STL40N10F7

N-channel 100 V, 0.02 Ω typ., 10 A STripFET™ F7 Power MOSFET in a PowerFLAT™ 5x6 package

Datasheet - production data

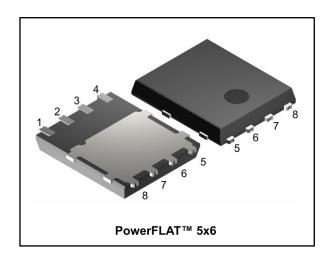
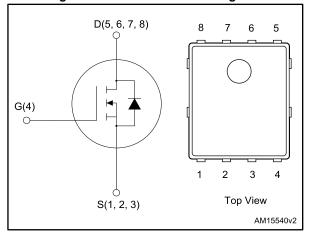



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STL40N10F7	100 V	0.024Ω	10 A	5 W

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STL40N10F7	40N10F7	PowerFLAT [™] 5x6	Tape and reel

Contents STL40N10F7

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	PowerFLAT 5x6 type R package information	10
	4.2	Packing information	12
5	Revisio	n history	14

STL40N10F7 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{DS}	Drain-source voltage	100	V	
V_{GS}	Gate-source voltage	± 20	V	
$I_D^{(1)}$	Drain current (continuous) at T _C = 25 °C	40	Α	
I _D ⁽¹⁾	Drain current (continuous) at T _C = 100 °C	28	Α	
$I_D^{(2)}$	Drain current (continuous) at T _{pcb} = 25 °C	10	Α	
I _D ⁽²⁾	Drain current (continuous) at T _{pcb} = 100 °C	7	Α	
I _{DM} ⁽²⁾⁽³⁾	Drain current (pulsed)	40	Α	
P _{TOT} ⁽¹⁾	Total dissipation at T _C = 25 °C	70	W	
P _{TOT} ⁽²⁾	Total dissipation at T _{pcb} = 25 °C	5	W	
Tj	Operating junction temperature range	55 to 175	°C	
T_{stg}	Storage temperature range	-55 to 175 °		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max.	2.08	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max.	30	°C/W

Notes:

 $^{^{(1)}\!} This$ value is rated according to $R_{thj\text{-}c}$

 $^{^{(2)}\!} This$ value is rated according to $R_{thj\text{-pcb}}$

⁽³⁾Pulse width limited by safe operating area

 $^{^{(1)}\!\}mbox{When mounted on FR-4 board of 1 inch², 2oz Cu, t < 10 sec}$

Electrical characteristics STL40N10F7

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4: On/Off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I _D = 250 μA, V _{GS} = 0 V	100			>
la sa	Zero gate voltage	V _{GS} = 0 V V _{DS} = 100 V			10	μA
I _{DSS}	drain current	V _{GS} = 0 V, V _{DS} = 100 V, T _C = 125° C			100	μΑ
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = +20 V			100	nA
V _{GS(th)}	Gate threshold voltage	V_{DS} = V_{GS} , I_D = 250 μA	3		4.5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 10 A		0.02	0.024	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	1270	1	pF
Coss	Output capacitance	$V_{DS} = 50 \text{ V}, f = 1 \text{ MHz},$ $V_{GS} = 0 \text{ V}$		290	1	pF
C _{rss}	Reverse transfer capacitance			24	-	pF
Q_g	Total gate charge	V _{DD} = 50 V, I _D = 32 A,		19	1	nC
Q_gs	Gate-source charge	V _{GS} = 10 V (see <i>Figure 14: "Test</i>	-	9	-	nC
Q_{gd}	Gate-drain charge	circuit for gate charge behavior")	-	4.5	. 1	nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V_{DD} = 50 V, I_{D} = 16 A, R_{G} = 4.7 Ω , V_{GS} = 10 V (see Figure 13: "Test circuit for resistive load switching times")	-	12	-	ns
t _r	Rise time		-	17.5	-	ns
$t_{d(off)}$	Turn-off delay time		1	22	1	ns
t _f	Fall time		-	5.6	ı	ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain curren		-		32	A
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)	I _{SD} = 32 A, V _{GS} = 0 V			128	Α
V _{SD} ⁽²⁾	Forward on voltage				1.1	٧
t _{rr}	Reverse recovery time	I _{SD} = 32 A, di/dt = 100 A/µs		41		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 80 V. T _J = 150° C (see Figure 15: "Test circuit for inductive load switching	-	47		nC
I _{RRM}	Reverse recovery current	and diode recovery times"	-	2.3		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

