•

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOS III)

2SK3847

Switching Regulator, DC/DC Converter and Motor Drive Applications

- $: RDS (ON) = 12 m\Omega (typ.)$ • Low drain-source ON resistance
- High forward transfer admittance $|Y_{fs}| = 36 \text{ S} (typ.)$
- Low leakage current $: I_{DSS} = 100 \ \mu A \ (max) \ (V_{DS} = 40 \ V)$

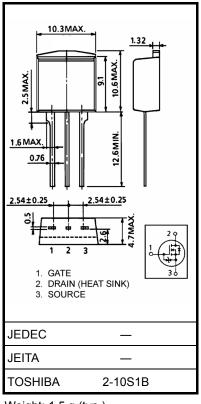
Enhancement mode $: V_{th} = 1.5 \text{ to } 2.5 \text{ V}$

 $(V_{DS} = 10 \text{ V}, \text{ I}_{D} = 1 \text{ mA})$

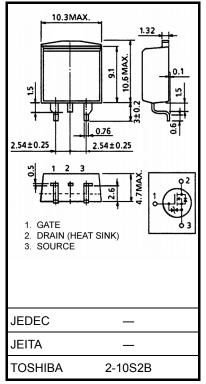
Maximum Ratings (Ta = 25°C)

Characte	eristic	Symbol	Rating	Unit
Drain-source voltage		V _{DSS}	40	V
Drain-gate voltage (R _{GS} = 20 kΩ)		V _{DGR}	40	V
Gate-source voltage		V _{GSS}	±20	V
Drain current	DC (Note 1)	۱ _D	32	А
	Pulse (Note 1)	I _{DP}	96	А
Drain power dissipation		PD	30	W
Single-pulse avalanche energy (Note 2)		E _{AS}	47	mJ
Avalanche current		I _{AR}	32	А
Repetitive avalanche energy (Note 3)		E _{AR}	3	mJ
Channel temperature		T _{ch}	150	°C
Storage temperature range		T _{stg}	-55~150	°C

Thermal Characteristics


Characteristic	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch−c)}	4.17	°C/W
Thermal resistance, channel to ambient	R _{th (ch−a)}	83.3	°C/W

Note 1: Ensure that the channel temperature does not exceed 150°C.


Note 2: V_{DD} = 25 V, T_{ch} = 25°C (initial), L = 48 μ H, $R_G = 25 \Omega$, $I_{AR} = 32 A$

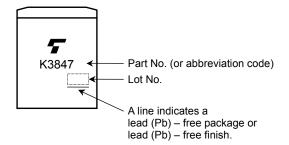
Note 3: Repetitive rating; pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Handle with care.

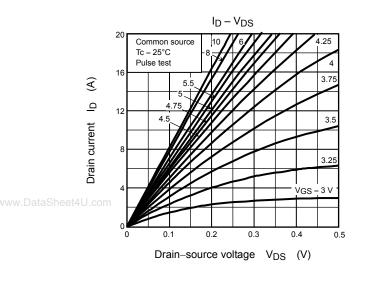
Weight: 1.5 g (typ.)

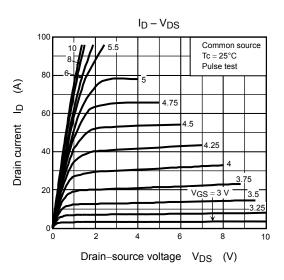
Weight: 1.5 g (typ.)

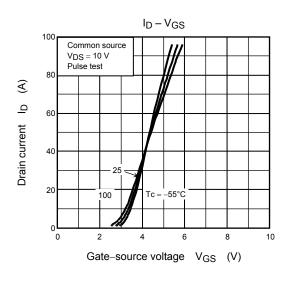
Unit: mm

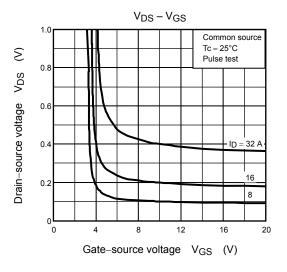

Electrical Characteristics (Ta = 25°C)

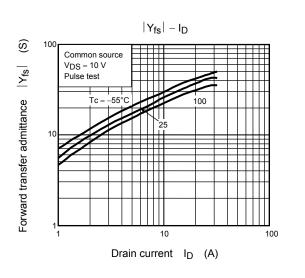
Chara	cteristic	Symbol	Test Condition	Min	Тур.	Мах	Unit
Gate leakage cu	urrent	I _{GSS}	V_{GS} = ±16 V, V_{DS} = 0 V	_	_	±10	μA
Drain cutoff curr	rent	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V	_	_	100	μA
Drain-source breakdown voltage		V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	40		_	V
		V (BR) DSX	I_D = 10 mA, V_{GS} = -20 V	15		_	
Gate threshold	voltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	1.5	_	2.5	V
Drain-source ON resistance		Pro (out)	V _{GS} = 4.5 V, I _D = 16 A	_	19	26	mΩ
		R _{DS} (ON)	V _{GS} = 10 V, I _D = 16 A	_	12	16	
Forward transfe	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 16 A	18	36	_	S
Input capacitand	ce	C _{iss}			1980	_	
Reverse transfer capacitance		C _{rss}	s V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz		210	_	pF
Output capacita	Output capacitance			_	300	_	
Switching time	Rise time	t _r	V_{GS} 0 V U_{GS} 0 V U_{GS} $U_{D} = 16 A$ U_{C} U_{U	_	7	_	
	Turn-on time	t _{on}		_	22	_	- ns
	Fall time	t _f		_	10	_	
	Turn-off time	t _{off}	Duty ≤ 1%, t _w = 10 µs		60	_	
Total gate charge (gate-source plus gate-drain)		Qg		_	40	_	nC
Gate-source charge		Q _{gs}	V _{DD} ≈ 32 V, V _{GS} = 10 V, I _D = 32 A	_	28	—	
Gate-drain ("Miller") charge		Q _{gd}		_	12	—	

