Silicon Transistor 2SC5338 # NPN EPITAXIAL SILICON TRANSISTOR HIGH FREQUENCY LOW DISTORTION AMPLIFIER #### **DESCRIPTION** The 2SC5338 is designed for a low distortion and low noise RF amplifier with an operation on the low supply voltage ($V_{CE} = 5 \text{ V}$). This low distortion characteristics is suitable for the CATV, tele-communication, and such. #### **FEATURES** - High gain $|S_{21}|^2 = 10 \text{ dB TYP.}$, $@V_{CE} = 5 \text{ V}$, Ic = 50 mA, f = 1 GHz - Low distortion and low voltage $IM_2 = -55 \text{ dB TYP., } IM_3 = -76 \text{ dB TYP.}$ $@V_{CE} = 5 \text{ V, } Ic = 50 \text{ mA, } V_{in} = 105 \text{ dB } \mu\text{V/75 } \Omega$ - New power mini-mold package version of a 4-pin type gain-improved on the 2SC4703 ### ABSOLUTE MAXIMUM RATINGS $(T_A = 25 \text{ °C})$ | Parameter | Symbol | Rating | Unit | |------------------------------|----------------------|-------------|------| | Collector to Base Voltage | V _{CBO} | 25 | V | | Collector to Emitter Voltage | V _{CEO} | 12 | V | | Emitter to Base Voltage | V _{EBO} | 2.5 | V | | Collector Current | Ic | 150 | mA | | Total Power Dissipation | P _T Note1 | 1.8 | W | | Junction Temperature | Tj | 150 | °C | | Storage Temperature | T_{stg} | -65 to +150 | °C | #### PACKAGE DIMENSIONS (in millimeters) PIN CONNECTIONS E: Emitter C: Collector B: Base **Note 1.** $0.7 \text{ mm} \times 16 \text{ cm}^2$ double sided ceramic substrate (Copper plaiting) # ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C) | Parameter | Symbol | Test Conditions | ; | MIN. | TYP. | MAX. | Unit | |------------------------------|--------------------------|---|------------------------|-------------|------|------|------| | Collector Cutoff Current | I _{CBO} | V _{CB} = 20 V, I _E = 0 | | | | 1.5 | μΑ | | Emitter Cutoff Current | I _{EBO} | V _{EB} = 2 V, I _C = 0 | | | | 1.5 | μΑ | | DC Current Gain | h _{FE} | $V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA}^{\text{Note2}}$ | | 50 | | 250 | | | Gain Bandwidth Product | f _T | $V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA}$ | | 6.0 | | GHz | | | Feed-back Capacitance | C _{re} | $V_{CB} = 5 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}^{Not}$ | | 1.0 | 2.0 | pF | | | Insertion Power Gain | $\left S_{21e}\right ^2$ | $V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA}, f = 1 \text{ G}$ | 8.5 | 10 | | dB | | | Nose Figure | NF | $V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA}, f = 1 \text{ G}$ | Hz | | | 3.5 | dB | | 2nd Order
Intermoduration | IM_2 | $I_C = 50 \text{ mA}$ | V _{CE} = 5 V | | - 55 | | dB | | Distortion | | $V_{in} = 105 \text{ dB } \mu \text{V}/75 \Omega$
