
# Model 315 HFF HCMOS VCXO

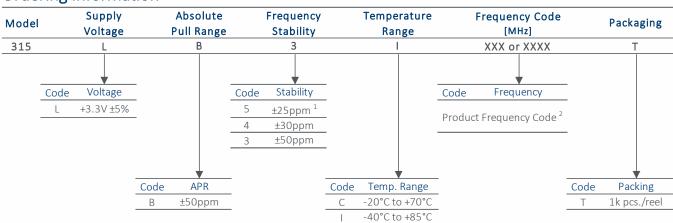
### **Features**

- Ceramic Surface Mount Package
- Ultra-Low Phase Jitter Performance
- High Frequency Fundamental Crystal Design
- Frequency Range 100 170MHz \*
- +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

## **Applications**

- Small Cells
- Wireless Communication
- Broadband Access
- SONET/SDH/DWDM
- Base Stations
- Ethernet/GbE/SyncE
- Digital Video
- Test and Measurement




#### Standard Frequencies

- 100.00MHz 144.00MHz - 104.40MHz - 153.60MHz - 122.88MHz - 155.52MHz
- 125.00MHz 156.25MHz - 136.00MHz - 166.00MHz
- \* Check factory for availability of frequencies not listed.

## Description

CTS Model 315 is a low cost, small size, high performance VCXO. Employing the latest IC technology, coupled with a high frequency fundamental crystal, M315 has excellent stability and low jitter/phase noise performance.

# **Ordering Information**



#### Notes:

- 1] Only available with "C" temperature range.
- 2] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.



## **Operating Conditions**

| PARAMETER                | SYMBOL           | CONDITIONS                                                   | MIN  | TYP | MAX             | UNIT |  |
|--------------------------|------------------|--------------------------------------------------------------|------|-----|-----------------|------|--|
| Maximum Supply Voltage   | V <sub>CC</sub>  | -                                                            | -0.5 | -   | 5.0             | V    |  |
| Maximum Control Voltage  | V <sub>C</sub>   | -                                                            | -0.5 | -   | V <sub>CC</sub> | V    |  |
| Supply Voltage           | V <sub>CC</sub>  | ±5%                                                          | 3.14 | 3.3 | 3.47            | V    |  |
| Supply Current           | I <sub>CC</sub>  | Typical @ $C_L = 15 \text{ pF, } T_A = +25 ^{\circ}\text{C}$ | -    | 20  | 30              | mA   |  |
| Output Load              | C <sub>L</sub>   | -                                                            | -    | -   | 15              | pF   |  |
| On anoting Town and tune | _                |                                                              | -20  | .25 | +70             | °C   |  |
| Operating Temperature    | e T <sub>A</sub> | -                                                            | -40  | +25 | +85             | C    |  |
| Storage Temperature      | T <sub>STG</sub> | -                                                            | -40  | -   | +100            | °C   |  |

## Frequency Stability

| PARAMETER                    | SYMBOL            | CONDITIONS                                                     | MIN       | TYP          | MAX | UNIT |
|------------------------------|-------------------|----------------------------------------------------------------|-----------|--------------|-----|------|
| Frequency Range              | $f_O$             | -                                                              | 100 - 170 |              |     | MHz  |
| Frequency Stability [Note 1] | $\Delta f/f_{O}$  | ±25ppm stability, -20°C to +70°C only                          |           | 25, 30 or 50 |     | ±ppm |
| Absolute Pull Range [Note 2] | APR               | -                                                              | 50        | -            | -   | ±ppm |
| Aging                        | $\Delta f/f_{25}$ | First Year @ +25°C, nominal $V_{\text{CC}}$ and $V_{\text{C}}$ | -3        | =            | 3   | ppm  |

<sup>1.]</sup> Inclusive of initial tolerance at time of shipment, changes in supply voltage, load, temperature and 1st year aging.

