2N834 (SILICON) 2N835

CASE 22 (TO-18)

NPN silicon epitaxial transistors for high-speed switching applications.

Collector connected to case

MAXIMUM RATINGS

Rating	Symbol	2N834	2N835	Unit
Collector-Emitter Voltage	v _{CES}	30	20	Vdc
Collector-Base Voltage	v _{cb}	40	25	Vdc
Emitter-Base Voltage	v _{EB}	5.0	3.0	Vdc
Collector Current-Continuous Peak	^I C	200		mAdc
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	P _D	0.3 2.0		Watt mW/ ⁰ C
Total Device Dissipation @ T _C = 25 ⁰ C Derate above 25 ⁰ C	P _D	1.0 6.67		Watt mW/ ⁰ C
Total Device Dissipation @ T _C = 100 ⁰ C Derate above 100 ⁰ C	P _D	0.5 6.67		Watt mW/ ⁰ C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +175		°c

FIGURE 1 — TURN-ON AND TURN-OFF TIME MEASUREMENT CIRCUIT

FIGURE 2 — CHARGE STORAGE TIME CONSTANT MEASUREMENT CIRCUIT

NOTE: ALL SWITCHING TIMES MEASURED WITH LUMATRON MODEL 420 SWITCHING TIME TEST SET OR EQUIVALENT.

ELECTRICAL CHARACTERISTICS (T_A= 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS				••••••••••••••••••••••••••••••••••••••	
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu \text{Adc}, I_E = 0$)	2N834 2N835	^{вv} сво	40 25	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu \text{Adc}, I_C = 0$)	2N834 2N835	^{BV} EBO	5.0 3.0		Vdc
Collector Cutoff Current ($V_{CE} = 30 Vdc, V_{BE} = 0$)	2N834	ICES	-	10	μAdc
$(V_{CE} = 20 \text{ Vdc}, V_{BE} = 0)$	2N835		-	10	
Collector Cutoff Current ($V_{CB} = 20 Vdc, I_E = 0$)		^I сво	-	0.5	μ Adc
$(V_{CB} = 20 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$			-	30	
ON CHARACTERISTICS				:	
243		T			

DC Current Gain ⁽¹⁾ (I _C = 10 mAdc, V _{CE} = 1 Vdc)	2N834 2N835	h _{FE}	25 20	-	-
Collector-Emitter Saturation Voltage (I _C = 10 mAdc, I _B = 1 mAdc)	2N834 2N835	(V _{CE(sat)}	-	0. 25 0. 30	Vdc
$(I_{C} = 50 \text{ mAdc}, I_{B} = 5 \text{ mAdc})^{(1)}$	2N834 2N835		-	0. 4 -	
Base-Emitter Saturation Voltage ($I_C = 10 \text{ mAdc}, I_B = 1 \text{ mAdc}$)	· ·	V _{BE(sat)}	-	0.9	Vdc

DYNAMIC CHARACTERISTICS

Current-Gain — Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N834	350		MHz
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 15 \text{ Vdc}, f = 100 \text{ MHz})$	2N835	300	-	
High-Frequency Current Gain (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	2N834 ^h fe	3.5	-	-
$(I_{C} = 10 \text{ mAdc}, V_{CE} = 15 \text{ Vdc}, f = 100 \text{ MHz})$	2N835	3.0	-	
Output Capacitance ($V_{CB} = 10$ Vdc, $I_E = 0$, f = 100 kHz)	С _{ор}	· -	4.0	pF
Charge-Storage Time Constant (Figure 2) ($I_C = 10 \text{ mAdc}, I_{B1} = I_{B2} = 10 \text{ mAdc}$)	2N834 t _s 2N835		25 35	ns
Turn-On Time (Figure 1) (I _C = 10 mAdc, I _{B1} = 3 mAdc, I _{B2} = 1 mAdc)	2N834 t _{on} 2N835	-	33 20	ns
Turn-Off Time (Figure 1) (I _C = 10 mAdc, I _{B1} = 3 mAdc, I _{B2} = 1 mAdc)	2N834 2N835		75 35	ns

⁽¹⁾Pulse Test: Pulse Width ≤ 12 ms, Duty Cycle $\leq 2\%$

2-106