f = 190 MHz - 90 MHz | V _{CE} = 10 V | | - 63 | | | | 3rd Order
Intermoduration | 11/13 | V _{CE} = 5 V | | - 76 | | dB | | | Distortion | | $V_{in} = 105 \text{ dB } \mu V/75 \Omega$
f = 2 × 190 MHz - 200 MHz | V _{CE} = 10 V | | - 83 | | | **Notes 2**. Pulse measurement: PW \leq 350 μ S, Duty Cycle \leq 2 % 3. Mesured by a 3-terminal bridge. Emitter and Case should be connected to the guard terminal. # h_{FE} Classification | Rank | SH | SF | SE | |-----------------|-----------|-----------|------------| | Marking | SH | SF | SE | | h _{FE} | 50 to 100 | 80 to 160 | 125 to 250 | 2 # TYPICAL CHARACTERISTICS (T_A = 25 °C) $V_{CE} = 5 \text{ V}, I_{C} = 50 \text{ mA}$ | | | S ₁₁ | | S ₂₁ | | S ₁₂ | | S ₂₂ | |---------|------|-----------------|--------|-----------------|------|-----------------|------|-----------------| | f (MHz) | MAG | ANG | MAG | ANG | MAG | ANG | MAG | ANG | | 100 | .642 | - 61.5 | 19.689 | 138.5 | .026 | 64.9 | .603 | - 39.7 | | 200 | .521 | - 103.0 | 13.393 | 116.8 | .045 | 53.1 | .461 | - 62.1 | | 300 | .464 | - 123.8 | 9.708 | 106.3 | .053 | 57.8 | .359 | - 72.8 | | 400 | .428 | - 137.2 | 7.480 | 99.5 | .059 | 62.1 | .304 | - 75.7 | | 500 | .408 | - 147.7 | 6.078 | 94.5 | .072 | 63.7 | .289 | - 79.4 | | 600 | .390 | - 154.3 | 5.104 | 91.3 | .080 | 65.9 | .275 | - 83.2 | | 700 | .374 | – 161.1 | 4.394 | 88.6 | .088 | 66.2 | .277 | - 82.8 | | 800 | .360 | - 163.9 | 3.880 | 86.2 | .097 | 68.9 | .261 | - 85.0 | | 900 | .348 | - 168.0 | 3.527 | 84.5 | .110 | 72.1 | .271 | - 81.6 | | 1000 | .351 | - 175.1 | 3.224 | 83.3 | .119 | 72.0 | .268 | - 79.9 | | 1100 | .329 | 179.8 | 3.078 | 81.8 | .125 | 76.4 | .276 | - 75.5 | | 1200 | .328 | – 179.9 | 3.111 | 78.9 | .144 | 73.7 | .321 | - 75.3 | | 1300 | .319 | 171.9 | 2.914 | 69.6 | .157 | 77.8 | .320 | - 82.4 | | 1400 | .297 | 168.9 | 2.501 | 66.2 | .166 | 75.7 | .291 | - 83.6 | | 1500 | .307 | 165.2 | 2.285 | 65.3 | .182 | 77.7 | .325 | - 83.4 | | 1600 | .308 | 159.6 | 2.115 | 63.9 | .192 | 77.7 | .305 | - 82.7 | | 1700 | .303 | 156.6 | 1.993 | 62.9 | .201 | 77.4 | .313 | - 81.7 | | 1800 | .309 | 154.1 | 1.880 | 62.0 | .219 | 75.5 | .327 | - 83.5 | | 1900 | .312 | 150.3 | 1.786 | 60.8 | .222 | 74.9 | .321 | - 86.3 | | 2000 | .315 | 148.4 | 1.704 | 59.9 | .242 | 75.9 | .341 | - 91.2 | $V_{CE} = 5 \text{ V}, I_{C} = 100 \text{ mA}$ | | S ₁₁ | | | S ₂₁ | | S ₁₂ | | S ₂₂ | | | |---------|-----------------|---------|--------|-----------------|------|-----------------|------|-----------------|--|--| | f (MHz) | MAG | ANG | MAG | ANG | MAG | ANG | MAG | ANG | | | | 100 | .647 | - 73.2 | 21.091 | 134.7 | .039 | 58.3 | .793 | - 45.3 | | | | 200 | .529 | - 112.8 | 13.280 | 113.6 | .060 | 53.9 | .561 | - 71.0 | | | | 300 | .480 | - 133.5 | 9.390 | 103.3 | .072 | 54.2 | .409 | - 82.3 | | | | 400 | .459 | - 146.3 | 7.213 | 96.7 | .079 | 55.6 | .360 | - 86.1 | | | | 500 | .443 | - 155.4 | 5.826 | 92.0 | .090 | 58.6 | .333 | - 90.2 | | | | 600 | .424 | - 160.9 | 4.890 | 89.2 | .102 | 57.6 | .315 | - 95.6 | | | | 700 | .406 | - 166.8 | 4.206 | 86.9 | .111 | 61.4 | .297 | - 96.0 | | | | 800 | .401 | - 169.8 | 3.711 | 84.3 | .120 | 64.2 | .292 | - 95.6 | | | | 900 | .396 | - 173.9 | 3.372 | 82.7 | .135 | 66.9 | .288 | - 93.9 | | | | 1000 | .391 | - 178.9 | 3.093 | 81.8 | .143 | 67.0 | .294 | - 91.3 | | | | 1100 | .361 | 176.3 | 2.950 | 80.4 | .157 | 67.4 | .298 | - 86.5 | | | | 1200 | .366 | 175.3 | 2.984 | 77.2 | .166 | 67.9 | .338 | - 86.4 | | | | 1300 | .363 | 167.7 | 2.788 | 67.5 | .178 | 68.5 | .359 | - 94.6 | | | | 1400 | .337 | 165.3 | 2.413 | 64.6 | .192 | 71.3 | .320 | - 95.5 | | | | 1500 | .352 | 160.9 | 2.194 | 63.4 | .210 | 70.8 | .322 | - 96.3 | | | | 1600 | .349 | 157.0 | 2.017 | 61.7 | .220 | 68.8 | .314 | - 92.3 | | | | 1700 | .352 | 154.7 | 1.900 | 60.9 | .236 | 69.4 | .329 | - 91.1 | | | | 1800 | .353 | 152.0 | 1.810 | 60.3 | .248 | 69.1 | .339 | - 93.7 | | | | 1900 | .354 | 147.9 | 1.730 | 58.8 | .252 | 68.8 | .336 | - 98.1 | | | | 2000 | .354 | 146.6 | 1.633 | 57.8 | .261 | 66.2 | .342 | - 98.2 | | | V_{CE} = 10 V, I_C = 50 mA | | S ₁₁ | | ; | S ₂₁ | | S ₁₂ | | S ₂₂ | | |---------|-----------------|---------|--------|-----------------|------|-----------------|------|-----------------|--| | f (MHz) | MAG | ANG | MAG | ANG | MAG | ANG | MAG | ANG | | | 100 | .699 | - 59.3 | 21.061 | 140.1 | .037 | 68.2 | .860 | - 37.6 | | | 200 | .540 | - 97.0 | 14.088 | 118.4 | .057 | 57.8 | .629 | - 62.0 | | | 300 | .461 | - 119.1 | 10.216 | 107.1 | .066 | 55.0 | .464 | - 72.1 | | | 400 | .423 | - 133.2 | 7.898 | 99.9 | .076 | 56.4 | .409 | - 77.1 | | | 500 | .403 | - 144.4 | 6.431 | 95.0 | .087 | 56.6 | .375 | - 80.6 | | | 600 | .383 | - 150.8 | 5.407 | 91.8 | .099 | 58.7 | .363 | - 86.2 | | | 700 | .355 | - 158.1 | 4.640 | 89.3 | .110 | 59.6 | .327 | - 87.7 | | | 800 | .338 | - 161.3 | 4.093 | 86.7 | .118 | 61.4 | .323 | - 87.8 | | | 900 | .333 | - 165.1 | 3.723 | 84.9 | .129 | 63.9 | .310 | - 86.0 | | | 1000 | .322 | - 172.7 | 3.406 | 84.0 | .137 | 66.0 | .324 | - 83.2 | | | 1100 | .303 | - 177.8 | 3.245 | 82.6 | .150 | 65.6 | .333 | - 79.9 | | | 1200 | .306 | - 