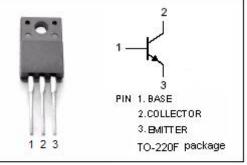


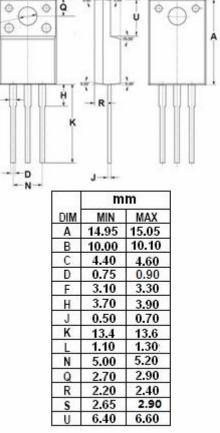
isc Silicon NPN Power Transistors

2SC4981


DESCRIPTION

- · Collector-Emitter Sustaining Voltage-
 - : V_{CEO(SUS)}= 80V(Min)
- Low Collector Saturation Voltage
- 100% avalanche tested
- · Minimum Lot-to-Lot variations for robust device performance and reliable operation

APPLICATIONS


• Designed for use in drivers such as DC/DC converters and actuators.

ABSOLUTE MAXIMUM RATINGS(T_a=25℃)

SYMBOL	PARAMETER	VALUE	UNIT
V _{CBO}	Collector-Base Voltage	100	v
VCEO	Collector-Emitter Voltage	80	v
V _{EBO}	Emitter-Base Voltage	7	V
lc	Collector Current-Continuous	7	А
Ісм	Collector Current-Peak	14	А
Ι _Β	Base Current-Continuous	1.5	А
I _{BM}	Base Current-Peak	2	А
P⊤	Total Power Dissipation @ T _c =25℃	25	W
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-55~150	°C

Ó Θ F

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER		UNIT
R _{th j-c}	Thermal Resistance,Junction to Case		°C/W

1

INCHANGE SEMICONDUCTOR

isc Silicon NPN Power Transistors

2SC4981

ELECTRICAL CHARACTERISTICS

$T_{\text{C}}\text{=}25\,^{\circ}\!\!\!\!\!\!\mathrm{C}$ unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	МАХ	UNIT
V _{CEO(SUS)}	Collector-Emitter Sustaining Voltage	I _C = 0.1A; I _B = 0	80			V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 3.5A; I _B = 0.2A			0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 3.5A; I _B = 0.2A			1.2	V
I _{CBO}	Collector Cutoff Current	At rated Voltage			100	μA
ICEO	Collector Cutoff Current	At rated Voltage			100	μA
I _{EBO}	Emitter Cutoff Current	At rated Voltage			100	μA
h _{FE}	DC Current Gain	I _C = 3.5A ; V _{CE} = 2V	70			
fī	Current-Gain—Bandwidth Product	I _C = 0.7A ; V _{CE} = 10V		50		MHz

Switching times

t _{on}	Turn-on Time			0.3	μ \$
t _{stg}	Storage Time	$\begin{array}{l} I_{C}\text{=}~3.5\text{A},~I_{B1}\text{=}~0.35\text{A};~I_{B2}\text{=}~-0.35\text{A};\\ \textbf{R}_{L}\text{=}~8~\Omega~;~\textbf{V}_{BB2}\text{=}~4\text{V} \end{array}$		1.5	μ \$
t _f	Fall Time			0.2	μS

NOTICE:

ISC reserves the rights to make changes of the content herein the datasheet at any time without notification. The information contained herein is presented only as a guide for the applications of our products.

ISC products are intended for usage in general electronic equipment. The products are not designed for use in equipment which require specialized quality and/or reliability, or in equipment which could have applications in hazardous environments, aerospace industry, or medical field. Please contact us if you intend our products to be used in these special applications.

ISC makes no warranty or guarantee regarding the suitability of its products for any particular purpose, nor does ISC assume any liability arising from the application or use of any products, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

2