2N6908 SERIES

N-Channel JFET Circuits

The 2N6908 Series is much more than a JFET. The addition of back-to-back diodes effectively clamps input "over-voltage" while a high-performance JFET provides an effective amplification stage. With the addition of a source resistor, a complete common-source amplifier is created which provides both low leakage and very low noise. This performance is especially effective as a small signal pre-amplifier as well as impedance matching between low and high impedance sources. Finally, its TO-72 package is hermetically sealed and is available with full military screening per MIL-S-19500. (See Section 1.)

For additional design information please see performance curves NBB, which are located in Section 7.

SIMILAR PRODUCTS

- SOT-143, See SST6908 Series
- Chips, Order 2N69XXCHP

PART NUMBER	V _{GS(OFF)} MAX (V)	V _(BR) GSS MIN (V)	9fs MIN (μS)	I _{DSS} MAX (mA)		
2N6908	-1.8	-30	100	2		
2N6909	-2.3	-30	400	3.5		
2N6910	-3.5	-30	1200	5		

TO-72

BOTTOM VIEW

3 GATE 4 DIODES

ABSOLUTE MAXIMUM RATINGS ($T_A = 25 \degree C$ unless otherwise noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMIT	UNITS	
Gate-Drain Voltage	V _{GD}	-30		
Gate-Source Voltage	V _{GS}	-30	V	
Forward Gate Current	۱ _G	10	mA	
Power Dissipation	PD	300	mW	
Power Derating		2.4	mW/°C	
Operating Junction Temperature	TJ	-55 to 150		
Storage Temperature	T _{stg}	–55 to 200	°C	
Lead Temperature (1/16" from case for 10 seconds)	ΤL	300		

2N6908 SERIES

ELECTRICAL CHARACTERISTICS ¹		LIMITS								
				2N6	2N6908		2N6909		2N6910	
PARAMETER	SYMBOL	TEST CONDITIONS	TYP ²	MIN	мах	MIN	мах	MIN	мах	UNIT
STATIC										
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_{G} = -1 \mu A, V_{DS} = 0 V$ $V_{G4} = 0 V$	-50	-30		-30		-30		
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D = 1 nA V _{G4} = 0 V		-0.3	-1.8	-0.6	-2.3	-0.9	-3.5	V
Saturation Drain Current ³	IDSS	$V_{DS} = 10 V, V_{GS} = 0 V$ $V_{G4} = 0 V$		0.05	2	0.2	3.5	0.6	5	mA
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 V$	-2		-25		-25		-25	pА
		$V_{G4}^{DS} = 0 V \qquad T_{A} = 125^{\circ}C$	-1							nA
Gate Operating Current	۱ _G	V _{DG} = 15 V, I _D = 50 µA	-2							
Forward Gate Diode Current 4	۱ _{G4}	V _{G4} = ± 100 mV	<u>+</u> 1		<u>+</u> 10		<u>+</u> 10		<u>+</u> 10	рд
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = \pm 0.5 \text{ mA}$, $V_{DS} = 0 \text{ V}$ $V_{G4} = 0 \text{ V}$	±0.7		±1.2		±1.2		±1.2	v
DYNAMIC										
Common-Source Forward Transconductance	g _{fs}	V _{DS} = 15 V, V _{GS} = 0 V		0.1	3	0.4	3.5	1.2	4	mS
Common-Source Output Conductance	g _{os}	V _{G4} = 0 V, f = 1 kHz			50		75		100	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V V _{G4} = 0 V, f = 1 MHz	3.2		5		5		5	pF
Common-Source Reverse Transfer Capacitance	C _{rss}		1.5		2		2		2	
Equivalent Input Noise Voltage	ēn	$V_{DS} = 10 V, V_{GS} = 0 V$ f = 100 Hz	12		25		25		25	nV VHz
Noise Figure	NF	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 kHz R _G = 1 M Ω	0.1		1		1		1	dB

NOTES: 1. T_A = 25 °C unless otherwise noted.
2. For design aid only, not subject to production testing.
3. Pulse test; PW = 300 µs, duty cycle ≤ 3%.
4. Forward diode current when a voltage is applied between gate and fourth lead.