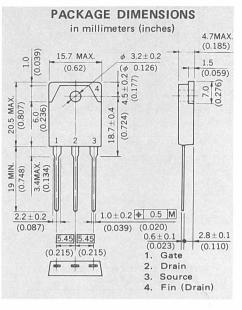


N-CHANNEL MOS FIELD EFFECT POWER TRANSISTOR

2SK875

DESCRIPTION

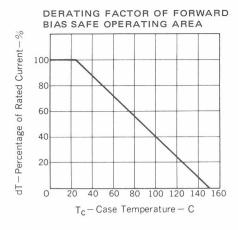

The 2SK875 is N-channel MOS Field Effect Power Transistor designed for switching power supplies DC-DC converters.

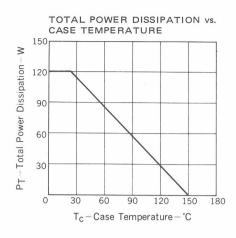
FEATURES

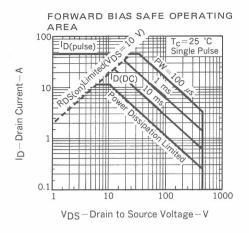
- Suitable for switching power supplied, actuater controls, and pulse circuits.
- Low R_{DS(on)}
- No second breakdown

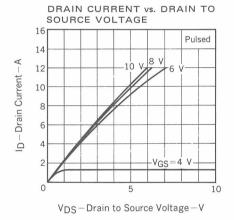
ABSOLUTE MAXIMUM RATINGS

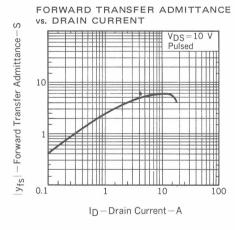
Maximum Temperatures Channel Temperature 150 °C Maximum Maximum Power Dissipation ($T_c = 25$ °C) Maximum Voltages and Currents (Ta = 25 °C) Drain to Source Voltage 450 V V_{DSS} ±20 V V_{GSS} Gate to Source Voltage Drain Current (DC) ±12 Α ID(DC) I_{D(pulse)} Drain Current (pulse)*..... ±48

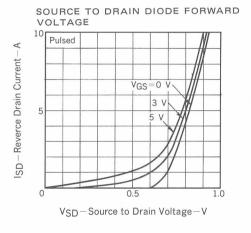


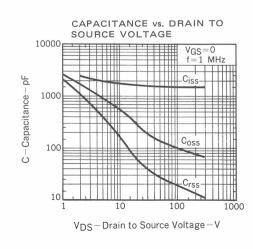

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

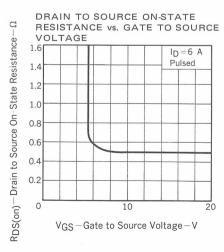

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
IDSS	Drain Leakage Current			100	μΑ	V _{DS} = 450 V, V _{GS} = 0
IGSS	Gate to Source Leakage Current			±100	nA	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0$
V _{GS(off)}	Gate to Source Cutoff Voltage	1.5		3.5	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
lyfsl	Forward Transfer Admittance	5.0			S	$V_{DS} = 10 \text{ V}, I_D = 6 \text{ A}$
R _{DS(on)}	Drain to Source On-State Resistance		0.5	0.60	Ω	$V_{GS} = 10 \text{ V}, I_D = 6 \text{ A}$
C _{iss}	Input Capacitance		2000		pF	
Coss	Output Capacitance		450		pF	V _{DS} = 10 V, V _{GS} = 0, f = 1 MHz
C _{rss}	Reverse Transfer Capacitance		120		pF	
^t d(on)	Turn-On Delay Time		30		ns	I _D = 6 A, V _{DD}
t _r	Rise Time		50		ns	V _{GS(on)} = 10 V
td(off)	Turn-Off Delay Time		100		ns	$R_L = 25 \Omega$
tf	Fall Time		50		ns	R _{in} = 10 Ω

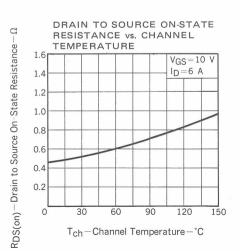

^{*} PW \leq 100 μ s, Duty Cycle \leq 2 %

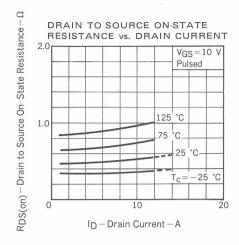

TYPICAL CHARACTERISTICS (Ta = 25 °C)

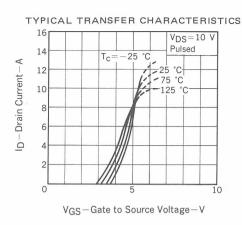


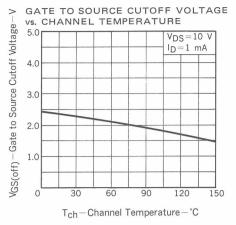


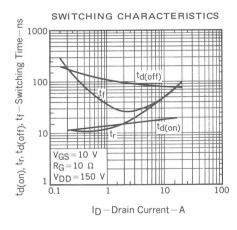


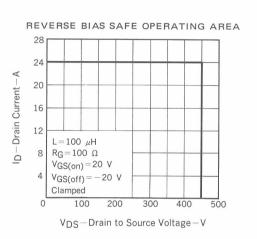


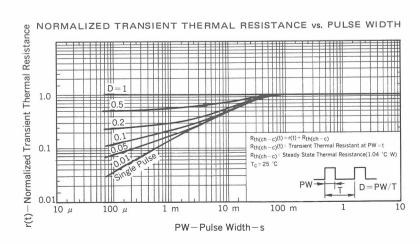


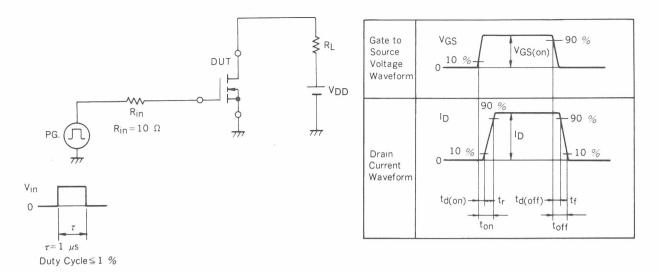


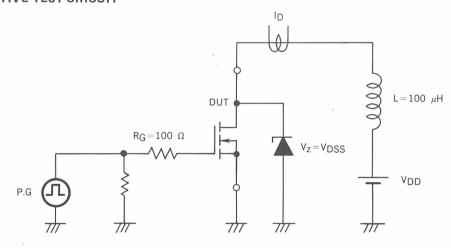


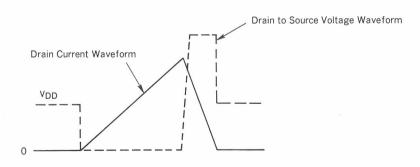












SWITCHING TIME TEST CIRCUIT

CLAMPED INDUCTIVE TEST CIRCUIT

Clamped Inductive Waveforms