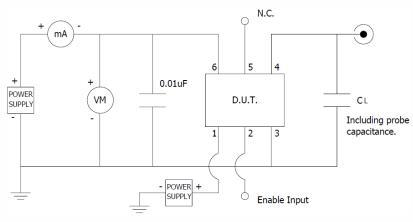
## **Output Parameters**

| PARAMETER             | SYMBOL           | CONDITIONS                      | MIN                | TYP                  | MAX         | UNIT |
|-----------------------|------------------|---------------------------------|--------------------|----------------------|-------------|------|
| Output Type           | -                | -                               |                    | HCMOS                |             | =    |
| Outnut Valtage Levels | V <sub>OH</sub>  | Logic '1' Level, CMOS Load      | 0.9V <sub>CC</sub> | -                    | -           | V    |
| Output Voltage Levels | $V_{OL}$         | Logic '0' Level, CMOS Load      | -                  | - 0.1V <sub>CC</sub> |             | V    |
| Output Duty Cycle     | SYM              | @ 50% Level                     | 45                 | -                    | 55          | %    |
| Rise and Fall Time    | $T_R$ , $T_F$    | @ 20%/80% Levels                | -                  | 1.5                  | 3.0         | ns   |
| Start Up Time         | $T_S$            | Application of $V_{CC}$         | -                  | -                    | 5           | ms   |
| Enable Function       |                  |                                 |                    |                      |             |      |
| Enable Input Voltage  | $V_{IH}$         | Pin 2 Logic '1', Output Enabled | $0.7V_{CC}$        | =                    | -           | V    |
| Disable Input Voltage | $V_{IL}$         | Pin 2 Logic '0', Output Standby | -                  | -                    | $0.3V_{CC}$ | V    |
| Standby Current       | I <sub>STB</sub> | Pin 2 Logic '0', Output Standby | -                  | -                    | 10          | μΑ   |
| Enable Time           | $T_{PLZ}$        | Pin 2 Logic '1'                 | =                  | -                    | 2           | ms   |
| Phase Jitter, RMS     | tjrms            | Bandwidth 12kHz - 20MHz         | =                  | 50                   | 150         | fs   |
| Phase Noise           | -                | See Typical Plots               | =                  | -                    | =           | -    |

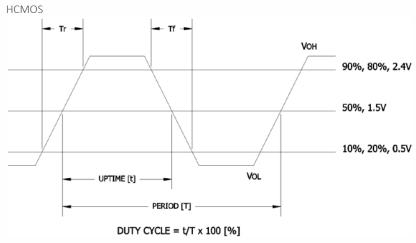
#### **Enable Truth Table**

| Pin 2     | Pin 4     |
|-----------|-----------|
| Logic '1' | Output    |
| Open      | Output    |
| Logic '0' | High Imp. |

 $<sup>2.] \ \ \</sup>text{Minimum guaranteed frequency shift from f}_{0} \ \text{over variations in temperature, aging, power supply and load.}$ 



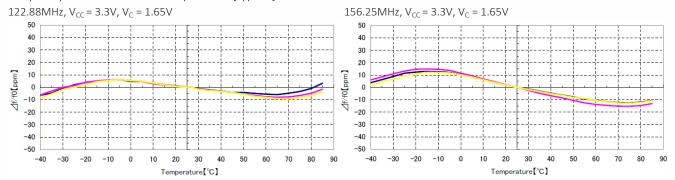

# Control Voltage


| PARAMETER           | SYMBOL            | CONDITIONS                        | MIN  | TYP         | MAX  | UNIT  |
|---------------------|-------------------|-----------------------------------|------|-------------|------|-------|
| Control Voltage     | V <sub>C</sub>    | -                                 | 0.00 | 1.65        | 3.30 | V     |
| Farance Davistics   | A.F./F            | V <sub>C</sub> = 0.0V             |      | -155 to -75 |      |       |
| Frequency Deviation | Δf/f <sub>O</sub> | $V_C = 3.3V$ 75 to 155            |      |             |      | ppm   |
| Linearity           | L                 | Best Straight Line Fit            | -    | 5           | 10   | %     |
| Gain Transfer       | K <sub>V</sub>    | Pull Sensitivity; @ +1.65V, +25°C | -    | 65          | -    | ppm/V |
| Input Impedance     | Z <sub>Vc</sub>   | -                                 | 100  | -           | -    | kOhms |
| Modulation Roll-off | -                 | @ -3dB                            | 20   | -           | -    | kHz   |
| Transfer Function   | -                 | -                                 |      | Positive    |      | -     |