178.3 | 3.278 | 79.5 | .159 | 66.2 | .371 | - 80.5 | | | 1300 | .295 | 171.3 | 3.074 | 69.9 | .168 | 67.6 | .377 | - 86.5 | | | 1400 | .276 | 171.0 | 2.644 | 67.0 | .180 | 69.7 | .347 | - 86.7 | | | 1500 | .283 | 164.5 | 2.397 | 66.2 | .198 | 70.5 | .363 | - 88.4 | | | 1600 | .282 | 159.5 | 2.208 | 64.7 | .208 | 69.1 | .342 | - 85.6 | | | 1700 | .283 | 157.3 | 2.088 | 64.1 | .220 | 70.0 | .344 | - 86.0 | | | 1800 | .287 | 154.8 | 1.986 | 62.6 | .232 | 70.0 | .366 | - 87.8 | | | 1900 | .290 | 150.4 | 1.886 | 61.7 | .247 | 69.4 | .371 | - 89.3 | | | 2000 | .300 | 148.7 | 1.787 | 60.7 | .254 | 68.4 | .361 | - 92.9 | | $V_{CE} = 10 \text{ V}, I_{C} = 100 \text{ mA}$ | | S ₁₁ | | S | S ₂₁ | | S ₁₂ | | S ₂₂ | | |---------|-----------------|---------|--------|-----------------|------|-----------------|------|-----------------|--| | f (MHz) | MAG | ANG | MAG | ANG | MAG | ANG | MAG | ANG | | | 100 | .651 | - 64.8 | 21.694 | 136.2 | .029 | 62.4 | .588 | - 43.4 | | | 200 | .520 | - 106.4 | 14.288 | 114.6 | .042 | 53.0 | .435 | - 62.7 | | | 300 | .460 | - 126.5 | 10.214 | 104.5 | .051 | 56.6 | .330 | - 73.0 | | | 400 | .420 | - 140.1 | 7.822 | 98.1 | .061 | 58.4 | .284 | - 77.1 | | | 500 | .395 | - 150.0 | 6.355 | 93.2 | .070 | 65.6 | .270 | - 78.8 | | | 600 | .384 | - 156.3 | 5.314 | 90.3 | .077 | 67.0 | .257 | - 82.2 | | | 700 | .367 | - 162.9 | 4.569 | 87.8 | .089 | 70.9 | .258 | - 82.1 | | | 800 | .350 | - 165.5 | 4.037 | 85.6 | .095 | 71.6 | .241 | - 82.9 | | | 900 | .343 | - 169.3 | 3.649 | 83.8 | .106 | 72.5 | .257 | - 79.5 | | | 1000 | .339 | - 177.1 | 3.353 | 82.8 | .117 | 73.9 | .258 | - 79.3 | | | 1100 | .316 | 177.9 | 3.193 | 81.0 | .125 | 75.0 | .261 | - 73.6 | | | 1200 | .315 | 179.4 | 3.217 | 78.4 | .142 | 75.5 | .311 | - 72.3 | | | 1300 | .309 | 170.1 | 3.026 | 69.1 | .152 | 78.1 | .324 | - 80.4 | | | 1400 | .287 | 165.6 | 2.592 | 65.9 | .164 | 75.6 | .280 | - 81.0 | | | 1500 | .303 | 161.9 | 2.374 | 65.2 | .173 | 80.5 | .308 | - 82.6 | | | 1600 | .293 | 157.9 | 2.179 | 63.5 | .187 | 78.1 | .295 | - 81.4 | | | 1700 | .301 | 153.7 | 2.054 | 62.4 | .200 | 78.2 | .307 | - 78.7 | | | 1800 | .303 | 150.7 | 1.945 | 61.4 | .214 | 75.9 | .313 | - 82.1 | | | 1900 | .306 | 148.8 | 1.840 | 60.5 | .225 | 75.4 | .321 | - 82.8 | | | 2000 | .311 | 147.2 | 1.753 | 59.7 | .240 | 75.0 | .332 | - 86.9 | | **NEC** 2SC5338 [MEMO] **NEC** 2SC5338 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices in "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact NEC Sales Representative in advance. Anti-radioactive design is not implemented in this product.