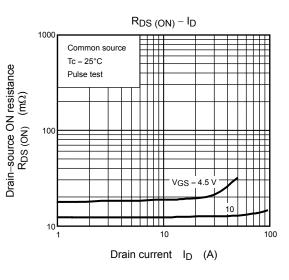

Source-Drain Ratings and Characteristics (Ta = 25°C)

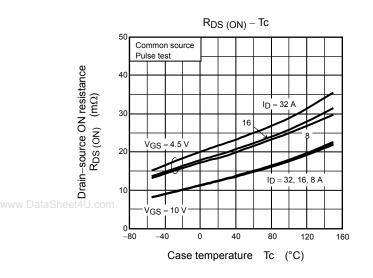

Characteristic	Symbol	Test Condition	Min	Тур.	Мах	Unit
Continuous drain reverse current (Note 1)	I _{DR}	_	_	_	32	А
Pulse drain reverse current (Note 1)	I _{DRP}	_	_	_	96	А
Forward voltage (diode)	V _{DSF}	I _{DR} = 32 A, V _{GS} = 0 V	_	_	-1.5	V
Reverse recovery time	t _{rr}	I _{DR} = 32 A, V _{GS} = 0 V	_	40	_	ns
Reverse recovery charge	Qrr	dl _{DR} /dt = 50 A/µS	_	24	_	nC

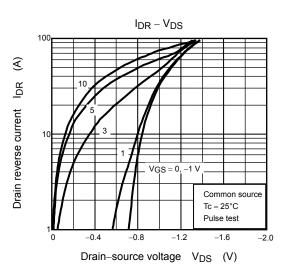

Marking

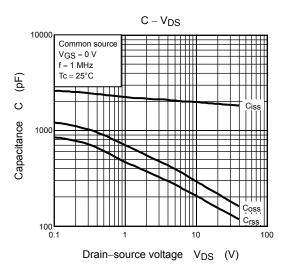


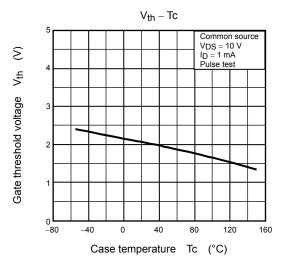

TOSHIBA

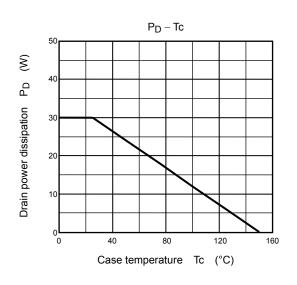


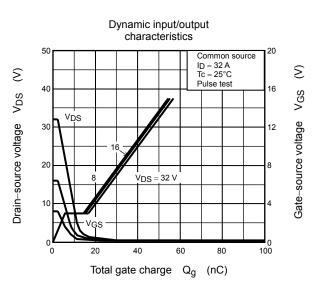


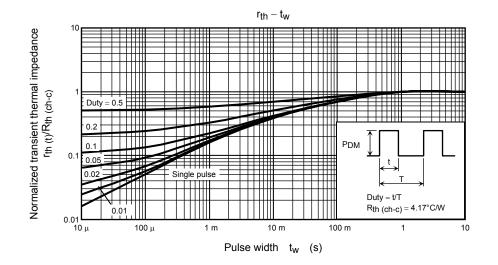


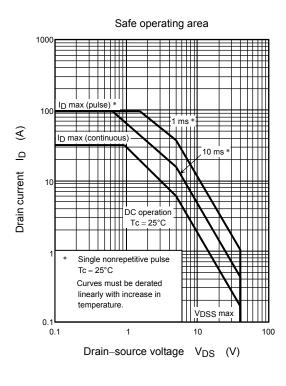


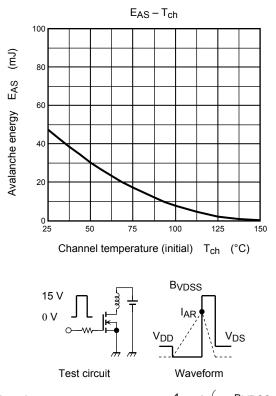



TOSHIBA









<u>TOSHIBA</u>

vw.DataSheet4U.com

$$R_{G} = 25 \Omega$$

$$V_{DD} = 25 V, L = 48 \mu H$$

$$EAS = \frac{1}{2} \cdot L \cdot l^{2} \cdot \left(\frac{BVDSS}{BVDSS - VDD}\right)$$

ww.DataSheet4U.com

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.