

MOS FIELD EFFECT TRANSISTOR 2SK1588

N-CHANNEL MOSFET FOR SWITCHING

DESCRIPTION

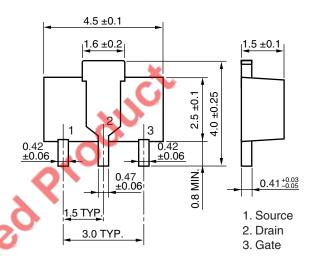
The 2SK1588 is an N-channel vertical type MOSFET which can be driven by 2.5 V power supply.

As the MOSFET is driven by low voltage and does not require consideration of driving current, it is suitable for appliances including VCR cameras and headphone stereos which need power saving.

FEATURES

- Directly driven by ICs having a 3 V power supply.
- · Low on-state resistance

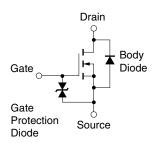
 $R_{DS(on)1} = 0.5 \Omega MAX. (V_{GS} = 2.5 V, I_{D} = 1.0 A)$


 $R_{DS(on)2}$ = 0.3 Ω MAX. (V_{GS} = 4.0 V, I_D = 1.5 A)

ORDERING INFORMATION

PART NUMBER	PACKAGE 🔨
2SK1588	SC-62 (Power Mini Mold)

Marking: NG


PACKAGE DRAWING (Unit: mm)

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Vgs = 0 V)	VDSS	16	V
Gate to Source Voltage (VDS = 0 V)	Vgss	±16	V
Drain Current (DC)	ID(DC)	±3.0	Α
Drain Current (pulse) Note1	I _{D(pulse)}	±6.0	Α
Total Power Dissipation Note2	Рт	2.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	T_{stg}	-55 to +150	°C

EQUIVALENT CIRCUIT

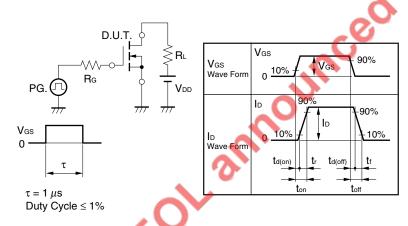
- **Notes 1.** PW \leq 10 ms, Duty Cycle \leq 50%
 - 2. Mounted on ceramic substrate of 16 cm² x 0.7 mm

Remark The diode connected between the gate and source of the transistor serves as a protector against ESD.

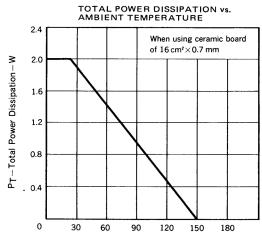
When this device actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

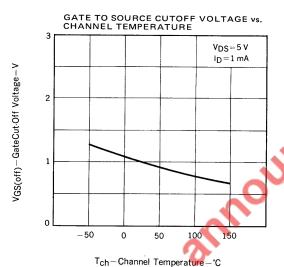
Document No. D17810EJ3V0DS00 (3rd edition) (Previous No. TC-2352A)
Date Published November 2005 NS CP(K)

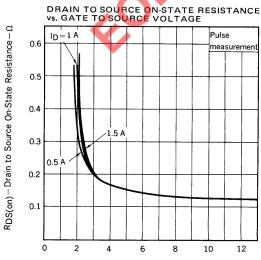


ELECTRICAL CHARACTERISTICS (TA = 25°C)

