2N6338, 2N6341

NPN High Power Silicon Transistor

Rev. V2

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/509
- TO-3 (TO-204AA) Package
- Designed for Use in Hi-Reliability Power Amplifier and Switching Circuit Applications

Electrical Characteristics (T_A = +25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I_C = 50 mA dc, 2N6338 I_C = 50 mA dc, 2N6341	$V_{(BR)CEO}$	V dc	100 150	_
Collector - Emitter Cutoff Current	V _{CE} = 50 V dc, 2N6338 V _{CE} = 75 V dc, 2N6341	I _{CEO}	μA dc	_	50 50
Emitter - Base Cutoff Current	V _{EB} = 6.0 Vdc	I _{EBO}	μA dc	_	100
Collector - Emitter Cutoff Current	V_{CE} = 100 V dc; V_{BE} = -1.5 V dc, 2N6338 V_{CE} = 150 V dc; V_{BE} = -1.5 V dc, 2N6341	I _{CEX1}	μA dc	_	10 10
Collector - Base Cutoff Current	V_{CB} = 120 V dc, 2N6338 V_{CB} = 180 V dc, 2N6341	I _{CBO}	μA dc	_	10 10
Forward Current Transfer Ratio	V_{CE} = 2.0 V dc; I_{C} = 0.5 A dc V_{CE} = 2.0 V dc; I_{C} = 10 A dc V_{CE} = 2.0 V dc; I_{C} = 25 A dc	h _{FE}	-	40 30 12	120
Collector - Emitter Saturation Voltage	$I_B = 1.0 \text{ A dc}; I_C = 10 \text{ A dc}$ $I_B = 2.5 \text{ A dc}; I_C = 25 \text{ A dc}$	V _{CE(sat)1}	V dc	_	1.0 1.8
Base - Emitter Saturation Voltage	I _B = 1.0 V dc; I _C = 10 A dc	V _{BE(sat)}	V dc	_	1.8
Collector - Emitter Cutoff Current	$T_A = +150$ °C $V_{CE} = 100 \text{ V dc}; V_{BE} = -1.5 \text{ V dc}, 2N6338$ $V_{CE} = 150 \text{ V dc}; V_{BE} = -1.5 \text{ V dc}, 2N6341$	I _{CEX2}	mA dc		1.0 1.0
Forward Current Transfer Ratio	$T_A = -55^{\circ}C$ $V_{CE} = 2.0 \text{ V dc}; I_C = 10 \text{ A dc}$	h _{FE4}	-	10	
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	V_{CE} = 10 V dc; I_{C} = 1.0 A dc; f = 10 MHz	h _{FE}		4.0	12
Open Capacitance, Open Circuit	$V_{CB} = 10 \text{ V dc}; I_E = 0; 0.1 \text{ MHz} \le f \le 1 \text{ MHz}$	C _{obo}	pF	_	450

1

NPN High Power Silicon Transistor

Rev. V2

Absolute Maximum Ratings (T_A = +25°C unless otherwise specified)

Ratings	Symbol	Value
Collector - Emitter Voltage 2N6338 2N6341	V_{CEO}	100 V dc 150 V dc
Collector - Base Voltage 2N6338 2N6341	V_{CBO}	120 V dc 180 V dc
Emitter - Base Voltage	V_{EBO}	6.0 V dc
Base Current	I _B	10 A dc
Collector Current	I _C	25 A dc
Total Power Dissipation @ $T_A = +25^{\circ}C^{(1)(2)}$ @ $T_C = +25^{\circ}C^{(1)(2)}$ @ $T_C = +100^{\circ}C$	P _T	3.5 W 200 W 112 W
Operating & Storage Temperature Range	T _{OP} , T _{STG}	-65°C to +200°C

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case (3)	$R_{ heta JC}$	0.875°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	50°C/W

- (1) Between $T_C = +25^{\circ}C$ and $T_C = +200^{\circ}C$, linear derating factor (average) = 1.14 W/°C.
- (2) Maintain voltage and current according to the safe operating area as shown on figures 2 and 3 and appropriate mounting conditions.
- (3) See figure 4 for thermal impedance graphs.

Switching Characteristics	Symbol	Max. Value
V_{CC} = 80 V; I_C = 10 A dc; I_{B1} = 1.0 A dc	t _{on}	0.5 µs
V_{CC} = 80 V; I_C = 10 A dc; I_{B1} = I_{B2} = 1.0 A dc	t _{off}	1.25 µs
V_{CC} = 80V; I_C = 10 A dc; I_{B1} = I_{B2} = 1.0 A dc	ts	1.0 µs

Safe Operating A	Area
DC Tests:	$T_C = +25 ^{\circ}C; 1Cycle; t = 1.0 s$
Test 1:	$I_{C} = 25 \text{ A dc}$; $V_{CE} = 8 \text{ V dc}$
Test 2:	$I_{C} = 14 \text{ A dc}$; $V_{CE} = 14 \text{ V dc}$
Test 3:	$I_{\rm C}$ = 100 mA dc; $V_{\rm CE}$ = 100 V dc 2N6338
Test 3:	$I_C = 66 \text{ mA dc}$; $V_{CE} = 150 \text{ V dc}$ 2N6341

NPN High Power Silicon Transistor

Rev. V2

Outline Drawing (TO-3)

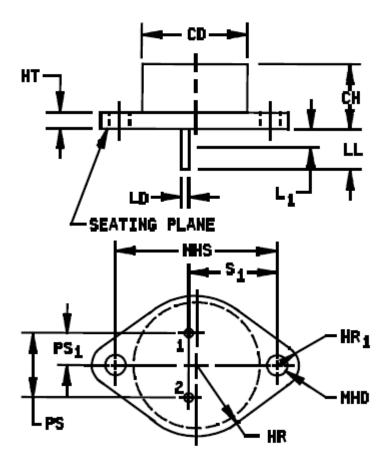


FIGURE 1. Physical dimensions (similar to TO-204AA formally TO-3).

NPN High Power Silicon Transistor

Rev. V2

Outline Drawing (TO-3)

Ltr	Dimensions				Notes
	Inches		Millimeters		
	Min	Max	Min	Max	
CD		.875		22.23	
СН	.250	.360	6.35	9.14	
HR	.495	.525	12.57	13.33	4
HR ₁	.131	.188	3.33	4.78	4
HT	.060	.135	1.52	3.43	
LD	.038	.043	0.97	1.09	4, 6
LL	.312	.500	7.92	12.7	
L ₁		.050		1.27	6
MHD	.151	.165	3.83	4.19	4
MHS	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	3
PS ₁	.205	.225	5.21	5.72	3
S ₁	.655	.675	16.64	17.15	
Notes	1, 2, 5, 7		1, 2, 5, 7		

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- These dimensions should be measured at points .050 inch (1.27 mm) +.005 inch (0.13 mm) -.000 inch (0.00 mm) below seating plane. When gauge is not used, measurement will be made at the seating plane.
- Two places
- The seating plane of the header shall be flat within .001 inch (0.03 mm) concave to .004 inch (0.10 mm) convex inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- 6. Lead diameter shall not exceed twice LD within L1.
- 7. Lead designation shall be as follows:

Lead Number	
1	Emitter
2	Base
Case	Collector

FIGURE 1. Physical dimensions (similar to TO-204AA formally TO-3) - Continued.

2N6338, 2N6341

NPN High Power Silicon Transistor

Rev. V2

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.