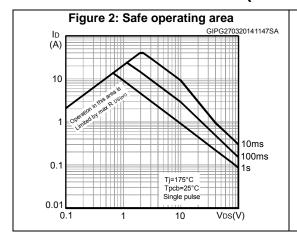
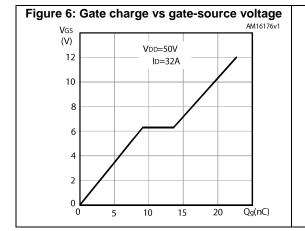
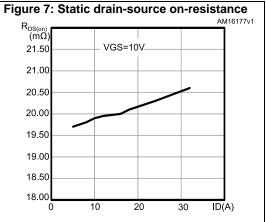




Figure 3: Thermal impedance

K $\delta = 0.5$ 0.2 10^{-1} 0.05 0.05 0.01 0.05 0.01

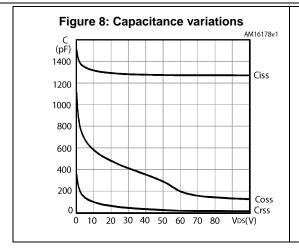


Figure 9: Normalized gate threshold voltage vs temperature

VGS(th) (norm)

1.2

1

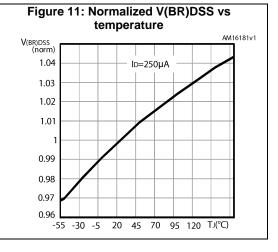
0.8

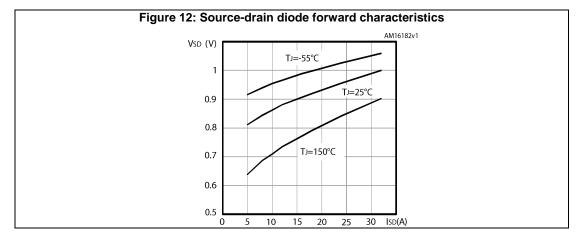
0.6

0.4

0.2

0

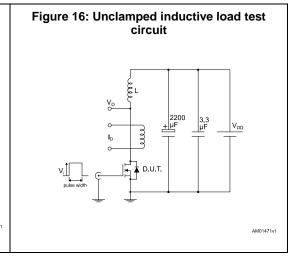

-55 -30 -5 20 45 70 95 120 145 TJ(°C)

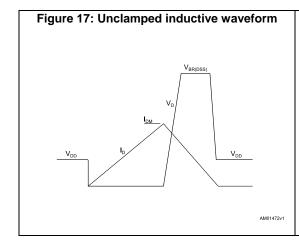

Figure 10: Normalized on-resistance vs temperature

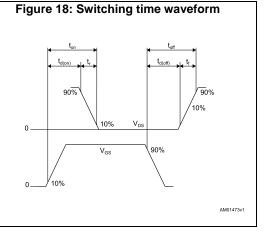
RDS(on) (norm) VGS=10V

1.5

1
0.5
0
-55 -30 -5 20 45 70 95 120 TJ(°C)






Test circuits STL40N10F7

3 Test circuits

Figure 13: Test circuit for resistive load switching times

STL40N10F7 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 PowerFLAT 5x6 type R package information