#### **Test Circuit**

HCMOS

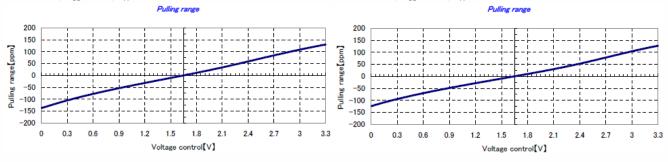



## Output Waveform





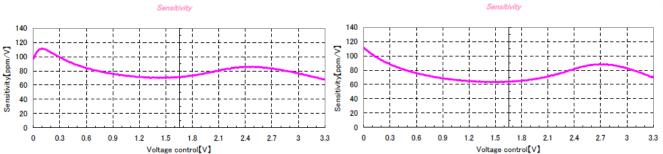
#### Performance Data


#### Frequency Deviation – Over Temperature [typical]



#### Frequency Deviation – Pulling Range [typical]

122.88MHz,  $V_{CC} = 3.3V$ ,  $T_A = +25^{\circ}V$ 

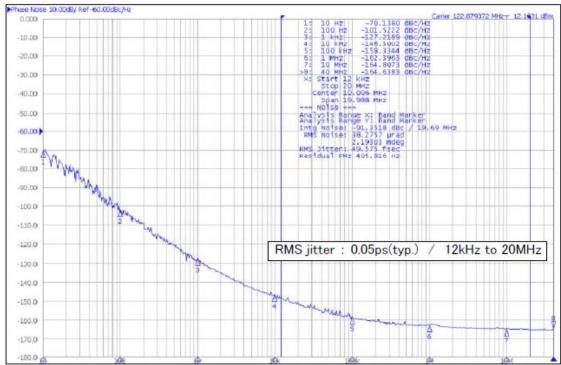

156.25MHz,  $V_{CC} = 3.3V$ ,  $T_A = +25^{\circ}V$ 



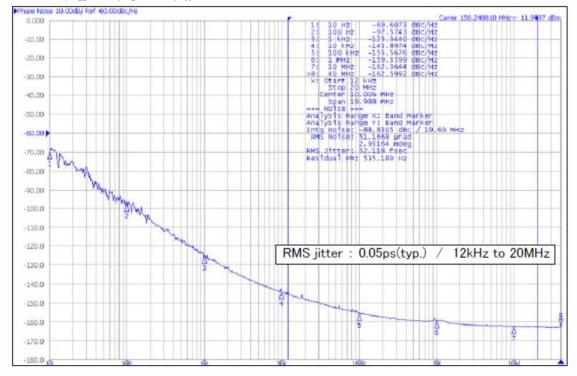
#### Frequency Deviation – Gain Transfer [typical]

122.88MHz,  $V_{CC} = 3.3V$ ,  $T_A = +25^{\circ}V$ 

156.25MHz,  $V_{CC} = 3.3V$ ,  $T_A = +25^{\circ}V$ 



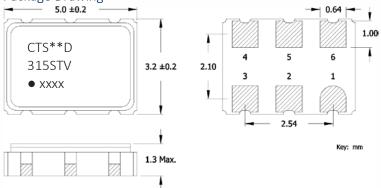




#### Performance Data

Phase Noise [typical]

122.88MHz,  $V_{CC} = 3.3V$ ,  $V_{C} = 1.65V$ ,  $T_{A} = +25$ °C



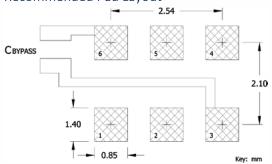

156.25MHz,  $V_{CC} = 3.3V$ ,  $V_{C} = 1.65V$ ,  $T_{A} = +25$ °C





# **Mechanical Specifications**

#### Package Drawing




## Marking Information

- 1. \*\* Manufacturing Site Code.
- 2. D Date Code. See Table I for codes.
- 3. ST Frequency Stability/Temperature Code. [Refer to Ordering Information]
- 4. V Voltage Code. L = 3.3V
- 5. xxxx Frequency Code. 4-digits required for frequencies 100MHz and above.

[See document 016-1454-0, Frequency Code Tables.]

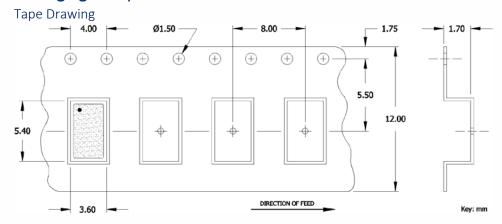
#### Recommended Pad Layout



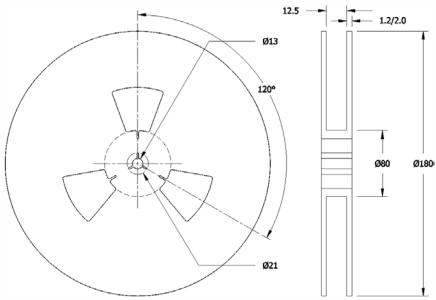
#### **Notes**

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- 2. Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.

#### Pin Assignments


| Pin | Symbol          | Function          |
|-----|-----------------|-------------------|
| 1   | V <sub>C</sub>  | Control Voltage   |
| 2   | ЕОН             | Enable            |
| 3   | GND             | Circuit & Package |
| 4   | Output          | RF Output         |
| 5   | N.C.            | No Connect        |
| 6   | V <sub>CC</sub> | Supply Voltage    |

#### Table I - Date Code


| MONTH |      |      | JAN  | FEB   | MAR | APR   | MAY  | JUN | JUL | AUG | SEP | ОСТ | NOV | DEC |   |   |
|-------|------|------|------|-------|-----|-------|------|-----|-----|-----|-----|-----|-----|-----|---|---|
| YEAR  |      | JAN  | FED  | IVIAN | APK | IVIAT | JOIN | JOL | AUG | SEP | OCI | NOV | DEC |     |   |   |
| 2001  | 2005 | 2009 | 2013 | 2017  | А   | В     | С    | D   | Е   | F   | G   | Н   | J   | K   | L | М |
| 2002  | 2006 | 2010 | 2014 | 2018  | N   | Р     | Q    | R   | S   | Т   | U   | V   | W   | Χ   | Υ | Z |
| 2003  | 2007 | 2011 | 2015 | 2019  | а   | b     | С    | d   | е   | f   | g   | h   | j   | k   | I | m |
| 2004  | 2008 | 2012 | 2016 | 2020  | n   | р     | q    | r   | S   | t   | u   | V   | W   | Х   | У | Z |



# Packaging - Tape and Reel



## **Reel Drawing**



#### Notes

- 1. Device quantity is 1k pieces maximum per 180mm reel.
- 2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.