
September 2007

2N5953 N-Channel RF Amplifier

• This device is designed primarily for electronic switching applications such as low on resistance analog switching.

• Sourced from process 50.

Absolute Maximum Ratings* Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
I _{GF}	GF Forward Gate Current		mA
T _J , T _{STG} Operating and Storage Junction Temperature Range		-55 ~ 150	°C

* This ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These rating are based on a maximum junction temperature of 150 degrees C.

2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a=25$ °C unless otherwise noted

Symbol	Parameter	Max.	Units
PD	Total Device Dissipation	350	mW
	Derate above 25°C	2.8	mW/°C
R _{0JC}	Thermal Resistance, Junction to Case	125	°C/W
$R_{ hetaJA}$	Thermal Resistance, Junction to Ambient	357	°C/W

Symbol	Parameter	Test Condition	Min.	Max.	Units
Off Chara	cteristics				
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_{G} = 1.0 \mu A, V_{DS} = 0$	-30		V
I _{GSS}	Gate Reverse Current	$V_{GS} = 15V, V_{DS} = 0, T = 25^{\circ}C$ T = 100°C		-1.0 -200	nA
V _{GS(off)}	Gate-Source Cut-off Voltage	V _{DS} = 15V, I _D = 100nA	-0.8	-3.0	V
V _{GS}	Gate-Source Forward Voltage	V _{DS} = 15V, I _D = 250μA	-0.5	-2.5	V
On Charac	cteristics Zero-Gate Voltage Drain Current *	V _{DS} = 15V, V _{GS} = 0	2.5	5	mA
VDS(on)	Drain-Source On Voltage	$I_{\rm D} = 267 \mu {\rm A}$		0.1	V
•	nal Characteristics		4000		10
g fs	Forward Transferconductance	$V_{DS} = 15V, V_{GS} = 0V, f = 100MHz$	1000	6500	μ/Ω
goss	Common- Source Output Conductance	$V_{DS} = 15V, V_{GS} = 0V, f = 1.0kHz$		50	μ/Ω
gos	Output Conductance	$V_{DS} = 15V, V_{GS} = 0V, f = 100MHz$		50	μ/Ω
Qis	Input Conductance	$V_{DS} = 15V$, $V_{CS} = 0V$, f = 100MHz		250	μ/Ω

Zero-Gate I_{DSS} VDS(on) Drain-Sou

Small Signal Charac

gfs	Forward Transferconductance	V _{DS} = 15V, V _{GS} = 0V, f = 100MHz	1000	6500	μ/Ω
goss	Common- Source Output Conductance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0kHz		50	μ/Ω
gos	Output Conductance	V _{DS} = 15V, V _{GS} = 0V, f = 100MHz		50	μ/Ω
gis	Input Conductance	V _{DS} = 15V, V _{GS} = 0V, f = 100MHz		250	μ/Ω
Ciss	Input Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz		6	pF
Crss	Reverse Transfer Capacitance	V _{DS} = 15V, V _{GS} = 0V, f = 1.0MHz		2	pF
en	Equivalent Short-Circuit Input Noise Voltage	V _{DS} = 15V, V _{GS} = 0V, f = 1.0kHz		100	nV
NF	Noise Figure	$V_{DS} = 15V, V_{GS} = 0V,$ $R_{G} = 1.0m\Omega, f = 1.0kHz$ $R_{G} = 1.0k\Omega, f = 100MHz$		2 5	dB

* Pulse Test: Pulse Width $\leq 300 \mu s,$ Duty Cycle = 2%

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] <i>CROSSVOLT</i> [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FREFT [®]	Green FPS™ Green FPS™ e-Series™ GTO™ <i>i-Lo</i> ™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroFET™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® @ PDP-SPM™ Power220®	Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFT [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperSOT [™] -3 SuperSOT [™] -6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P raction TinyBoost [™] TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPOwer [™] TinyPOwer [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
FRFET®	Power220 [®]	SuperSOT™-6	VCX™
Global Power Resource SM			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.

PRODUCT STATUS DEFINITIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC