

Qualified Levels: ROHS **NPN Darlington Power Silicon Transistor** JAN, JANTX, and Available on JANTXV commercial Qualified per MIL-PRF-19500/472 versions DESCRIPTION This high speed NPN transistor is military qualified up to the JANTXV level. Important: For the latest information, visit our website http://www.microsemi.com. **TO-213AA FEATURES** (TO-66) Package JEDEC registered 2N6352 and 2N6353 . JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/472 (See part nomenclature for all available options) RoHS compliant versions available (commercial grade only) **APPLICATIONS / BENEFITS** Military and other high reliability applications High frequency response TO-213AA case with isolated terminals **MAXIMUM RATINGS** @ $T_c = +25 \,^{\circ}C$ unless otherwise noted Parameters/Test Conditions Symbol Value Unit °C T_J and T_{STG} Junction and Storage Temperature -65 to +200 °C/W Thermal Resistance Junction-to-Case Rejc 4.0 Collector-Emitter Voltage 2N6352 V_{CEO} 80 V 2N6353 150 MSC – Lawrence V Collector-Base Voltage 2N6352 V_{CBO} 80 6 Lake Street, 2N6353 150 Lawrence, MA 01841 V Emitter-Base Voltage V_{EBO1} 12 1-800-446-1158 (978) 620-2600 6.0 V_{EBO2} Fax: (978) 689-0803 @ $T_A = +25 °C$ ⁽¹⁾ **Total Power Dissipation** Р⊤ 2.0 W @ $T_{\rm C}$ = +100 °C ⁽²⁾ 25 MSC – Ireland **Base Current** I_B 0.5 А Gort Road Business Park, Collector Current 5 А lc

<u>Notes</u>: 1. Derate linearly 11.4 mW/°C for $T_A > +25$ °C

- 2. Derate linearly 250 mW/°C for $T_c > +100$ °C
- 3. Applies for $t_p \le 10$ ms, duty cycle ≤ 50 percent

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:

www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Industry standard TO-213AA (3-pin TO-66), hermetically sealed
- FINISH: Solder dipped tin-lead over nickel plated alloy 52 or RoHS compliant matte-tin plating (on commercial grade only). Solderable per MIL-STD-750 method 2026.
- POLARITY: NPN (see schematic)
- MOUNTING HARDWARE: Consult factory for optional insulator and sheet metal screws
- WEIGHT: Approximately 6 grams
- See package dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ι _C	Collector current: The value of the dc current into the collector terminal.				
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.				
Tc	Case temperature: The temperature measured at a specified location on the case of a device.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V _{cc}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V _{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ $T_A = +25 \,^{\circ}C$ unless otherwise noted

Characteristics	Symbol	Min.	Max.	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage I _C = 25 mA , R _{B1E} = 2.2 k Ω , R _{B2E} = 100 Ω	2N6352 2N6353	$V_{(BR)CEO}$	80 150		V
Collector-Emitter Breakdown Voltage $I_E = 12 \text{ mA}$, base 1 open $I_E = 12 \text{ mA}$, base 2 open		$V_{(BR)EBO}$	6.0 12		V
$ Collector-Emitter Cutoff Current \\ V_{CE} = 80 \text{ V}, V_{EB1} = 2 \text{ V}, \text{R}_{B2E} = 100 \Omega \\ V_{CE} = 150 \text{ V}, \text{V}_{EB1} = 2 \text{ V}, \text{R}_{B2E} = 100 \Omega $	2N6352 2N6353	I _{CEX}		1.0	μΑ

ON CHARACTERISTICS

Forward-Current Transfer Ratio I_{C} = 1.0 A, V_{CE} = 5.0 V, R_{B2E} = 1 k Ω	2N6352		2,000		
$I_{C} = 5.0 \text{ A}, V_{CE} = 5.0 \text{ V}, R_{B2E} = 100 \Omega$	2N6353 2N6352 2N6353	hFE	2,000 1,000	10,000 10,000	
$I_{C} = 10.0 \text{ A}, V_{CE} = 5.0 \text{ V}, R_{B2E} = 100 \Omega$	2N6352 2N6353		400 200		
		$V_{\text{CE(sat)}}$		1.5 2.5	V
Base-Emitter Voltage Non-saturated V_{CE} = 5.0 V, I _C = 5.0 A, R _{B2E} = 100 Ω		V _{BE}		2.5	V

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio I_{C} = 1.0 A, V_{CE} = 10.0 V, f = 10 MHz, R_{B2E} = 100 Ω	hfe	5	25	
Output Capacitance $V_{CB} = 10 \text{ V}, 100 \text{ kHz} \le f \le 1 \text{ MHz}, \text{ base 2 open}$	Cobo		120	pF

ELECTRICAL CHARACTERISTICS @ $T_c = 25$ °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Turn-On Time			
$V_{CC} = 30 \text{ V}, I_{C} = 5.0 \text{ A}$	t _{on}	0.5	μS
Turn-Off Time			
$V_{CC} = 30 \text{ V}, \text{ I}_{C} = 5.0 \text{ A}$	t _{off}	1.2	μS

SAFE OPERATING AREA (See Figures 1 and 2 and MIL-STD-750, Test Method 3053)

 $\begin{array}{l} \textbf{DC Tests} \\ T_{C} = +100 \ ^{o}\text{C}, \ t \geq 1 \ \text{second}, \ 1 \ \text{Cycle}; \ t_{r} + t_{f} = 10 \ \mu\text{s}, \ R_{B2E} = 100 \ \Omega \\ \hline \textbf{Test 1} \\ V_{CE} = 5.0 \ \text{V}, \ I_{C} = 5.0 \ \text{A} \\ \hline \textbf{Test 2} \\ V_{CE} = 10 \ \text{V}, \ I_{C} = 2.5 \ \text{A} \\ \hline \textbf{Test 3} \\ V_{CE} = 80 \ \text{V}, \ I_{C} = 95 \ \text{mA} \ (2\text{N6352}) \\ \hline \textbf{Test 4} \\ V_{CE} = 150 \ \text{V}, \ I_{C} = 35 \ \text{mA} \ (2\text{N6353}) \end{array}$

SAFE OPERATING AREA

SAFE OPERATING AREA (continued)

Safe Operating Area For Switching Between Saturation And Cutoff (unclamped inductive load)

PACKAGE DIMENSIONS

Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
CD	-	0.620	-	15.75	
СН	0.250	0.340	6.35	8.64	
HR	-	0.350	-	8.89	
HR1	0.115	0.145	2.92	3.68	
HT	0.050	0.075	1.27	1.91	3
LD	0.028	0.034	0.711	0.863	4
LL	0.360	0.500	9.14	12.70	4
LL1	-	0.050	-	1.27	4
MHD	0.142	0.152	3.61	3.86	
MHS	0.958	0.962	24.33	24.43	
PS	0.190	0.210	4.83 5.33		
PS1	0.093	0.105	2.36	2.67	
S1	0.570	0.590	14.48	14.99	
Т	0.190	0.210	4.83	5.33	
T1					
T2					
T3					
Case					

NOTES:

- 1. Dimensions are in inches. Millimeters are given for information only.
- 2. Internal resistance (typically 750 ohms). This resistor is optional.
- 3. The outline contour is optional.
- 4. Dimension does not include sealing flanges.
- 5. All leads.
- 6. Terminal designation is as follows: 1 emitter, 2 base (B1), 3 base (B2). The collector shall be connected to the case.
- 7. Shape of capweld flange is optional and cannot extend beyond dimension HR.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