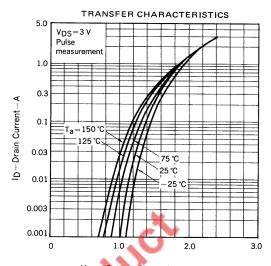

CHARACTERISTICS	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 16 V, V _{GS} = 0 V			1.0	μΑ
Gate Leakage Current	Igss	V _{GS} = ±16 V, V _{DS} = 0 V			±5.0	μΑ
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 5.0 V, I _D = 1.0 mA	0.8	1.0	1.6	V
Forward Transfer Admittance Note	y _{fs}	V _{DS} = 3.0 V, I _D = 1.0 A	0.4	3.0		S
Drain to Source On-state Resistance Note	RDS(on)1	V _{GS} = 2.5 V, I _D = 1.0 A		0.25	0.5	Ω
	RDS(on)2	V _{GS} = 4.0 V, I _D = 1.5 A		0.17	0.3	Ω
Input Capacitance	Ciss	V _{DS} = 3.0 V		240		pF
Output Capacitance	Coss	V _{GS} = 0 V		250		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		60		pF
Turn-on Delay Time	t _{d(on)}	V _{DD} = 3.0 V, I _D = 1.5 A		140		ns
Rise Time	tr	V _{GS} = 3 V	_(650		ns
Turn-off Delay Time	td(off)	R _G = 10 Ω		120		ns
Fall Time	t _f)	160		ns

Note Pulsed

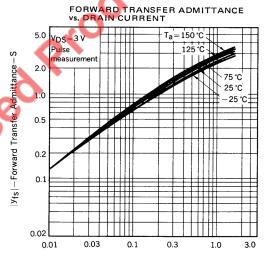

TEST CIRCUIT SWITCHING TIME

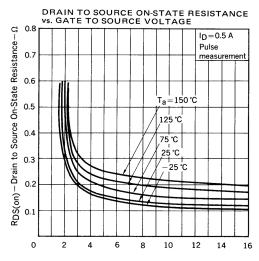


TYPICAL CHARACTERISTICS (TA = 25°C)



Ta-Ambient Temperature-°C




VGS-Gate to Source Voltage-V

VGS-Gate to Source Voltage-V

ID-Drain Current-A

VGS-Gate to Source Voltage-V

3

10

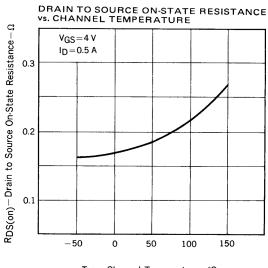
2

0.5

0.1

0.05

0.1


0.2

Ç

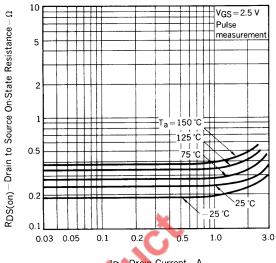
RDS(on)—Drain to Source On-State Resistance

V_{GS}=4.0 V

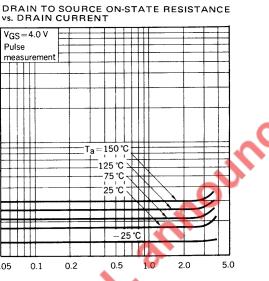
Pulse

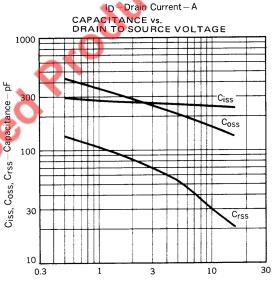
 $T_{\text{Ch}}\!-\!\text{Channel Temperature}\!-^{\circ}\!\text{C}$

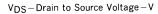
T_a=150°C

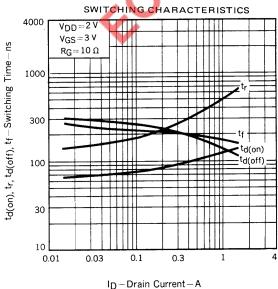

125 °C 75 °C ⋅

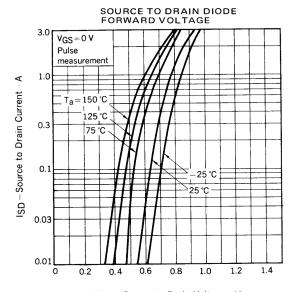
-25 °C


25 °C


0.5


ID-Drain Current-A




DRAIN TO SOURCE ON-STATE RESISTANCE vs. DRAIN CURRENT

VSD-Source to Drain Voltage-V