3N128 CASE 20-03, STYLE 7 TO-72 (TO-206AF) MOSFET AMPLIFIER N-CHANNEL — DEPLETION

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DS}	+ 20	Vdc
Drain-Gate Voltage	VDG	+ 20	Vdc
Gate-Source Voltage	VGS	±10	Vdc
Drain Current	۱D	50	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	. PD	330 2.2	m₩ m₩/°C
Operating and Storage Junction Temperature Range	TJ, Tstg	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Gate-Source Breakdown Voltage(1) ($I_G = -10 \ \mu Adc, V_{DS} = 0$)	V(BR)GSS	- 50	_	Vdc
Gate Reverse Current $ \begin{array}{ll} (V_{GS}=-8.0 \mbox{ Vdc}, V_{DS}=0) \\ (V_{GS}=-8.0 \mbox{ Vdc}, V_{DS}=0, \mbox{ T}_{A}=125^{\circ}\mbox{C}) \end{array} . $	IGSS	_	0.05 5.0	nAdc
Gate Source Cutoff Voltage ($V_{DS} = 15 \text{ Vdc}, I_D = 50 \mu \text{Adc}$)	V _{GS(off)}	-0.5	-8.0	Vdc
ON CHARACTERISTICS				
Zero-Gate-Voltage Drain Current(2) (V _{DS} = 15 Vdc, V _{GS} = 0)	IDSS	5.0	25 🔹	mAdc
SMALL-SIGNAL CHARACTERISTICS				·
Forward Transfer Admittance (VDS = 15 Vdc, ID = 5.0 mAdc, f = 1.0 kHz)	Y _{fs}	5000	12,000	μmhos
Input Admittance (VDS = 15 Vdc, ID = 5.0 mAdc, f = 200 MHz)	Re(y _{is})	-	800	μmhos
Output Conductance ($V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz}$)	Re(y _{os})	_	500	μmhos
Forward Transconductance ($V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz}$)	Re(y _{fs})	5000	-	μmhos
Input Capacitance (VDS = 15 Vdc, ID = 5.0 mAdc, f = 1.0 MHz)	C _{iss}	_	7.0	pF
Reverse Transfer Capacitance ($V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 1.0 \text{ MHz}$)	C _{rss}	0.05	0.35	pF
FUNCTIONAL CHARACTERISTICS				·
Noise Figure $(V_{DS} = 15 \text{ Vdc}, I_D = 5.0 \text{ mAdc}, f = 200 \text{ MHz})$	NF		5.0	dB
Power Gain (V _{DS} = 15 Vdc, I _D = 5.0 mAdc, f = 200 MHz)	PG	13.5	23	dB

(1) Caution Destructive Test, can damage gate oxide beyond operation.

(2) Pulse Test: Pulse Width = $300 \ \mu s$, Duty Cycle = 2.0%.

6

3N128

6

TYPICAL CHARACTERISTICS (T_A = 25^oC)

TYPICAL 1 kHz DRAIN CHARACTERISTICS $(T_A = 25^{\circ}C, V_{DS} = 15 \text{ Vdc}, f = 1.0 \text{ kHz})$

TYPICAL 200 MHz COMMON-SOURCE ADMITTANCE CHARACTERISTICS ${T_A = 25^{\circ}C, V_{DS} = 15 \text{ Vdc}, f = 200 \text{ MHz}}$

FIGURE 6 - FORWARD TRANSADMITTANCE (yfs) COMPONENTS

4 0

6.0

af.

bfs

8.0

-160

-140 -120 -100 -80 -60 -40 -20

INPUT POWER PER TONE (d8m)

+20

6