Figure 19: PowerFLAT™ 5x6 type R package outline

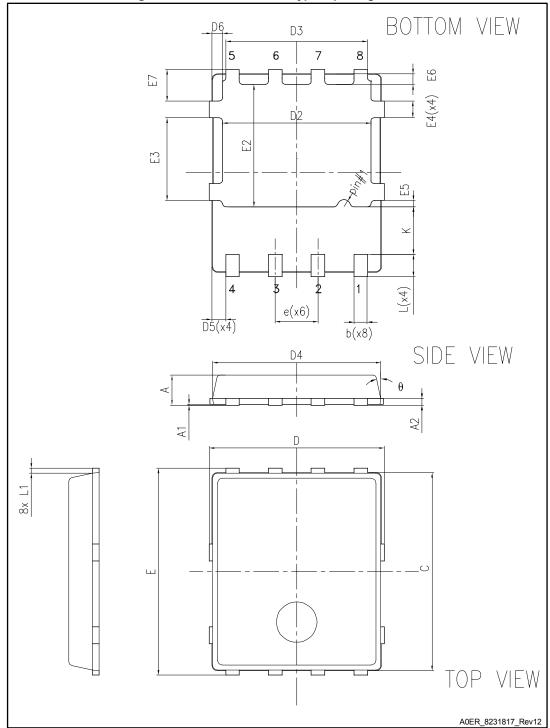


Table 8: PowerFLAT™ 5x6 type R mechanical data

mm				
Dim.	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
С	5.80	6.00	6.20	
D	5.00	5.20	5.40	
D2	4.15		4.45	
D3	4.05	4.20	4.35	
D4	4.80	5.0	5.20	
D5	0.25	0.4	0.55	
D6	0.15	0.3	0.45	
е		1.27		
E	5.95	6.15	6.35	
E2	3.50		3.70	
E3	2.35		2.55	
E4	0.40		0.60	
E5	0.08		0.28	
E6	0.2	0.325	0.450	
E7	0.75	0.90	1.25	
K	1.275		1.575	
L	0.60		0.80	
L1	0.05	0.15	0.25	
θ	0°		12°	

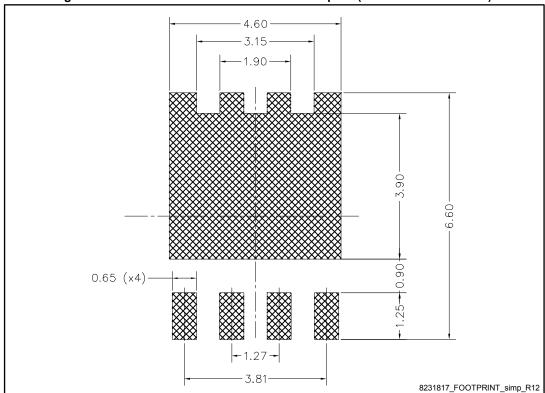


Figure 20: PowerFLAT™ 5x6 recommended footprint (dimensions are in mm)

4.2 Packing information

(I) Measured from centerline of sprocket hole to centerline of pocket.

Base and bulk quantity 3000 pcs

(II) Cumulative tolerance of 10 sprocket hole to centerline of sprocket hole to centerline of sprocket.

8234350 Tape rev. C

Figure 21: PowerFLAT™ 5x6 tape (dimensions are in mm)

Figure 22: PowerFLAT™ 5x6 package orientation in carrier tape

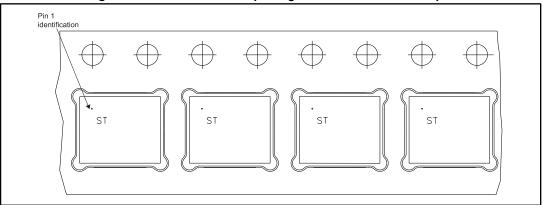
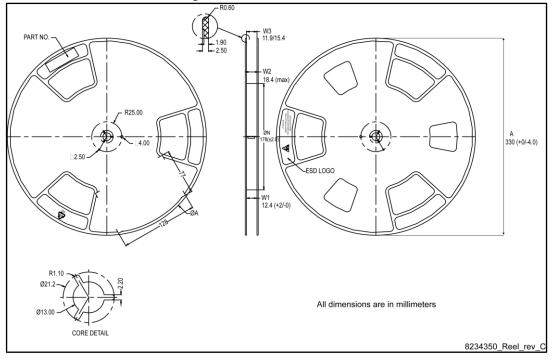



Figure 23: PowerFLAT™ 5x6 reel

Revision history STL40N10F7

5 Revision history

Table 9: Document revision history

Date	Revis ion	Changes
20-May-2015	1	First release.
02-Nov-2015	2	Document status promoted from preliminary to production data. Modified: V _{GS(th)} values in tab 4. Updated the entire typical values in tab 5, tab 6 and tab7 Added Electrical characteristics (curves) Updated Figure 13, 14, 15 and 16 Minor text changes.
18-Dec-2015	3	Updated title, features and description. Updated <i>Table 2: "Absolute maximum ratings"</i> and <i>Table 4: "On/Off states"</i> . Minor text changes.
01-Feb 2016	4	Updated <i>Table 5: "Dynamic"</i> Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved