

NPN High Power Silicon Transistor

Rev. V3

Features

- Available in JAN, JANTX, JANTXV per MIL-PRF-19500/537
- TO-3 (TO-204AA) Package
- Designed for High Voltage, High Speed Switching Applications
- Ideal for Regulators, Inverters and Deflection Circuits

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Collector - Emitter Breakdown Voltage	I _C = 200 mA dc 2N6674 2N6675	$V_{(BR)CEO}$	Vdc	300 400	_
Collector - Emitter Cutoff Current	V_{CE} = 450 Vdc; V_{BE} = -1.5 V dc, 2N6674 V_{CE} = 650 Vdc; V_{BE} = -1.5 V dc, 2N6675	I _{CEX1}	mA dc	_	0.1
Emitter - Base Cutoff Current	V _{EB} = 7 V dc	I _{EBO}	mA dc	-	2.0
Collector - Base Cutoff Current	V _{CB} = 450 V dc, 2N6674 V _{CB} = 650 V dc, 2N6675	I _{CBO}	mA dc	_	1.0
Forward Current Transfer Ratio	V_{CE} = 3 V dc; I_C = 1 A dc V_{CE} = 2 V dc; I_C = 10 A dc	h _{FE}	-	15 8	40 20
Collector - Emitter Voltage (Saturated)	$I_C = 10 \text{ A dc}; I_B = 2 \text{ A dc}$ $I_C = 15 \text{ A dc}; I_B = 5 \text{ A dc}$	V _{CE(sat)1}	V dc	_	1.0 5.0
Base - Emitter Saturation Voltage	$I_C = 10 \text{ A dc}; I_B = 2 \text{ A dc}$	$V_{\text{BE(sat)}}$	V dc	_	1.5
Collector - Emitter Cutoff Current	T _A = +125°C V _{CE} = 450 Vdc; V _{BE} = -1.5 V dc, 2N6674 V _{CE} = 650 Vdc; V _{BE} = -1.5 V dc, 2N6675	I _{CEX2}	mA dc	_	1.0
Collector - Emitter Voltage (Saturated)	$T_A = +125^{\circ}C$ $I_C = 10 \text{ A dc}; I_B = 2 \text{ A dc}$	V _{CE(sat)3}	V dc	_	2.0
Forward Current Transfer Ratio	$T_A = -55^{\circ}C$ $V_{CE} = 2 \text{ V dc}; I_C = 10 \text{ A dc}$	h _{FE3}	ı	4	
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio	$V_{CE} = 10 \text{ Vdc}; I_{C} = 1 \text{ A dc}; f = 5 \text{ MHz}$	h _{FE}	-	3	10
Output Capacitance	$V_{CB} = 10 \text{ V dc}; I_E = 0; 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C_{obo}	pF	150	500

NPN High Power Silicon Transistor

Rev. V3

Electrical Characteristics (T_A = +25°C unless otherwise noted)

Parameter	Test Conditions	Symbol	Units	Min.	Max.
Switching Characteristics					
Delay Time Rise Time Storage Time Fall Time Cross-Over Time	See figure 3 of MIL-PRF-19500/537	t _d t _r t _s t _f t _c	μs	_	0.1 0.6 2.5 0.5 0.5

Absolute Maximum Ratings

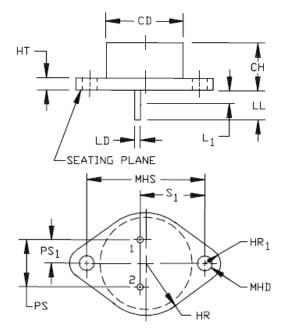
Ratings	Symbol	2N6674 2N6675		Units	
Collector - Emitter Voltage	V _{CEO}	300	400	V dc	
Collector - Base Voltage	V _{CBO} , V _{CBX}	450	650	V dc	
Emitter - Base Voltage	V _{EBO}	•	V dc		
Collector Current	Ic	1	A dc		
Base Current	I _B		A dc		
Total Power Dissipation $^{(1)}$ @ $T_A = +25^{\circ}C$ @ $T_A = +25^{\circ}C$	P _T	6 175	6 175	W	
Operating & Storage Temperature Range	T _{OP} , T _{STG}	-65 to	°C		

⁽¹⁾ Derate linearly @ 1.0 mW/°C for $T_C > 25$ °C. Derate linearly @ 34.2 mW/°C for $T_A > 25$ °C.

