-5.0
Collector - Emitter Cutoff Current $V_{CE} = -60 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, V_{BE} = +1.5 \text{ V dc}, 2N50 \text{ V}_{CE} = -80 \text{ V dc}, 2N50 \text{ V}_{CE} = $		I _{CEX1}	µA dc	—	-5.0
Collector - Emitter Cutoff Current $V_{CE} = -30 \text{ V dc}, 2\text{N}5683$ $V_{CE} = -40 \text{ V dc}, 2\text{N}5683$		I _{CEO}	µA dc	_	-5.0
	$I_{\rm C}$ = -5.0 A dc, $V_{\rm CE}$ = -2.0 V dc	h _{FE1}		30	
Forward Current Transfer Ratio	I_{C} = -25 A dc, V_{CE} = -2.0 V dc I_{C} = -50 A dc, V_{CE} = -5.0 V dc	h _{FE2} h _{FE3}		15 5	60
Collector - Emitter Saturation Voltage	$I_{C} = -25 \text{ A dc}, I_{B} = -2.5 \text{ A dc}$ $I_{C} = -50 \text{ A dc}, I_{B} = -10 \text{ A dc}$	V _{CE(SAT)1} V _{CE(SAT)2}	V dc	_	-1.0 -5.0
Base - Emitter Saturation Voltage	$I_{\rm C}$ = -25 A dc, $I_{\rm B}$ = -2.5 A dc	V _{BE(sat)}	V dc		-2.0
Base - Emitter Voltage	V_{CE} = -2 V dc, I _C = -25 A dc	V_{BE}	V dc		-2.0

Rev. V2

PNP High Power Silicon Transistor

Rev. V2

Electrical Characteristics ($T_A = +25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Collector - Emitter Cutoff Current	$\begin{split} T_{A} &= +150^{\circ}C\\ V_{CE} &= -60 \text{ V dc}, V_{BE} &= +1.5 \text{ V dc}, 2\text{N}5683\\ V_{CE} &= -80 \text{ V dc}, V_{BE} &= +1.5 \text{ V dc}, 2\text{N}5684 \end{split}$	I _{CEX2}	µA dc	_	-50	
Forward Current Transfer Ratio	$T_A = -55^{\circ}C$ $I_C = -25 A dc, V_{CE} = -2.0 V dc$	h _{FE4}	-	7		
Dynamic Characteristics						
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	V _{CE} = -10 V dc, I _C = -5 A dc, f = 1.0 MHz	h _{fe}		2.0	20	
Small-Signal Short-Circuit Forward-Current Transfer Ratio	V_{CE} = -5 V dc, I _C = -10 A dc, f = 1.0 kHz	h _{fe}	-	15		
Output Capacitance	V _{CB} = -10 V dc, I _E = 0, 0.1 MHz <u>≤</u> f <u>≤</u> 1.0 MHz	C _{obo}	pF	_	2,000	

Switching Characteristics

Parameter	Test Conditions		Units	Min.	Max.
Turn-On Time	V_{CC} = -30 V dc, I _C = -25 A dc, I _{B1} = -2.5 A dc	t _{on}	μs	—	1.5
Turn-Off Time	V_{CC} = -30 V dc, I_{C} = -25 A dc; I_{B1} = I_{B2} = -2.5 A dc	t _{off}	μs	—	3.0
Storage Time	V_{CC} = -30 V dc, I_{C} = -25 A dc; I_{B1} = I_{B2} = -2.5 A dc	ts	μs	—	2.0

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

PNP High Power Silicon Transistor

Rev. V2

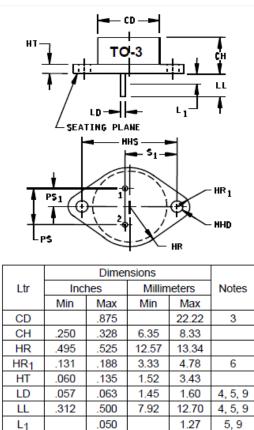
Absolute Maximum Ratings ($T_A = +25^{\circ}C$ unless otherwise noted)

Ratings	Symbol	Value			
Collector - Emitter Voltage 2N5683 2N5684	V _{CEO}	-60 V dc -80 V dc			
Collector - Base Voltage 2N5683 2N5684	V _{CBO}	-60 V dc -80 V dc			
Emitter - Base Voltage	V _{EBO}	-5.0 V dc			
Base Current	I _B	-15 A dc			
Collector Current	Ι _C	-50 A dc			
Total Power Dissipation ⁽¹⁾ @ $T_C = +25^{\circ}C$ @ $T_C = +100^{\circ}C$	PT	300 W 171 W			
Operating & Storage Temperature Range	T _J , T _{STG}	-65°C to +200°C			

(1) Between T_C = +25°C and T_C = +200°C, linear derating factor (average) = 1.715 W/°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	0.584 °C/W


Safe Operating Area

3

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.vptcomponents.com for additional data sheets and product information.

PNP High Power Silicon Transistor

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Body contour is optional within zone defined by CD.

MHD

MHS

PS

PS₁

S₁

151

1.177

420

205

.655

 These dimensions shall be measured at points .050 inch (1.27 mm) to .055 inch (1.40 mm) below seating plane. When gauge is not used, measurement shall be made at seating plane.

161

1.197

440

225

.675

3.84

29.90

10.67

5.21

16.64

4.09

30.40

11.18

5.72

17.15

7

5

- 5. Both terminals.
- 6. At both ends.
- 7. Two holes.
- 8. Terminal 1 is the emitter, terminal 2 is base. The collector shall be electrically connected to the case.
- 9. LD applies between L1 and LL. Lead diameter shall not exceed twice LD within L1.
- 10. In accordance with ASME Y14.5M, diameters are equivalent to \$\phix\$ symbology.
- 11. The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to 0.006 inch (0.15 mm) convex overall.

FIGURE 1. Physical dimensions, TO-3.

Rev. V2

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.

PNP High Power Silicon Transistor

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PA-TENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.

VPT Components and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.vptcomponents.com</u> for additional data sheets and product information.