2N6249, 2N6250, & 2N6251

NPN Darlington Power Silicon Transistor

Rev. V1

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/371
- TO-3 (TO-204AA) Package

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Off Characteristics					
Collector - Emitter Breakdown Voltage	I _C = 20 mAdc, L = 42 mH, 30 - 60 GHz (see figure 10 of MIL-PRF-19500/510) 2N6249 2N6250 2N6251	V _{(BR)CEO}	Vdc	_	200 275 350
Collector - Emitter Breakdown Voltage	I _C = 20 mAdc, L = 42 mH, 30 - 60 GHz (see figure 10 of MIL-PRF-19500/510) 2N6249 2N6250 2N6251	V _{(BR)CER}	Vdc	_	225 300 375
Emitter - Base Cutoff Current	V _{EB} = 6 Vdc	I _{EBO}	μAdc	_	100
Collector - Emitter Cutoff Current	V _{CE} = 150 Vdc, 2N6249 V _{CE} = 225 Vdc, 2N6250 V _{CE} = 225 Vdc, 2N6251	I _{CEO}	mAdc	_	1.0
Collector - Emitter Cutoff Current	V _{CE} = 225 Vdc, V _{BE} = -1.5 Vdc, 2N6249 V _{CE} = 300 Vdc, V _{BE} = -1.5 Vdc, 2N6250 V _{CE} = 375 Vdc, V _{BE} = -1.5 Vdc, 2N6251	I _{CEX}	μAdc	_	100
Collector - Base Cutoff Current	V _{CE} = 300 Vdc, 2N6249 V _{CE} = 325 Vdc, 2N6250 V _{CE} = 450 Vdc, 2N6251	I _{EBO}	mAdc	_	1.0
On Characteristics ¹					
Forward Current Transfer Ratio	I _C = 10 Adc, V _{CE} = 3 Vdc 2N6249 2N6250 2N6251	H _{FE}	-	10 8 6	50 50 50
Collector - Emitter Sustaining Voltage	I_C = 10 Adc, I_B = 1.0 Adc, 2N6249 I_C = 10 Adc, I_B = 1.25 Adc, 2N6250 I_C = 10 Adc, I_B = 1.67 Adc, 2N6251	V _{CE(SAT)}	Vdc	_	1.5
Base - Emitter Saturation Voltage	I_C = 10 Adc, I_B = 1.0 Adc, 2N6249 I_C = 10 Adc, I_B = 1.25 Adc, 2N6250 I_C = 10 Adc, I_B = 1.67 Adc, 2N6251	V _{BE(SAT)}	Vdc	_	2.25

^{1.} Pulse Test: Pulse Width = 300 µs, Duty Cycle ≤2.0%.

2N6249, 2N6250, & 2N6251

NPN Darlington Power Silicon Transistor

Rev. V1

Electrical Characteristics

Parameter	Test Conditions	Symbol	Units	Min.	Max.	
Dynamic Characteristics						
Small-Signal Short-Circuit Forward Current Transfer Ratio	I _C = 1 Adc, V _{CE} = 10 Vdc, f = 1 kHz	H _{FE}	-	2.5	15.0	
Output Capacitance	$V_{CB} = 10 \text{ Vdc}, I_{E} = 0, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C_OBO	pF	_	500	
Switching Characteristics						
Turn-On Time	V_{CC} = 200 Vdc; I_{C} = 1 Adc; $I_{B}1$ = 1.0 Adc, 2N6249 $I_{B}1$ = 1.25 Adc, 2N6250 $I_{B}1$ = 1.67 Adc, 2N6251	T _{ON}	μs	_	2.0	
Turn-Off Time	V_{CC} = 200 Vdc; I_{C} = 1 Adc; I_{B} 1 = 1.0 Adc, 2N6249 I_{B} 1 = 1.25 Adc, 2N6250 I_{B} 1 = 1.67 Adc, 2N6251	T _{OFF}	μs	_	4.5	
Safe Operating Area						
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						

 $V_{CE} = 350 \text{ Vdc}, I_{C} = 0.09 \text{ Adc}, \text{ (for 2N6251 only)}$

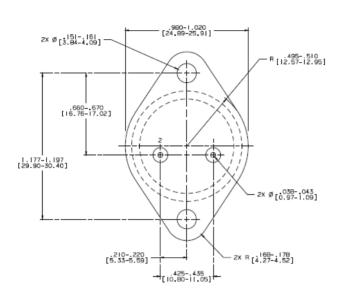
Absolute Maximum Ratings

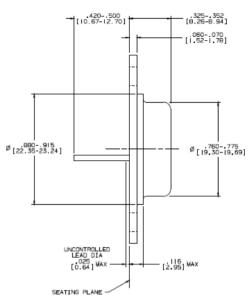
Test 3:

Ratings	Symbol	2N6249	2N6250	2N6251	Units
Collector - Emitter Voltage	V_{CEO}	200	275	350	Vdc
Collector - Base Voltage	V _{CBO}	300	375	450	Vdc
Emitter - Base Voltage	V _{EBO}	6			Vdc
Collector Current	Ic	10			Adc
Base Current	I _B	5		Adc	
Total Power Dissipation @ $T_A = +25^{\circ}C^2$ @ $T_A = +25^{\circ}C^3$	P _T	6 175		W	
Operating & Storage Temperature Range	T _{OP} , T _{STG}	-65 to +200		°C	

^{2.} Derate linearly @ 34.2 mW / °C for T_A >25°C. 3. Derate linearly @ 1.0 mW / °C for T_C >27°C.

Thermal Characteristics


Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.25°C/W



NPN Darlington Power Silicon Transistor

Rev. V1

Outline Drawing

NOTES:

- I. STANDARD HEADER TYPE SOLID BASE. 2. STANDARD LEAD FINISHIPER WIL-W-38510 TYPE X OR EQUIVALENT. 3. LEAD NOT BENT GREATER THAN 15° 4. DIMENSIONS BASED ON JEDEC STANDARD TO-3 PUBLICATION 95, PA

2N6249, 2N6250, & 2N6251

NPN Darlington Power Silicon Transistor

Rev. V1

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

4