Thermal Characteristics

Characteristics	Symbol	Max. Value
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1°C/W

Safe Operating Area	
DC Tests:	T _C = +25°C, I Cycle, t = 1.0 s (see figure 4 of MIL-PRF-19500/537)
Test 1: Test 2: Test 3: Test 4:	$V_{CE} = 11.7 \text{ Vdc}, I_{C} = 15 \text{ A dc}$ $V_{CE} = 30 \text{ Vdc}, I_{C} = 5.9 \text{ A dc}$ $V_{CE} = 100 \text{ Vdc}, I_{C} = 0.25 \text{ A dc}$ $V_{CE} = 25 \text{ Vdc}, I_{C} = 7 \text{ A dc}$
Test 5:	V_{CE} = 300 Vdc, I_{C} = 20 mA dc, (for 2N6674) V_{CE} = 400 Vdc, I_{C} = 10 mA dc, (for 2N6675)



NPN High Power Silicon Transistor

Rev. V3

Outline Drawing (TO-3)

	Dimensions				
Symbol	Incl	ches Millimeters		Note	
	Min	Max	Min	Max	
CD		.875		22.23	
CH	.270	.380	6.86	9.65	
HR	.495	.525	12.57	13.34	3
HR ₁	.131	.188	3.33	4.78	3
HT	.060	.135	1.52	3.43	
LD	.038	.053	0.97	1.35	3, 4
LL	.312	.500	7.92	12.70	
L ₁		.050		1.27	4
MHD	.151	.165	3.84	4.19	3
MHS	1.177	1.197	29.90	30.40	
PS	.420	.440	10.67	11.18	5, 6
PS ₁	.205	.225	5.21	5.72	5,6
S ₁	.655	.675	16.64	17.15	

NOTES:

- 1. Dimensions are in inches. Millimeters are given for general information only.
- Pin out: Terminal 1 = base, terminal 2 = emitter, case = collector. The collector shall be internally connected to the case.
- 3. Two places.
- 4. Lead diameter shall not exceed twice LD within L1.
- These dimensions should be measured at points .050 .055 inch (1.27 mm 1.40 mm) below seating plane. When gauge is not used, measurement will be made at seating plane.
- The seating plane of the header shall be flat within .001 inch (0.03 mm) inside a .930 inch (23.62 mm) diameter circle on the center of the header and flat within .001 inch (0.03 mm) concave to .006 inch (0.15 mm) convex overall.
- In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

FIGURE 1. Physical dimensions of of TO-204AD (formerly TO-3) package.

2N6674 & 2N6675

NPN High Power Silicon Transistor

Rev. V3

VPT COMPONENTS. ALL RIGHTS RESERVED.

Information in this document is provided in connection with VPT Components products. These materials are provided by VPT Components as a service to its customers and may be used for informational purposes only. Except as provided in VPT Components Terms and Conditions of Sale for such products or in any separate agreement related to this document, VPT Components assumes no liability whatsoever. VPT Components assumes no responsibility for errors or omissions in these materials. VPT Components may make changes to specifications and product descriptions at any time, without notice. VPT Components makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF VPT COMPONENTS PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. VPT COMPONENTS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CON-TAINED WITHIN THESE MATERIALS. VPT COMPONENTS SHALL NOT BE LIABLE FOR ANY SPECIAL, IN-DIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVE-NUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

VPT Components products are not intended for use in medical, lifesaving or life sustaining applications. VPT Components customers using or selling VPT Components products for use in such applications do so at their own risk and agree to fully indemnify VPT Components for any damages resulting from such improper use or sale.