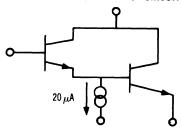

2N998 (SILICON)

CASE 20(8) (TO-72)

Darlington amplifier containing two NPN silicon annular transistors is designed for applications requiring very high-gain, low-noise, and high-input impedance.


MAXIMUM RATINGS

Rating	Symbol	2N998	Unit
Collector-Emitter Voltage	V _{CEO}	60	Vdc
Collector-Base Voltage	v _{CB}	100	Vdc
Emitter-Base Voltage	v_{EB}	15	Vdc
Collector Current	I _C	500	mAdc
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	PD	0.5 2.86	Watt mW/°C
Total Device Dissipation @ T _C = 25 ^o C Derate above 25 ^o C	P _D	1.8 10.3	Watts mW/ ^O C
Operating Junction Temperature	${ t T}_{ t J}$	+200	°C
Storage Temperature Range	T _{stg}	-65 to +200	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Sustaining Voltage (1) ($I_C = 30 \text{ mAdc}, I_B = 0$)	BV _{CEO(sus)}	60	_	Vdc
Collector-Base Breakdown Voltage $(I_C = 100 \mu Adc, I_E = 0)$	вусво	100	_	Vdc
Emitter-Base Breakdown Voltage $(I_E = 100 \mu \text{Adc}, I_C = 0)$	BV _{EBO}	15		Vdc
Collector Cutoff Current (V _{CB} = 90 Vdc, I _E = 0)	I _{CBO}	_	0.01	μ Ad c
$(V_{CB} = 90 \text{ Vdc}, I_E = 0, T_A = 150^{\circ}\text{C})$		_	15	
Emitter Cutoff Current (V _{BE} = 10 Vdc, I _C = 0)	I _{EBO}	_	0.01	μ Ad c
ON CHARACTERISTICS				
DC Current Gain (1) (I _C = 1 mAdc, V _{CE} = 5 Vdc)	h _{FE}	800	_	_
$(I_C = 10 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$ $(I_C = 100 \text{ mAdc}, V_{CE} = 5 \text{ Vdc})$		1,600 2,000	8,000	
$(I_C = 10 \text{ mAdc}, V_{CE} = 5 \text{ Vdc}, \text{ measured}$ across each transistor within the device)		25	_	
DYNAMIC CHARACTERISTICS				
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 140 kHz)	c _{ob}	_	30	pF
Input Capacitance ($V_{BE} = 0.5 \text{ Vdc}$, $I_{C} = 0$, $f = 140 \text{ kHz}$)	C _{ib}		50	pF
Small-Signal Current Gain ($I_C = 1 \text{ mAdc}$, $V_{CE} = 5 \text{ Vdc}$, $f = 1 \text{ kHz}$)	h _{fe}	1,000	_	_
Noise Figure** (I _C = 0.1 mAdc, V _{CE} = 10 Vdc, R _S = 5 kohms, f = 1 kHz, Bandwidth = 200 Hz)	NF**	_	6.0	dВ

FIGURE 1 — NOISE-FIGURE TEST CIRCUIT

⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle = 1% **Measured with constant current supply of 20 μ Adc connected to the emitter of the input transistor. (See Figure 1)